BambuSrc/libslic3r/PrintObjectSlice.cpp

1412 lines
78 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "ElephantFootCompensation.hpp"
#include "I18N.hpp"
#include "Layer.hpp"
#include "MultiMaterialSegmentation.hpp"
#include "Print.hpp"
#include "ClipperUtils.hpp"
#include "Interlocking/InterlockingGenerator.hpp"
//BBS
#include "ShortestPath.hpp"
#include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h>
//! macro used to mark string used at localization, return same string
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
bool PrintObject::clip_multipart_objects = true;
bool PrintObject::infill_only_where_needed = false;
LayerPtrs new_layers(
PrintObject *print_object,
// Object layers (pairs of bottom/top Z coordinate), without the raft.
const std::vector<coordf_t> &object_layers)
{
LayerPtrs out;
out.reserve(object_layers.size());
auto id = int(print_object->slicing_parameters().raft_layers());
coordf_t zmin = print_object->slicing_parameters().object_print_z_min;
Layer *prev = nullptr;
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
coordf_t lo = object_layers[i_layer];
coordf_t hi = object_layers[i_layer + 1];
coordf_t slice_z = 0.5 * (lo + hi);
Layer *layer = new Layer(id ++, print_object, hi - lo, hi + zmin, slice_z);
out.emplace_back(layer);
if (prev != nullptr) {
prev->upper_layer = layer;
layer->lower_layer = prev;
}
prev = layer;
}
return out;
}
// Slice single triangle mesh.
//对单个三角形网格进行切片。
static std::vector<ExPolygons> slice_volume(
const ModelVolume &volume,
const std::vector<float> &zs,
const MeshSlicingParamsEx &params,
const std::function<void()> &throw_on_cancel_callback)
{
std::vector<ExPolygons> layers;
if (! zs.empty()) {
indexed_triangle_set its = volume.mesh().its;
if (its.indices.size() > 0) {
MeshSlicingParamsEx params2 { params };
params2.trafo = params2.trafo * volume.get_matrix();
if (params2.trafo.rotation().determinant() < 0.)
its_flip_triangles(its);
layers = slice_mesh_ex(its, zs, params2, throw_on_cancel_callback);
throw_on_cancel_callback();
}
}
return layers;
}
// Slice single triangle mesh.
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
//对单个三角形网格进行切片。
//过滤不在范围内的zs。范围在底部是封闭的在顶部是开放的它们按字典顺序排列不重叠。
static std::vector<ExPolygons> slice_volume(
const ModelVolume &volume,
const std::vector<float> &z,
const std::vector<t_layer_height_range> &ranges,
const MeshSlicingParamsEx &params,
const std::function<void()> &throw_on_cancel_callback)
{
std::vector<ExPolygons> out;
if (! z.empty() && ! ranges.empty()) {
if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
// All layers fit into a single range.
//所有层都适合一个范围。
out = slice_volume(volume, z, params, throw_on_cancel_callback);
} else {
std::vector<float> z_filtered;
std::vector<std::pair<size_t, size_t>> n_filtered;
z_filtered.reserve(z.size());
n_filtered.reserve(2 * ranges.size());
size_t i = 0;
for (const t_layer_height_range &range : ranges) {
for (; i < z.size() && z[i] < range.first; ++ i) ;
size_t first = i;
for (; i < z.size() && z[i] < range.second; ++ i)
z_filtered.emplace_back(z[i]);
if (i > first)
n_filtered.emplace_back(std::make_pair(first, i));
}
if (! n_filtered.empty()) {
std::vector<ExPolygons> layers = slice_volume(volume, z_filtered, params, throw_on_cancel_callback);
out.assign(z.size(), ExPolygons());
i = 0;
for (const std::pair<size_t, size_t> &span : n_filtered)
for (size_t j = span.first; j < span.second; ++ j)
out[j] = std::move(layers[i ++]);
}
}
}
return out;
}
static inline bool model_volume_needs_slicing(const ModelVolume &mv)
{
ModelVolumeType type = mv.type();
return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER;
}
// Slice printable volumes, negative volumes and modifier volumes, sorted by ModelVolume::id().
// Apply closing radius.
// Apply positive XY compensation to ModelVolumeType::MODEL_PART and ModelVolumeType::PARAMETER_MODIFIER, not to ModelVolumeType::NEGATIVE_VOLUME.
// Apply contour simplification.
//切片可打印卷、负卷和修改器卷按ModelVolume:id排序。
//应用闭合半径。
//将正XY补偿应用于ModelVolumeType:MODEL_PART和ModelVolumeTypePARAMETERMODIFIER而不是应用于ModelVolumeType:NEGATIVE_VOLUME。
//应用轮廓简化。
static std::vector<VolumeSlices> slice_volumes_inner(
const PrintConfig &print_config,
const PrintObjectConfig &print_object_config,
const Transform3d &object_trafo,
ModelVolumePtrs model_volumes,
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
const std::vector<float> &zs,
const std::function<void()> &throw_on_cancel_callback)
{
model_volumes_sort_by_id(model_volumes);
std::vector<VolumeSlices> out;
out.reserve(model_volumes.size());
std::vector<t_layer_height_range> slicing_ranges;
if (layer_ranges.size() > 1)
slicing_ranges.reserve(layer_ranges.size());
MeshSlicingParamsEx params_base;
params_base.closing_radius = print_object_config.slice_closing_radius.value;
params_base.extra_offset = 0;
params_base.trafo = object_trafo;
//BBS: 0.0025mm is safe enough to simplify the data to speed slicing up for high-resolution model.
