BambuSrc/libslic3r/NSVGUtils.cpp

544 lines
19 KiB
C++

#include "NSVGUtils.hpp"
#include <array>
#include <charconv> // to_chars
#include <boost/nowide/iostream.hpp>
#include <boost/nowide/fstream.hpp>
#include "ClipperUtils.hpp"
#include "Emboss.hpp" // heal for shape
namespace {
using namespace Slic3r; // Polygon
// see function nsvg__lineTo(NSVGparser* p, float x, float y)
bool is_line(const float *p, float precision = 1e-4f);
// convert curve in path to lines
struct LinesPath{
Polygons polygons;
Polylines polylines; };
LinesPath linearize_path(NSVGpath *first_path, const NSVGLineParams &param);
HealedExPolygons fill_to_expolygons(const LinesPath &lines_path, const NSVGshape &shape, const NSVGLineParams &param);
HealedExPolygons stroke_to_expolygons(const LinesPath &lines_path, const NSVGshape &shape, const NSVGLineParams &param);
} // namespace
namespace Slic3r {
ExPolygonsWithIds create_shape_with_ids(const NSVGimage &image, const NSVGLineParams &param)
{
ExPolygonsWithIds result;
size_t shape_id = 0;
for (NSVGshape *shape_ptr = image.shapes; shape_ptr != NULL; shape_ptr = shape_ptr->next, ++shape_id) {
const NSVGshape &shape = *shape_ptr;
if (!(shape.flags & NSVG_FLAGS_VISIBLE))
continue;
bool is_fill_used = shape.fill.type != NSVG_PAINT_NONE;
bool is_stroke_used =
shape.stroke.type != NSVG_PAINT_NONE &&
shape.strokeWidth > 1e-5f;
if (!is_fill_used && !is_stroke_used)
continue;
const LinesPath lines_path = linearize_path(shape.paths, param);
if (is_fill_used) {
unsigned unique_id = static_cast<unsigned>(2 * shape_id);
HealedExPolygons expoly = fill_to_expolygons(lines_path, shape, param);
result.push_back({unique_id, expoly.expolygons, expoly.is_healed});
}
if (is_stroke_used) {
unsigned unique_id = static_cast<unsigned>(2 * shape_id + 1);
HealedExPolygons expoly = stroke_to_expolygons(lines_path, shape, param);
result.push_back({unique_id, expoly.expolygons, expoly.is_healed});
}
}
// SVG is used as centered
// Do not disturb user by settings of pivot position
center(result);
return result;
}
Polygons to_polygons(const NSVGimage &image, const NSVGLineParams &param)
{
Polygons result;
for (NSVGshape *shape = image.shapes; shape != NULL; shape = shape->next) {
if (!(shape->flags & NSVG_FLAGS_VISIBLE))
continue;
if (shape->fill.type == NSVG_PAINT_NONE)
continue;
const LinesPath lines_path = linearize_path(shape->paths, param);
polygons_append(result, lines_path.polygons);
// close polyline to create polygon
polygons_append(result, to_polygons(lines_path.polylines));
}
return result;
}
void bounds(const NSVGimage &image, Vec2f& min, Vec2f &max)
{
for (const NSVGshape *shape = image.shapes; shape != NULL; shape = shape->next)
for (const NSVGpath *path = shape->paths; path != NULL; path = path->next) {
if (min.x() > path->bounds[0])
min.x() = path->bounds[0];
if (min.y() > path->bounds[1])
min.y() = path->bounds[1];
if (max.x() < path->bounds[2])
max.x() = path->bounds[2];
if (max.y() < path->bounds[3])
max.y() = path->bounds[3];
}
}
NSVGimage_ptr nsvgParseFromFile(const std::string &filename, const char *units, float dpi)
{
NSVGimage *image = ::nsvgParseFromFile(filename.c_str(), units, dpi);
return {image, &nsvgDelete};
}
std::unique_ptr<std::string> read_from_disk(const std::string &path)
{
boost::nowide::ifstream fs{path};
if (!fs.is_open())
return nullptr;
std::stringstream ss;
ss << fs.rdbuf();
return std::make_unique<std::string>(ss.str());
}
NSVGimage_ptr nsvgParse(const std::string& file_data, const char *units, float dpi){
// NOTE: nsvg parser consume data from input(char *)
size_t size = file_data.size();
// file data could be big, so it is allocated on heap
std::unique_ptr<char[]> data_copy(new char[size+1]);
memcpy(data_copy.get(), file_data.c_str(), size);
data_copy[size] = '\0'; // data for nsvg must be null terminated
NSVGimage *image = ::nsvgParse(data_copy.get(), units, dpi);
return {image, &nsvgDelete};
}
NSVGimage *init_image(EmbossShape::SvgFile &svg_file){
// is already initialized?
