BambuSrc/libslic3r/Triangulation.cpp

330 lines
12 KiB
C++

#include "Triangulation.hpp"
#include "IntersectionPoints.hpp"
#include <boost/next_prior.hpp>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
#include <CGAL/spatial_sort.h>
using namespace Slic3r;
namespace priv{
inline void insert_edges(Triangulation::HalfEdges &edges, uint32_t &offset, const Polygon &polygon, const Triangulation::Changes& changes) {
const Points &pts = polygon.points;
uint32_t size = static_cast<uint32_t>(pts.size());
uint32_t last_index = offset + size - 1;
uint32_t prev_index = changes[last_index];
for (uint32_t i = 0; i < size; ++i) {
uint32_t index = changes[offset + i];
// when duplicit points are neighbor
if (prev_index == index) continue;
edges.push_back({prev_index, index});
prev_index = index;
}
offset += size;
}
inline void insert_edges(Triangulation::HalfEdges &edges, uint32_t &offset, const Polygon &polygon) {
const Points &pts = polygon.points;
uint32_t size = static_cast<uint32_t>(pts.size());
uint32_t prev_index = offset + size - 1;
for (uint32_t i = 0; i < size; ++i) {
uint32_t index = offset + i;
edges.push_back({prev_index, index});
prev_index = index;
}
offset += size;
}
inline bool has_bidirectional_constrained(
const Triangulation::HalfEdges &constrained)
{
for (const auto &c : constrained) {
auto key = std::make_pair(c.second, c.first);
auto it = std::lower_bound(constrained.begin(), constrained.end(),
key);
if (it != constrained.end() && *it == key) return true;
}
return false;
}
inline bool is_unique(const Points &points) {
Points pts = points; // copy
std::sort(pts.begin(), pts.end());
auto it = std::adjacent_find(pts.begin(), pts.end());
return it == pts.end();
}
inline bool has_self_intersection(
const Points &points,
const Triangulation::HalfEdges &constrained_half_edges)
{
Lines lines;
lines.reserve(constrained_half_edges.size());
for (const auto &he : constrained_half_edges)
lines.emplace_back(points[he.first], points[he.second]);
return !get_intersections(lines).empty();
}
} // namespace priv
//#define VISUALIZE_TRIANGULATION
#ifdef VISUALIZE_TRIANGULATION
#include "admesh/stl.h" // indexed triangle set
static void visualize(const Points &points,
const Triangulation::Indices &indices,
const char *filename)
{
// visualize
indexed_triangle_set its;
its.vertices.reserve(points.size());
for (const Point &p : points) its.vertices.emplace_back(p.x(), p.y(), 0.);
its.indices = indices;
its_write_obj(its, filename);
}
#endif // VISUALIZE_TRIANGULATION
Triangulation::Indices Triangulation::triangulate(const Points &points,
const HalfEdges &constrained_half_edges)
{
assert(!points.empty());
assert(!constrained_half_edges.empty());
// constrained must be sorted
assert(std::is_sorted(constrained_half_edges.begin(),
constrained_half_edges.end()));
// check that there is no duplicit constrained edge
assert(std::adjacent_find(constrained_half_edges.begin(), constrained_half_edges.end()) == constrained_half_edges.end());
// edges can NOT contain bidirectional constrained
assert(!priv::has_bidirectional_constrained(constrained_half_edges));
// check that there is only unique poistion of points
assert(priv::is_unique(points));
assert(!priv::has_self_intersection(points, constrained_half_edges));
// use cgal triangulation
using K = CGAL::Exact_predicates_inexact_constructions_kernel;
using Vb = CGAL::Triangulation_vertex_base_with_info_2<uint32_t, K>;
using Fb = CGAL::Constrained_triangulation_face_base_2<K>;
using Tds = CGAL::Triangulation_data_structure_2<Vb, Fb>;
using CDT = CGAL::Constrained_Delaunay_triangulation_2<K, Tds, CGAL::Exact_predicates_tag>;
// construct a constrained triangulation
CDT cdt;
{
std::vector<CDT::Vertex_handle> vertices_handle(points.size()); // for constriants
using Point_with_ord = std::pair<CDT::Point, size_t>;
using SearchTrait = CGAL::Spatial_sort_traits_adapter_2
<K, CGAL::First_of_pair_property_map<Point_with_ord> >;
std::vector<Point_with_ord> cdt_points;
cdt_points.reserve(points.size());
size_t ord = 0;
for (const auto &p : points)
cdt_points.emplace_back(std::make_pair(CDT::Point{p.x(), p.y()}, ord++));
SearchTrait st;
CGAL::spatial_sort(cdt_points.begin(), cdt_points.end(), st);
CDT::Face_handle f;
for (const auto& p : cdt_points) {
auto handle = cdt.insert(p.first, f);
handle->info() = p.second;
vertices_handle[p.second] = handle;
f = handle->face();
}
// Constrain the triangulation.