//Also has on influence on arc fitting which has default resolution 0.0125mm.
//BBS:0.0025mm足够安全,可以简化数据,加快高分辨率模型的切片速度。
//对默认分辨率为0.0125mm的圆弧拟合也没有影响。
params_base.resolution = print_config.resolution <= 0.001 ? 0.0f : 0.0025;
switch (print_object_config.slicing_mode.value) {
case SlicingMode::Regular: params_base.mode = MeshSlicingParams::SlicingMode::Regular; break;
case SlicingMode::EvenOdd: params_base.mode = MeshSlicingParams::SlicingMode::EvenOdd; break;
case SlicingMode::CloseHoles: params_base.mode = MeshSlicingParams::SlicingMode::Positive; break;
}
params_base.mode_below = params_base.mode;
// BBS
const size_t num_extruders = print_config.filament_diameter.size();
const bool is_mm_painted = num_extruders > 1 && std::any_of(model_volumes.cbegin(), model_volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); });
// BBS: don't do size compensation when slice volume.
// Will handle contour and hole size compensation seperately later.
//BBS切片时不要做尺寸补偿。
//稍后将分别处理轮廓和孔尺寸补偿。
//const auto extra_offset = is_mm_painted ? 0.f : std::max(0.f, float(print_object_config.xy_contour_compensation.value));
const auto extra_offset = 0.f;
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_needs_slicing(*model_volume)) {
MeshSlicingParamsEx params { params_base };
if (! model_volume->is_negative_volume())
params.extra_offset = extra_offset;
if (layer_ranges.size() == 1) {
if (const PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
if (model_volume->is_model_part() && print_config.spiral_mode) {
auto it = std::find_if(layer_range.volume_regions.begin(), layer_range.volume_regions.end(),
[model_volume](const auto &slice){ return model_volume == slice.model_volume; });
params.mode = MeshSlicingParams::SlicingMode::PositiveLargestContour;
// Slice the bottom layers with SlicingMode::Regular.
// This needs to be in sync with LayerRegion::make_perimeters() spiral_mode!
//使用SlicingModeRegular对底层进行切片。
//这需要与LayerRegion:make_perimetersspiral_mode同步
const PrintRegionConfig &region_config = it->region->config();
params.slicing_mode_normal_below_layer = size_t(region_config.bottom_shell_layers.value);
for (; params.slicing_mode_normal_below_layer < zs.size() && zs[params.slicing_mode_normal_below_layer] < region_config.bottom_shell_thickness - EPSILON;
++ params.slicing_mode_normal_below_layer);
}
out.push_back({
model_volume->id(),
slice_volume(*model_volume, zs, params, throw_on_cancel_callback)
});
}
} else {
assert(! print_config.spiral_mode);
slicing_ranges.clear();
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
if (layer_range.has_volume(model_volume->id()))
slicing_ranges.emplace_back(layer_range.layer_height_range);
if (! slicing_ranges.empty())
out.push_back({
model_volume->id(),
slice_volume(*model_volume, zs, slicing_ranges, params, throw_on_cancel_callback)
});
}
if (! out.empty() && out.back().slices.empty())
out.pop_back();
}
return out;
}
static inline VolumeSlices& volume_slices_find_by_id(std::vector<VolumeSlices> &volume_slices, const ObjectID id)
{
auto it = lower_bound_by_predicate(volume_slices.begin(), volume_slices.end(), [id](const VolumeSlices &vs) { return vs.volume_id < id; });
assert(it != volume_slices.end() && it->volume_id == id);
return *it;
}
static inline bool overlap_in_xy(const PrintObjectRegions::BoundingBox &l, const PrintObjectRegions::BoundingBox &r)
{
return ! (l.max().x() < r.min().x() || l.min().x() > r.max().x() ||
l.max().y() < r.min().y() || l.min().y() > r.max().y());
}
static std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator layer_range_first(const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges, double z)
{
auto it = lower_bound_by_predicate(layer_ranges.begin(), layer_ranges.end(),
[z](const PrintObjectRegions::LayerRangeRegions &lr) {
return lr.layer_height_range.second < z && abs(lr.layer_height_range.second - z) > EPSILON;
});
assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z <= it->layer_height_range.second);
if (z == it->layer_height_range.second)
if (auto it_next = it; ++ it_next != layer_ranges.end() && it_next->layer_height_range.first == z)
it = it_next;
assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z <= it->layer_height_range.second);
return it;
}
static std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator layer_range_next(
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator it,
double z)
{
for (; it->layer_height_range.second <= z + EPSILON; ++ it)
assert(it != layer_ranges.end());
assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z < it->layer_height_range.second);
return it;
}
static std::vector<std::vector<ExPolygons>> slices_to_regions(
ModelVolumePtrs model_volumes,
const PrintObjectRegions &print_object_regions,
const std::vector<float> &zs,
std::vector<VolumeSlices> &&volume_slices,
// If clipping is disabled, then ExPolygons produced by different volumes will never be merged, thus they will be allowed to overlap.
// It is up to the model designer to handle these overlaps.