if (svg_file.image.get() != nullptr)
return svg_file.image.get();
if (svg_file.file_data == nullptr) {
// chech if path is known
if (svg_file.path.empty())
return nullptr;
svg_file.file_data = read_from_disk(svg_file.path);
if (svg_file.file_data == nullptr)
return nullptr;
}
// init svg image
svg_file.image = nsvgParse(*svg_file.file_data);
if (svg_file.image.get() == NULL)
return nullptr;
return svg_file.image.get();
}
size_t get_shapes_count(const NSVGimage &image)
{
size_t count = 0;
for (NSVGshape * s = image.shapes; s != NULL; s = s->next)
++count;
return count;
}
//void save(const NSVGimage &image, std::ostream &data)
//{
// data << "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>";
//
// // tl .. top left
// Vec2f tl(std::numeric_limits<float>::max(), std::numeric_limits<float>::max());
// // br .. bottom right
// Vec2f br(std::numeric_limits<float>::min(), std::numeric_limits<float>::min());
// bounds(image, tl, br);
//
// tl.x() = std::floor(tl.x());
// tl.y() = std::floor(tl.y());
//
// br.x() = std::ceil(br.x());
// br.y() = std::ceil(br.y());
// Vec2f s = br - tl;
// Point size = s.cast<Point::coord_type>();
//
// data << "<svg xmlns=\"http://www.w3.org/2000/svg\" "
// << "width=\"" << size.x() << "mm\" "
// << "height=\"" << size.y() << "mm\" "
// << "viewBox=\"0 0 " << size.x() << " " << size.y() << "\" >\n";
// data << "<!-- Created with PrusaSlicer (https://www.prusa3d.com/prusaslicer/) -->\n";
//
// std::array<char, 128> buffer;
// auto write_point = [&tl, &buffer](std::string &d, const float *p) {
// float x = p[0] - tl.x();
// float y = p[1] - tl.y();
// auto to_string = [&buffer](float f) -> std::string {
// auto [ptr, ec] = std::to_chars(buffer.data(), buffer.data() + buffer.size(), f);
// if (ec != std::errc{})
// return "0";
// return std::string(buffer.data(), ptr);
// };
// d += to_string(x) + "," + to_string(y) + " ";
// };
//
// for (const NSVGshape *shape = image.shapes; shape != NULL; shape = shape->next) {
// enum struct Type { move, line, curve, close }; // https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/d
// Type type = Type::move;
// std::string d = "M "; // move on start point
// for (const NSVGpath *path = shape->paths; path != NULL; path = path->next) {
// if (path->npts <= 1)
// continue;
//
// if (type == Type::close) {
// type = Type::move;
// // NOTE: After close must be a space
// d += " M "; // move on start point
// }
// write_point(d, path->pts);
// size_t path_size = static_cast<size_t>(path->npts - 1);
//
// if (path->closed) {
// // Do not use last point in path it is duplicit
// if (path->npts <= 4)
// continue;
// path_size = static_cast<size_t>(path->npts - 4);
// }
//
// for (size_t i = 0; i < path_size; i += 3) {
// const float *p = &path->pts[i * 2];
// if (!::is_line(p)) {
// if (type != Type::curve) {
// type = Type::curve;
// d += "C "; // start sequence of triplets defining curves