for (const HalfEdge &edge : constrained_half_edges)
cdt.insert_constraint(vertices_handle[edge.first], vertices_handle[edge.second]);
}
auto faces = cdt.finite_face_handles();
// Unmark constrained edges of outside faces.
size_t num_faces = 0;
for (CDT::Face_handle fh : faces) {
for (int i = 0; i < 3; ++i) {
if (!fh->is_constrained(i)) continue;
auto key = std::make_pair(fh->vertex((i + 2) % 3)->info(), fh->vertex((i + 1) % 3)->info());
auto it = std::lower_bound(constrained_half_edges.begin(), constrained_half_edges.end(), key);
if (it == constrained_half_edges.end() || *it != key) continue;
// This face contains a constrained edge and it is outside.
for (int j = 0; j < 3; ++ j)
fh->set_constraint(j, false);
--num_faces;
break;
}
++num_faces;
}
auto inside = [](CDT::Face_handle &fh) {
return fh->neighbor(0) != fh &&
(fh->is_constrained(0) ||
fh->is_constrained(1) ||
fh->is_constrained(2));
};
#ifdef VISUALIZE_TRIANGULATION
std::vector<Vec3i32> indices2;
indices2.reserve(num_faces);
for (CDT::Face_handle fh : faces)
if (inside(fh)) indices2.emplace_back(fh->vertex(0)->info(), fh->vertex(1)->info(), fh->vertex(2)->info());
visualize(points, indices2, "C:/data/temp/triangulation_without_floodfill.obj");
#endif // VISUALIZE_TRIANGULATION
// Propagate inside the constrained regions.
std::vector<CDT::Face_handle> queue;
queue.reserve(num_faces);
for (CDT::Face_handle seed : faces){
if (!inside(seed)) continue;
// Seed fill to neighbor faces.
queue.emplace_back(seed);
while (! queue.empty()) {
CDT::Face_handle fh = queue.back();
queue.pop_back();
for (int i = 0; i < 3; ++i) {
if (fh->is_constrained(i)) continue;
// Propagate along this edge.
fh->set_constraint(i, true);
CDT::Face_handle nh = fh->neighbor(i);
bool was_inside = inside(nh);
// Mark the other side of this edge.