//如果禁用剪裁则由不同体积生成的ExPolygon将永远不会合并因此它们将被允许重叠。
//由模型设计者来处理这些重叠。
const bool clip_multipart_objects,
const std::function<void()> &throw_on_cancel_callback)
{
model_volumes_sort_by_id(model_volumes);
std::vector<std::vector<ExPolygons>> slices_by_region(print_object_regions.all_regions.size(), std::vector<ExPolygons>(zs.size(), ExPolygons()));
// First shuffle slices into regions if there is no overlap with another region possible, collect zs of the complex cases.
//首先若并没有可能和另一个区域重叠则将切片洗牌到各个区域收集复杂案例的zs。
std::vector<std::pair<size_t, float>> zs_complex;
{
size_t z_idx = 0;
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.first; ++ z_idx) ;
if (layer_range.volume_regions.empty()) {
} else if (layer_range.volume_regions.size() == 1) {
const ModelVolume *model_volume = layer_range.volume_regions.front().model_volume;
assert(model_volume != nullptr);
if (model_volume->is_model_part()) {
VolumeSlices &slices_src = volume_slices_find_by_id(volume_slices, model_volume->id());
auto &slices_dst = slices_by_region[layer_range.volume_regions.front().region->print_object_region_id()];
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx)
slices_dst[z_idx] = std::move(slices_src.slices[z_idx]);
}
} else {
zs_complex.reserve(zs.size());
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx) {
float z = zs[z_idx];
int idx_first_printable_region = -1;
bool complex = false;
std::vector<int> printable_region_ids;
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
if (region.bbox->min().z() <= z && region.bbox->max().z() >= z) {
if (region.model_volume->is_model_part())
printable_region_ids.push_back(idx_region);
if (idx_first_printable_region == -1 && region.model_volume->is_model_part()) {
idx_first_printable_region = idx_region;
}
else if (idx_first_printable_region != -1) {
// Test for overlap with some other region.
//测试是否与其他区域重叠。
for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
if (region2.bbox->min().z() <= z && region2.bbox->max().z() >= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
complex = true;
break;
}
}
}
}
}
if (complex)
zs_complex.push_back({ z_idx, z });
else if (idx_first_printable_region >= 0) {
for (int printable_region_id : printable_region_ids) {
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[printable_region_id];
append(slices_by_region[region.region->print_object_region_id()][z_idx], std::move(volume_slices_find_by_id(volume_slices, region.model_volume->id()).slices[z_idx]));
}
}
}
}
throw_on_cancel_callback();
}
}
// Second perform region clipping and assignment in parallel.
//其次,并行执行区域裁剪和分配。
if (! zs_complex.empty()) {
std::vector<std::vector<VolumeSlices*>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<VolumeSlices*>());
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[&layer_range - print_object_regions.layer_ranges.data()];
layer_range_regions_to_slices.reserve(layer_range.volume_regions.size());
for (const PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions)
layer_range_regions_to_slices.push_back(&volume_slices_find_by_id(volume_slices, region.model_volume->id()));
}
tbb::parallel_for(
tbb::blocked_range<size_t>(0, zs_complex.size()),
[&slices_by_region, &print_object_regions, &zs_complex, &layer_ranges_regions_to_slices, clip_multipart_objects, &throw_on_cancel_callback]
(const tbb::blocked_range<size_t> &range) {
float z = zs_complex[range.begin()].second;
auto it_layer_range = layer_range_first(print_object_regions.layer_ranges, z);
// Per volume_regions slices at this Z height.
//按体积_区域在此Z高度处切片。
struct RegionSlice {
ExPolygons expolygons;
// Identifier of this region in PrintObjectRegions::all_regions
//PrintObjectRegions中此区域的标识符all_regions
int region_id;
ObjectID volume_id;
bool operator<(const RegionSlice &rhs) const {
bool this_empty = this->region_id < 0 || this->expolygons.empty();
bool rhs_empty = rhs.region_id < 0 || rhs.expolygons.empty();
// Sort the empty items to the end of the list.
// Sort by region_id & volume_id lexicographically.
//将空项目排序到列表末尾。
//按region_id和volume_id按字母顺序排序。
return ! this_empty && (rhs_empty || (this->region_id < rhs.region_id || (this->region_id == rhs.region_id && volume_id < volume_id)));
}
};
// BBS
auto trim_overlap = [](ExPolygons& expolys_a, ExPolygons& expolys_b) {
ExPolygons trimming_a;
ExPolygons trimming_b;
for (ExPolygon& expoly_a : expolys_a) {
BoundingBox bbox_a = get_extents(expoly_a);
ExPolygons expolys_new;
for (ExPolygon& expoly_b : expolys_b) {
BoundingBox bbox_b = get_extents(expoly_b);
if (!bbox_a.overlap(bbox_b))
continue;
ExPolygons temp = intersection_ex(expoly_b, expoly_a, ApplySafetyOffset::Yes);
if (temp.empty())
continue;
if (expoly_a.contour.length() > expoly_b.contour.length())
trimming_a.insert(trimming_a.end(), temp.begin(), temp.end());
else
trimming_b.insert(trimming_b.end(), temp.begin(), temp.end());
}
}
expolys_a = diff_ex(expolys_a, trimming_a);
expolys_b = diff_ex(expolys_b, trimming_b);
};
std::vector<RegionSlice> temp_slices;
for (size_t zs_complex_idx = range.begin(); zs_complex_idx < range.end(); ++ zs_complex_idx) {
auto [z_idx, z] = zs_complex[zs_complex_idx];
it_layer_range = layer_range_next(print_object_regions.layer_ranges, it_layer_range, z);
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
{
std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
// Per volume_regions slices at thiz Z height.