// }
// write_point(d, &p[2]);
// write_point(d, &p[4]);
// } else {
//
// if (type != Type::line) {
// type = Type::line;
// d += "L "; // start sequence of line points
// }
// }
// write_point(d, &p[6]);
// }
// if (path->closed) {
// type = Type::close;
// d += "Z"; // start sequence of line points
// }
// }
// if (type != Type::close) {
// //type = Type::close;
// d += "Z"; // closed path
// }
// data << "<path fill=\"#D2D2D2\" d=\"" << d << "\" />\n";
// }
// data << "</svg>\n";
//}
//
//bool save(const NSVGimage &image, const std::string &svg_file_path)
//{
// std::ofstream file{svg_file_path};
// if (!file.is_open())
// return false;
// save(image, file);
// return true;
//}
} // namespace Slic3r
namespace {
using namespace Slic3r; // Polygon + Vec2f
Point::coord_type to_coor(float val, double scale) { return static_cast<Point::coord_type>(std::round(val * scale)); }
bool need_flattening(float tessTol, const Vec2f &p1, const Vec2f &p2, const Vec2f &p3, const Vec2f &p4) {
// f .. first
// s .. second
auto det = [](const Vec2f &f, const Vec2f &s) {
return std::fabs(f.x() * s.y() - f.y() * s.x());
};
Vec2f pd = (p4 - p1);
Vec2f pd2 = (p2 - p4);
float d2 = det(pd2, pd);
Vec2f pd3 = (p3 - p4);
float d3 = det(pd3, pd);
float d23 = d2 + d3;
return (d23 * d23) >= tessTol * pd.squaredNorm();
}
// see function nsvg__lineTo(NSVGparser* p, float x, float y)
bool is_line(const float *p, float precision){
//Vec2f p1(p[0], p[1]);
//Vec2f p2(p[2], p[3]);
//Vec2f p3(p[4], p[5]);
//Vec2f p4(p[6], p[7]);
float dx_3 = (p[6] - p[0]) / 3.f;
float dy_3 = (p[7] - p[1]) / 3.f;
return
is_approx(p[2], p[0] + dx_3, precision) &&
is_approx(p[4], p[6] - dx_3, precision) &&
is_approx(p[3], p[1] + dy_3, precision) &&
is_approx(p[5], p[7] - dy_3, precision);
}
/// <summary>
/// Convert cubic curve to lines
/// Inspired by nanosvgrast.h function nsvgRasterize -> nsvg__flattenShape -> nsvg__flattenCubicBez
/// https://github.com/memononen/nanosvg/blob/f0a3e1034dd22e2e87e5db22401e44998383124e/src/nanosvgrast.h#L335
/// </summary>
/// <param name="polygon">Result points</param>
/// <param name="tessTol">Tesselation tolerance</param>
/// <param name="p1">Curve point</param>
/// <param name="p2">Curve point</param>
/// <param name="p3">Curve point</param>
/// <param name="p4">Curve point</param>
/// <param name="level">Actual depth of recursion</param>
void flatten_cubic_bez(Points &points, float tessTol, const Vec2f& p1, const Vec2f& p2, const Vec2f& p3, const Vec2f& p4, int level)
{
if (!need_flattening(tessTol, p1, p2, p3, p4)) {
Point::coord_type x = static_cast<Point::coord_type>(std::round(p4.x()));
Point::coord_type y = static_cast<Point::coord_type>(std::round(p4.y()));
points.emplace_back(x, y);
return;
}
--level;
if (level == 0)
return;
Vec2f p12 = (p1 + p2) * 0.5f;
Vec2f p23 = (p2 + p3) * 0.5f;
Vec2f p34 = (p3 + p4) * 0.5f;
Vec2f p123 = (p12 + p23) * 0.5f;