nh->set_constraint(nh->index(fh), true);
if (! was_inside)
queue.push_back(nh);
}
}
}
std::vector<Vec3i32> indices;
indices.reserve(num_faces);
for (CDT::Face_handle fh : faces)
if (inside(fh))
indices.emplace_back(fh->vertex(0)->info(), fh->vertex(1)->info(), fh->vertex(2)->info());
#ifdef VISUALIZE_TRIANGULATION
visualize(points, indices, "C:/data/temp/triangulation.obj");
#endif // VISUALIZE_TRIANGULATION
return indices;
}
Triangulation::Indices Triangulation::triangulate(const Polygon &polygon)
{
const Points &pts = polygon.points;
HalfEdges edges;
edges.reserve(pts.size());
uint32_t offset = 0;
priv::insert_edges(edges, offset, polygon);
std::sort(edges.begin(), edges.end());
return triangulate(pts, edges);
}
Triangulation::Indices Triangulation::triangulate(const Polygons &polygons)
{
size_t count = count_points(polygons);
Points points;
points.reserve(count);
HalfEdges edges;
edges.reserve(count);
uint32_t offset = 0;
for (const Polygon &polygon : polygons) {
Slic3r::append(points, polygon.points);
priv::insert_edges(edges, offset, polygon);
}
std::sort(edges.begin(), edges.end());
return triangulate(points, edges);
}
Triangulation::Indices Triangulation::triangulate(const ExPolygon &expolygon){
ExPolygons expolys({expolygon});
return triangulate(expolys);
}
Triangulation::Indices Triangulation::triangulate(const ExPolygons &expolygons){
Points pts = to_points(expolygons);
Points d_pts = collect_duplicates(pts);
if (d_pts.empty()) return triangulate(expolygons, pts);
Changes changes = create_changes(pts, d_pts);
Indices indices = triangulate(expolygons, pts, changes);
// reverse map for changes
Changes changes2(changes.size(), std::numeric_limits<uint32_t>::max());
for (size_t i = 0; i < changes.size(); ++i)
changes2[changes[i]] = i;
// convert indices into expolygons indicies
for (Vec3i32 &t : indices)
for (size_t ti = 0; ti < 3; ti++) t[ti] = changes2[t[ti]];
return indices;
}
Triangulation::Indices Triangulation::triangulate(const ExPolygons &expolygons, const Points &points)
{
assert(count_points(expolygons) == points.size());
// when contain duplicit coordinate in points will not work properly
assert(collect_duplicates(points).empty());
HalfEdges edges;
edges.reserve(points.size());
uint32_t offset = 0;
for (const ExPolygon &expolygon : expolygons) {
priv::insert_edges(edges, offset, expolygon.contour);
for (const Polygon &hole : expolygon.holes)
priv::insert_edges(edges, offset, hole);
}
std::sort(edges.begin(), edges.end());
return triangulate(points, edges);
}
Triangulation::Indices Triangulation::triangulate(const ExPolygons &expolygons, const Points& points, const Changes& changes)
{
assert(!points.empty());
assert(count_points(expolygons) == points.size());
assert(changes.size() == points.size());
// IMPROVE: search from end and somehow distiquish that value is not a change
uint32_t count_points = *std::max_element(changes.begin(), changes.end())+1;
Points pts(count_points);
for (size_t i = 0; i < changes.size(); i++)
pts[changes[i]] = points[i];
HalfEdges edges;
edges.reserve(points.size());
uint32_t offset = 0;
for (const ExPolygon &expolygon : expolygons) {
priv::insert_edges(edges, offset, expolygon.contour, changes);
for (const Polygon &hole : expolygon.holes)
priv::insert_edges(edges, offset, hole, changes);
}
std::sort(edges.begin(), edges.end());
return triangulate(pts, edges);
}
Triangulation::Changes Triangulation::create_changes(const Points &points, const Points &duplicits)
{
assert(!duplicits.empty());
assert(duplicits.size() < points.size()/2);
std::vector<uint32_t> duplicit_indices(duplicits.size(), std::numeric_limits<uint32_t>::max());
Changes changes;
changes.reserve(points.size());
uint32_t index = 0;
for (const Point &p: points) {
auto it = std::lower_bound(duplicits.begin(), duplicits.end(), p);
if (it == duplicits.end() || *it != p) {
changes.push_back(index);
++index;
continue;
}
uint32_t &d_index = duplicit_indices[it - duplicits.begin()];
if (d_index == std::numeric_limits<uint32_t>::max()) {
d_index = index;
changes.push_back(index);
++index;
} else {
changes.push_back(d_index);
}
}
return changes;
}