//按体积_区域在Z高度处切片。
temp_slices.clear();
temp_slices.reserve(layer_range.volume_regions.size());
for (VolumeSlices* &slices : layer_range_regions_to_slices) {
const PrintObjectRegions::VolumeRegion &volume_region = layer_range.volume_regions[&slices - layer_range_regions_to_slices.data()];
temp_slices.push_back({ std::move(slices->slices[z_idx]), volume_region.region ? volume_region.region->print_object_region_id() : -1, volume_region.model_volume->id() });
}
}
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region)
if (! temp_slices[idx_region].expolygons.empty()) {
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
if (region.model_volume->is_modifier()) {
assert(region.parent > -1);
bool next_region_same_modifier = idx_region + 1 < int(temp_slices.size()) && layer_range.volume_regions[idx_region + 1].model_volume == region.model_volume;
RegionSlice &parent_slice = temp_slices[region.parent];
RegionSlice &this_slice = temp_slices[idx_region];
ExPolygons source = std::move(this_slice.expolygons);
if (parent_slice.expolygons.empty()) {
this_slice .expolygons.clear();
} else {
this_slice .expolygons = intersection_ex(parent_slice.expolygons, source);
parent_slice.expolygons = diff_ex (parent_slice.expolygons, source);
}
if (next_region_same_modifier)
// To be used in the following iteration.
//将在以下迭代中使用。
temp_slices[idx_region + 1].expolygons = std::move(source);
} else if ((region.model_volume->is_model_part() && clip_multipart_objects) || region.model_volume->is_negative_volume()) {
// Clip every non-zero region preceding it.
//剪切它前面的每个非零区域。
for (int idx_region2 = 0; idx_region2 < idx_region; ++ idx_region2)
if (! temp_slices[idx_region2].expolygons.empty()) {
// Skip trim_overlap for now, because it slow down the performace so much for some special cases
//暂时跳过trim_overlap因为在某些特殊情况下它会大大降低性能
#if 1
if (const PrintObjectRegions::VolumeRegion& region2 = layer_range.volume_regions[idx_region2];
!region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
temp_slices[idx_region2].expolygons = diff_ex(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
#else
const PrintObjectRegions::VolumeRegion& region2 = layer_range.volume_regions[idx_region2];
if (!region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
//BBS: handle negative_volume seperately, always minus the negative volume and don't need to trim overlap
if (!region.model_volume->is_negative_volume())
trim_overlap(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
else
temp_slices[idx_region2].expolygons = diff_ex(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
#endif
}
}
}
// Sort by region_id, push empty slices to the end.
//按region_id排序将空切片推到末尾。
std::sort(temp_slices.begin(), temp_slices.end());
// Remove the empty slices.
//移除空切片。
temp_slices.erase(std::find_if(temp_slices.begin(), temp_slices.end(), [](const auto &slice) { return slice.region_id == -1 || slice.expolygons.empty(); }), temp_slices.end());
// Merge slices and store them to the output.
//合并切片并将其存储到输出中。
for (int i = 0; i < int(temp_slices.size());) {
// Find a range of temp_slices with the same region_id.
//查找具有相同region_id的temp_slices范围。
int j = i;
bool merged = false;
ExPolygons &expolygons = temp_slices[i].expolygons;
for (++ j; j < int(temp_slices.size()) && temp_slices[i].region_id == temp_slices[j].region_id; ++ j)
if (ExPolygons &expolygons2 = temp_slices[j].expolygons; ! expolygons2.empty()) {
if (expolygons.empty()) {
expolygons = std::move(expolygons2);
} else {
append(expolygons, std::move(expolygons2));
merged = true;
}
}
// Don't unite the regions if ! clip_multipart_objects. In that case it is user's responsibility
// to handle region overlaps. Indeed, one may intentionally let the regions overlap to produce crossing perimeters
// for example.
//如果发生这种情况不要团结各地区clip_multipart_objects。在这种情况下这是用户的责任
//以处理区域重叠。事实上,例如,人们可能会故意让这些区域重叠以产生交叉边界。
if (merged && clip_multipart_objects)
expolygons = closing_ex(expolygons, float(scale_(EPSILON)));
slices_by_region[temp_slices[i].region_id][z_idx] = std::move(expolygons);
i = j;
}
throw_on_cancel_callback();
}
});
}
return slices_by_region;
}
//BBS: justify whether a volume is connected to another one
bool doesVolumeIntersect(VolumeSlices& vs1, VolumeSlices& vs2)
{
if (vs1.volume_id == vs2.volume_id) return true;
// two volumes in the same object should have same number of layers, otherwise the slicing is incorrect.