Vec2f p234 = (p23 + p34) * 0.5f;
Vec2f p1234 = (p123 + p234) * 0.5f;
flatten_cubic_bez(points, tessTol, p1, p12, p123, p1234, level);
flatten_cubic_bez(points, tessTol, p1234, p234, p34, p4, level);
}
LinesPath linearize_path(NSVGpath *first_path, const NSVGLineParams &param)
{
LinesPath result;
Polygons &polygons = result.polygons;
Polylines &polylines = result.polylines;
// multiple use of allocated memmory for points between paths
Points points;
for (NSVGpath *path = first_path; path != NULL; path = path->next) {
// Flatten path
Point::coord_type x = to_coor(path->pts[0], param.scale);
Point::coord_type y = to_coor(path->pts[1], param.scale);
points.emplace_back(x, y);
size_t path_size = (path->npts > 1) ? static_cast<size_t>(path->npts - 1) : 0;
for (size_t i = 0; i < path_size; i += 3) {
const float *p = &path->pts[i * 2];
if (is_line(p)) {
// point p4
Point::coord_type xx = to_coor(p[6], param.scale);
Point::coord_type yy = to_coor(p[7], param.scale);
points.emplace_back(xx, yy);
continue;
}
Vec2f p1(p[0], p[1]);
Vec2f p2(p[2], p[3]);
Vec2f p3(p[4], p[5]);
Vec2f p4(p[6], p[7]);
flatten_cubic_bez(points, param.tesselation_tolerance,
p1 * param.scale, p2 * param.scale, p3 * param.scale, p4 * param.scale,
param.max_level);
}
assert(!points.empty());
if (points.empty())
continue;
if (param.is_y_negative)
for (Point &p : points)
p.y() = -p.y();
if (path->closed) {
polygons.emplace_back(points);
} else {
polylines.emplace_back(points);
}
// prepare for new path - recycle alocated memory
points.clear();
}
remove_same_neighbor(polygons);
remove_same_neighbor(polylines);
return result;
}
HealedExPolygons fill_to_expolygons(const LinesPath &lines_path, const NSVGshape &shape, const NSVGLineParams &param)
{
Polygons fill = lines_path.polygons; // copy
// close polyline to create polygon
polygons_append(fill, to_polygons(lines_path.polylines));
if (fill.empty())
return {};
// if (shape->fillRule == NSVGfillRule::NSVG_FILLRULE_NONZERO)
bool is_non_zero = true;
if (shape.fillRule == NSVGfillRule::NSVG_FILLRULE_EVENODD)
is_non_zero = false;
return Emboss::heal_polygons(fill, is_non_zero, param.max_heal_iteration);
}
struct DashesParam{
// first dash length
float dash_length = 1.f; // scaled
// is current dash .. true
// is current space .. false
bool is_line = true;
// current index to array
unsigned char dash_index = 0;
static constexpr size_t max_dash_array_size = 8; // limitation of nanosvg strokeDashArray
std::array<float, max_dash_array_size> dash_array; // scaled
unsigned char dash_count = 0; // count of values in array
explicit DashesParam(const NSVGshape &shape, double scale) :
dash_count(shape.strokeDashCount)
{
assert(dash_count > 0);
assert(dash_count <= max_dash_array_size); // limitation of nanosvg strokeDashArray
for (size_t i = 0; i < dash_count; ++i)
dash_array[i] = static_cast<float>(shape.strokeDashArray[i] * scale);
// Figure out dash offset.