if (vs1.slices.size() != vs2.slices.size()) return false;
auto& vs1s = vs1.slices;
auto& vs2s = vs2.slices;
bool is_intersect = false;
tbb::parallel_for(tbb::blocked_range<int>(0, vs1s.size()),
[&vs1s, &vs2s, &is_intersect](const tbb::blocked_range<int>& range) {
for (auto i = range.begin(); i != range.end(); ++i) {
if (vs1s[i].empty()) continue;
if (overlaps(vs1s[i], vs2s[i])) {
is_intersect = true;
break;
}
if (i + 1 != vs2s.size() && overlaps(vs1s[i], vs2s[i + 1])) {
is_intersect = true;
break;
}
if (i - 1 >= 0 && overlaps(vs1s[i], vs2s[i - 1])) {
is_intersect = true;
break;
}
}
});
return is_intersect;
}
//BBS: grouping the volumes of an object according to their connection relationship
bool groupingVolumes(std::vector<VolumeSlices> objSliceByVolume, std::vector<groupedVolumeSlices>& groups, double resolution, int firstLayerReplacedBy)
{
std::vector<int> groupIndex(objSliceByVolume.size(), -1);
double offsetValue = 0.05 / SCALING_FACTOR;
std::vector<std::vector<int>> osvIndex;
for (int i = 0; i != objSliceByVolume.size(); ++i) {
for (int j = 0; j != objSliceByVolume[i].slices.size(); ++j) {
osvIndex.push_back({ i,j });
}
}
tbb::parallel_for(tbb::blocked_range<int>(0, osvIndex.size()),
[&osvIndex, &objSliceByVolume, &offsetValue, &resolution](const tbb::blocked_range<int>& range) {
for (auto k = range.begin(); k != range.end(); ++k) {
for (ExPolygon& poly_ex : objSliceByVolume[osvIndex[k][0]].slices[osvIndex[k][1]])
poly_ex.douglas_peucker(resolution);
}
});
tbb::parallel_for(tbb::blocked_range<int>(0, osvIndex.size()),
[&osvIndex, &objSliceByVolume,&offsetValue, &resolution](const tbb::blocked_range<int>& range) {
for (auto k = range.begin(); k != range.end(); ++k) {
objSliceByVolume[osvIndex[k][0]].slices[osvIndex[k][1]] = offset_ex(objSliceByVolume[osvIndex[k][0]].slices[osvIndex[k][1]], offsetValue);
}
});
for (int i = 0; i != objSliceByVolume.size(); ++i) {
if (groupIndex[i] < 0) {
groupIndex[i] = i;
}
for (int j = i + 1; j != objSliceByVolume.size(); ++j) {
if (doesVolumeIntersect(objSliceByVolume[i], objSliceByVolume[j])) {
if (groupIndex[j] < 0) groupIndex[j] = groupIndex[i];
if (groupIndex[j] != groupIndex[i]) {
int retain = std::min(groupIndex[i], groupIndex[j]);
int cover = std::max(groupIndex[i], groupIndex[j]);
for (int k = 0; k != objSliceByVolume.size(); ++k) {
if (groupIndex[k] == cover) groupIndex[k] = retain;
}
}
}
}
}
std::vector<int> groupVector{};
for (int gi : groupIndex) {
bool exist = false;
for (int gv : groupVector) {
if (gv == gi) {
exist = true;
break;
}
}
if (!exist) groupVector.push_back(gi);
}
// group volumes and their slices according to the grouping Vector
groups.clear();
for (int gv : groupVector) {
groupedVolumeSlices gvs;
gvs.groupId = gv;
for (int i = 0; i != objSliceByVolume.size(); ++i) {
if (groupIndex[i] == gv) {
gvs.volume_ids.push_back(objSliceByVolume[i].volume_id);
append(gvs.slices, objSliceByVolume[i].slices[firstLayerReplacedBy]);
}
}
// the slices of a group should be unioned
gvs.slices = offset_ex(union_ex(gvs.slices), -offsetValue);
for (ExPolygon& poly_ex : gvs.slices)
poly_ex.douglas_peucker(resolution);
groups.push_back(gvs);
}
return true;
}
//BBS: filter the members of "objSliceByVolume" such that only "model_part" are included
std::vector<VolumeSlices> findPartVolumes(const std::vector<VolumeSlices>& objSliceByVolume, ModelVolumePtrs model_volumes) {
std::vector<VolumeSlices> outPut;
for (const auto& vs : objSliceByVolume) {
for (const auto& mv : model_volumes) {
if (vs.volume_id == mv->id() && mv->is_model_part()) outPut.push_back(vs);
}
}
return outPut;
}
void applyNegtiveVolumes(ModelVolumePtrs model_volumes, const std::vector<VolumeSlices>& objSliceByVolume, std::vector<groupedVolumeSlices>& groups, double resolution) {
ExPolygons negTotal;
for (const auto& vs : objSliceByVolume) {
for (const auto& mv : model_volumes) {
if (vs.volume_id == mv->id() && mv->is_negative_volume()) {
if (vs.slices.size() > 0) {
append(negTotal, vs.slices.front());
}
}
}
}
for (auto& g : groups) {
g.slices = diff_ex(g.slices, negTotal);
for (ExPolygon& poly_ex : g.slices)
poly_ex.douglas_peucker(resolution);
}
}
void reGroupingLayerPolygons(std::vector<groupedVolumeSlices>& gvss, ExPolygons &eps, double resolution)
{
std::vector<int> epsIndex;
epsIndex.resize(eps.size(), -1);
auto gvssc = gvss;
auto epsc = eps;
for (ExPolygon& poly_ex : epsc)
poly_ex.douglas_peucker(resolution);
for (int i = 0; i != gvssc.size(); ++i) {
for (ExPolygon& poly_ex : gvssc[i].slices)
poly_ex.douglas_peucker(resolution);
}
tbb::parallel_for(tbb::blocked_range<int>(0, epsc.size()),
[&epsc, &gvssc, &epsIndex](const tbb::blocked_range<int>& range) {
for (auto ie = range.begin(); ie != range.end(); ++ie) {
if (epsc[ie].area() <= 0)
continue;
double minArea = epsc[ie].area();
for (int iv = 0; iv != gvssc.size(); iv++) {
auto clipedExPolys = diff_ex(epsc[ie], gvssc[iv].slices);
double area = 0;
for (const auto& ce : clipedExPolys) {
area += ce.area();
}
if (area < minArea) {
minArea = area;
epsIndex[ie] = iv;
}
}
}
});
for (int iv = 0; iv != gvss.size(); iv++)
gvss[iv].slices.clear();
for (int ie = 0; ie != eps.size(); ie++) {
if (epsIndex[ie] >= 0)
gvss[epsIndex[ie]].slices.push_back(eps[ie]);
}
}
std::string fix_slicing_errors(PrintObject* object, LayerPtrs &layers, const std::function<void()> &throw_if_canceled, int &firstLayerReplacedBy)
{
std::string error_msg;//BBS
if (layers.size() == 0) return error_msg;
// Collect layers with slicing errors.
// These layers will be fixed in parallel.
std::vector<size_t> buggy_layers;
buggy_layers.reserve(layers.size());
// BBS: get largest external perimenter width of all layers
auto get_ext_peri_width = [](Layer* layer) {return layer->m_regions.empty() ? 0 : layer->m_regions[0]->flow(frExternalPerimeter).scaled_width(); };
auto it = std::max_element(layers.begin(), layers.end(), [get_ext_peri_width](auto& a, auto& b) {return get_ext_peri_width(a) < get_ext_peri_width(b); });
coord_t thresh = get_ext_peri_width(*it) * 0.5;// half of external perimeter width // 0.5 * scale_(this->config().line_width);
for (size_t idx_layer = 0; idx_layer < layers.size(); ++idx_layer) {
// BBS: detect empty layers (layers with very small regions) and mark them as problematic, then these layers will copy the nearest good layer
auto layer = layers[idx_layer];
ExPolygons lslices;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++region_id) {
LayerRegion* layerm = layer->m_regions[region_id];
for (auto& surface : layerm->slices.surfaces) {
auto expoly = offset_ex(surface.expolygon, -thresh);
lslices.insert(lslices.begin(), expoly.begin(), expoly.end());
}
}
if (lslices.empty()) {
layer->slicing_errors = true;
}
if (layers[idx_layer]->slicing_errors) {
buggy_layers.push_back(idx_layer);
}
else
break; // only detect empty layers near bed
}
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
std::atomic<bool> is_replaced = false;
tbb::parallel_for(
tbb::blocked_range<size_t>(0, buggy_layers.size()),
[&layers, &throw_if_canceled, &buggy_layers, &is_replaced](const tbb::blocked_range<size_t>& range) {
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
throw_if_canceled();
size_t idx_layer = buggy_layers[buggy_layer_idx];
// BBS: only replace empty layers lower than 1mm
const coordf_t thresh_empty_layer_height = 1;
Layer* layer = layers[idx_layer];
if (layer->print_z>= thresh_empty_layer_height)
continue;
assert(layer->slicing_errors);
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
LayerRegion *layerm = layer->get_region(region_id);
// Find the first valid layer below / above the current layer.
const Surfaces *upper_surfaces = nullptr;
const Surfaces *lower_surfaces = nullptr;
//BBS: only repair empty layers lowers than 1mm
for (size_t j = idx_layer + 1; j < layers.size(); ++j) {
if (!layers[j]->slicing_errors) {
upper_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
break;
}
if (layers[j]->print_z >= thresh_empty_layer_height) break;
}
for (int j = int(idx_layer) - 1; j >= 0; --j) {
if (layers[j]->print_z >= thresh_empty_layer_height) continue;
if (!layers[j]->slicing_errors) {
lower_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
break;
}
}
// Collect outer contours and holes from the valid layers above & below.
ExPolygons expolys;
expolys.reserve(
((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
if (upper_surfaces)
for (const auto &surface : *upper_surfaces) {
expolys.emplace_back(surface.expolygon);
}
if (lower_surfaces)
for (const auto &surface : *lower_surfaces) {
expolys.emplace_back(surface.expolygon);
}
if (!expolys.empty()) {
//BBS
is_replaced = true;
layerm->slices.set(union_ex(expolys), stInternal);
}
}
// Update layer slices after repairing the single regions.