float all_dash_length = 0;
for (unsigned char j = 0; j < dash_count; ++j)
all_dash_length += dash_array[j];
if (dash_count%2 == 1) // (shape.strokeDashCount & 1)
all_dash_length *= 2.0f;
// Find location inside pattern
float dash_offset = fmodf(static_cast<float>(shape.strokeDashOffset * scale), all_dash_length);
if (dash_offset < 0.0f)
dash_offset += all_dash_length;
while (dash_offset > dash_array[dash_index]) {
dash_offset -= dash_array[dash_index];
dash_index = (dash_index + 1) % shape.strokeDashCount;
is_line = !is_line;
}
dash_length = dash_array[dash_index] - dash_offset;
}
};
Polylines to_dashes(const Polyline &polyline, const DashesParam& param)
{
Polylines dashes;
Polyline dash; // cache for one dash in dashed line
Point prev_point;
bool is_line = param.is_line;
unsigned char dash_index = param.dash_index;
float dash_length = param.dash_length; // current rest of dash distance
for (const Point &point : polyline.points) {
if (&point == &polyline.points.front()) {
// is first point
prev_point = point; // copy
continue;
}
Point diff = point - prev_point;
float line_segment_length = diff.cast<float>().norm();
while (dash_length < line_segment_length) {
// Calculate intermediate point
float d = dash_length / line_segment_length;
Point move_point = diff * d;
Point intermediate = prev_point + move_point;
// add Dash in stroke
if (is_line) {
if (dash.empty()) {
dashes.emplace_back(Points{prev_point, intermediate});
} else {
dash.append(prev_point);
dash.append(intermediate);
dashes.push_back(dash);
dash.clear();
}
}
diff -= move_point;
line_segment_length -= dash_length;
prev_point = intermediate;
// Advance dash pattern
is_line = !is_line;
dash_index = (dash_index + 1) % param.dash_count;
dash_length = param.dash_array[dash_index];
}
if (is_line)
dash.append(prev_point);
dash_length -= line_segment_length;
prev_point = point; // copy
}
// add last dash
if (is_line){
assert(!dash.empty());
dash.append(prev_point); // prev_point == polyline.points.back()
dashes.push_back(dash);
}
return dashes;
}
HealedExPolygons stroke_to_expolygons(const LinesPath &lines_path, const NSVGshape &shape, const NSVGLineParams &param)
{
// convert stroke to polygon
ClipperLib::JoinType join_type = ClipperLib::JoinType::jtSquare;
switch (static_cast<NSVGlineJoin>(shape.strokeLineJoin)) {
case NSVGlineJoin::NSVG_JOIN_BEVEL: join_type = ClipperLib::JoinType::jtSquare; break;
case NSVGlineJoin::NSVG_JOIN_MITER: join_type = ClipperLib::JoinType::jtMiter; break;
case NSVGlineJoin::NSVG_JOIN_ROUND: join_type = ClipperLib::JoinType::jtRound; break;
}
double mitter = shape.miterLimit * param.scale;
if (join_type == ClipperLib::JoinType::jtRound) {
// mitter is used as ArcTolerance
// http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Properties/ArcTolerance.htm
mitter = std::pow(param.tesselation_tolerance, 1/3.);
}
float stroke_width = static_cast<float>(shape.strokeWidth * param.scale);
ClipperLib::EndType end_type = ClipperLib::EndType::etOpenButt;
switch (static_cast<NSVGlineCap>(shape.strokeLineCap)) {
case NSVGlineCap::NSVG_CAP_BUTT: end_type = ClipperLib::EndType::etOpenButt; break;
case NSVGlineCap::NSVG_CAP_ROUND: end_type = ClipperLib::EndType::etOpenRound; break;
case NSVGlineCap::NSVG_CAP_SQUARE: end_type = ClipperLib::EndType::etOpenSquare; break;
}
Polygons result;
if (shape.strokeDashCount > 0) {
DashesParam params(shape, param.scale);
Polylines dashes;
for (const Polyline &polyline : lines_path.polylines)
polylines_append(dashes, to_dashes(polyline, params));
for (const Polygon &polygon : lines_path.polygons)
polylines_append(dashes, to_dashes(to_polyline(polygon), params));
result = offset(dashes, stroke_width / 2, join_type, mitter, end_type);
} else {
result = contour_to_polygons(lines_path.polygons, stroke_width, join_type, mitter);
polygons_append(result, offset(lines_path.polylines, stroke_width / 2, join_type, mitter, end_type));
}
bool is_non_zero = true;
return Emboss::heal_polygons(result, is_non_zero, param.max_heal_iteration);
}
} // namespace