layer->make_slices();
}
});
throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
if(is_replaced)
error_msg = L("Empty layers around bottom are replaced by nearest normal layers.");
// remove empty layers from bottom
while (! layers.empty() && (layers.front()->lslices.empty() || layers.front()->empty())) {
delete layers.front();
layers.erase(layers.begin());
layers.front()->lower_layer = nullptr;
for (size_t i = 0; i < layers.size(); ++ i)
layers[i]->set_id(layers[i]->id() - 1);
}
//BBS
if(error_msg.empty() && !buggy_layers.empty())
error_msg = L("The model has too many empty layers.");
// BBS: first layer slices are sorted by volume group, if the first layer is empty and replaced by the 2nd layer
// the later will be stored in "object->firstLayerObjGroupsMod()"
if (!buggy_layers.empty() && buggy_layers.front() == 0 && layers.size() > 1)
firstLayerReplacedBy = 1;
return error_msg;
}
void groupingVolumesForBrim(PrintObject* object, LayerPtrs& layers, int firstLayerReplacedBy)
{
const auto scaled_resolution = scaled<double>(object->print()->config().resolution.value);
auto partsObjSliceByVolume = findPartVolumes(object->firstLayerObjSliceMod(), object->model_object()->volumes);
groupingVolumes(partsObjSliceByVolume, object->firstLayerObjGroupsMod(), scaled_resolution, firstLayerReplacedBy);
applyNegtiveVolumes(object->model_object()->volumes, object->firstLayerObjSliceMod(), object->firstLayerObjGroupsMod(), scaled_resolution);
// BBS: the actual first layer slices stored in layers are re-sorted by volume group and will be used to generate brim
reGroupingLayerPolygons(object->firstLayerObjGroupsMod(), layers.front()->lslices, scaled_resolution);
}
// Called by make_perimeters()
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//由make_perimeters调用
//1决定层的Z位置
//2初始化层及其区域
//3分割对象网格
//4对修改器网格进行切片并根据修改器网格的切片对对象网格的切片进行重新分类
//5应用尺寸补偿偏移XY平面中的切片
//6用从上层/下层重建的切片替换坏切片
//层区域的扩展结果标记为内部。
void PrintObject::slice()
{
if (! this->set_started(posSlice))
return;
//BBS: add flag to reload scene for shell rendering
//BBS添加标志以重新加载场景进行shell渲染
m_print->set_status(5, L("Slicing mesh"), PrintBase::SlicingStatus::RELOAD_SCENE);
std::vector<coordf_t> layer_height_profile;
this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
m_print->throw_if_canceled();
m_typed_slices = false;
this->clear_layers();
m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile, m_config.precise_z_height.value));
this->slice_volumes();
m_print->throw_if_canceled();
int firstLayerReplacedBy = 0;
#if 1
// Fix the model.
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
//FIXME是合适的地方吗它在UI上重复完成现在在后端完成。
std::string warning = fix_slicing_errors(this, m_layers, [this](){ m_print->throw_if_canceled(); }, firstLayerReplacedBy);
m_print->throw_if_canceled();
//BBS: send warning message to slicing callback
// This warning is inaccurate, because the empty layers may have been replaced, or the model has supports.
//if (!warning.empty()) {
// BOOST_LOG_TRIVIAL(info) << warning;
// this->active_step_add_warning(PrintStateBase::WarningLevel::CRITICAL, warning, PrintStateBase::SlicingReplaceInitEmptyLayers);
//}
#endif
// BBS: the actual first layer slices stored in layers are re-sorted by volume group and will be used to generate brim
//BBS存储在层中的实际第一层切片按卷组重新排序并将用于生成边缘
groupingVolumesForBrim(this, m_layers, firstLayerReplacedBy);
// Update bounding boxes, back up raw slices of complex models.
//更新边界框,备份复杂模型的原始切片。
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer &layer = *m_layers[layer_idx];
layer.lslices_bboxes.clear();
layer.lslices_bboxes.reserve(layer.lslices.size());
for (const ExPolygon &expoly : layer.lslices)
layer.lslices_bboxes.emplace_back(get_extents(expoly));
layer.backup_untyped_slices();
}
});
if (m_layers.empty())
throw Slic3r::SlicingError(L("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n"));
// BBS
this->set_done(posSlice);
}
template<typename ThrowOnCancel>
static inline void apply_mm_segmentation(PrintObject &print_object, ThrowOnCancel throw_on_cancel)
{
// Returns MMU segmentation based on painting in MMU segmentation gizmo
//MMU分割控件中基于绘画的MMU分割返回
std::vector<std::vector<ExPolygons>> segmentation = multi_material_segmentation_by_painting(print_object, throw_on_cancel);
assert(segmentation.size() == print_object.layer_count());
tbb::parallel_for(
tbb::blocked_range<size_t>(0, segmentation.size(), std::max(segmentation.size() / 128, size_t(1))),
[&print_object, &segmentation, throw_on_cancel](const tbb::blocked_range<size_t> &range) {
const auto &layer_ranges = print_object.shared_regions()->layer_ranges;
double z = print_object.get_layer(range.begin())->slice_z;
auto it_layer_range = layer_range_first(layer_ranges, z);
// BBS
const size_t num_extruders = print_object.print()->config().filament_diameter.size();
struct ByExtruder {
ExPolygons expolygons;
BoundingBox bbox;
};
std::vector<ByExtruder> by_extruder;
struct ByRegion {
ExPolygons expolygons;
bool needs_merge { false };
};
std::vector<ByRegion> by_region;
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
throw_on_cancel();
Layer *layer = print_object.get_layer(layer_id);
it_layer_range = layer_range_next(layer_ranges, it_layer_range, layer->slice_z);
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
// Gather per extruder expolygons.
//按照挤出机的规格进行收集。
by_extruder.assign(num_extruders, ByExtruder());
by_region.assign(layer->region_count(), ByRegion());
bool layer_split = false;
for (size_t extruder_id = 0; extruder_id < num_extruders; ++ extruder_id) {
ByExtruder &region = by_extruder[extruder_id];
append(region.expolygons, std::move(segmentation[layer_id][extruder_id]));
if (! region.expolygons.empty()) {
region.bbox = get_extents(region.expolygons);
layer_split = true;
}
}
if (! layer_split)
continue;
// Split LayerRegions by by_extruder regions.
// layer_range.painted_regions are sorted by extruder ID and parent PrintObject region ID.
//按by_extruder区域拆分图层区域。
//layer_range.painted_regions按挤出机ID和父打印对象区域ID排序。
auto it_painted_region = layer_range.painted_regions.begin();
for (int region_id = 0; region_id < int(layer->region_count()); ++ region_id)
if (LayerRegion &layerm = *layer->get_region(region_id); ! layerm.slices.surfaces.empty()) {
assert(layerm.region().print_object_region_id() == region_id);
const BoundingBox bbox = get_extents(layerm.slices.surfaces);
assert(it_painted_region < layer_range.painted_regions.end());
// Find the first it_painted_region which overrides this region.
//找到覆盖此区域的第一个it_paoint_region。
for (; layer_range.volume_regions[it_painted_region->parent].region->print_object_region_id() < region_id; ++ it_painted_region)
assert(it_painted_region != layer_range.painted_regions.end());
assert(it_painted_region != layer_range.painted_regions.end());
assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region());
// 1-based extruder ID
//1-基挤出机ID
bool self_trimmed = false;
int self_extruder_id = -1;
for (int extruder_id = 1; extruder_id <= int(by_extruder.size()); ++ extruder_id)
if (ByExtruder &segmented = by_extruder[extruder_id - 1]; segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
// Find the target region.
//找到目标区域。
for (; int(it_painted_region->extruder_id) < extruder_id; ++ it_painted_region)
assert(it_painted_region != layer_range.painted_regions.end());
assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region() && int(it_painted_region->extruder_id) == extruder_id);
//FIXME Don't trim by self, it is not reliable.
//FIXME不要自己修剪它不可靠。
if (&layerm.region() == it_painted_region->region) {
self_extruder_id = extruder_id;
continue;
}
// Steal from this region.
//从这个地区偷东西。
int target_region_id = it_painted_region->region->print_object_region_id();
ExPolygons stolen = intersection_ex(layerm.slices.surfaces, segmented.expolygons);
if (! stolen.empty()) {
ByRegion &dst = by_region[target_region_id];
if (dst.expolygons.empty()) {
dst.expolygons = std::move(stolen);
} else {
append(dst.expolygons, std::move(stolen));
dst.needs_merge = true;
}
}
#if 0
if (&layerm.region() == it_painted_region->region)
// Slices of this LayerRegion were trimmed by a MMU region of the same PrintRegion.
self_trimmed = true;
#endif
}
if (! self_trimmed) {
// Trim slices of this LayerRegion with all the MMU regions.
//使用所有MMU区域修剪此LayerRegion的切片。
Polygons mine = to_polygons(std::move(layerm.slices.surfaces));
for (auto &segmented : by_extruder)
if (&segmented - by_extruder.data() + 1 != self_extruder_id && segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
mine = diff(mine, segmented.expolygons);
if (mine.empty())
break;
}
// Filter out unprintable polygons produced by subtraction multi-material painted regions from layerm.region().
// ExPolygon returned from multi-material segmentation does not precisely match ExPolygons in layerm.region()
// (because of preprocessing of the input regions in multi-material segmentation). Therefore, subtraction from
// layerm.region() could produce a huge number of small unprintable regions for the model's base extruder.
// This could, on some models, produce bulges with the model's base color (#7109).
//过滤掉通过从layrm.region中减去多材质绘制区域而产生的无法打印的多边形。
//从多材质分割返回的ExPolygon与layem.region中的ExPolygons不完全匹配因为多材质分割中的输入区域进行了预处理。因此从layer.region中减去可能会为模型的基础挤出机产生大量无法打印的小区域。
//在某些型号上,这可能会产生与型号基础颜色相同的凸起(#7109
if (! mine.empty())
mine = opening(union_ex(mine), float(scale_(5 * EPSILON)), float(scale_(5 * EPSILON)));
if (! mine.empty()) {
ByRegion &dst = by_region[layerm.region().print_object_region_id()];
if (dst.expolygons.empty()) {
dst.expolygons = union_ex(mine);
} else {
append(dst.expolygons, union_ex(mine));
dst.needs_merge = true;
}
}
}
}
// Re-create Surfaces of LayerRegions.
//重新创建图层区域的曲面。
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
ByRegion &src = by_region[region_id];
if (src.needs_merge)
// Multiple regions were merged into one.
//多个区域合并为一个。
src.expolygons = closing_ex(src.expolygons, float(scale_(10 * EPSILON)));
layer->get_region(region_id)->slices.set(std::move(src.expolygons), stInternal);
}
}
});
}
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//
// this should be idempotent
//1决定层的Z位置
//2初始化层及其区域
//3分割对象网格
//4对修改器网格进行切片并根据修改器网格的切片对对象网格的切片进行重新分类
//5应用尺寸补偿偏移XY平面中的切片
//6用从上层/下层重建的切片替换坏切片
//层区域的扩展结果标记为内部。
//
//这应该是幂等的
void PrintObject::slice_volumes()
{
BOOST_LOG_TRIVIAL(info) << "Slicing volumes..." << log_memory_info();
const Print *print = this->print();
const auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
// Clear old LayerRegions, allocate for new PrintRegions.
//清除旧的LayerRegions为新的PrintRegions分配。
for (Layer* layer : m_layers) {
//BBS: should delete all LayerRegionPtr to avoid memory leak
//BBS应删除所有LayerRegionPtr以避免内存泄漏
while (!layer->m_regions.empty()) {
if (layer->m_regions.back())
delete layer->m_regions.back();
layer->m_regions.pop_back();
}
layer->m_regions.reserve(m_shared_regions->all_regions.size());
for (const std::unique_ptr<PrintRegion> &pr : m_shared_regions->all_regions)
layer->m_regions.emplace_back(new LayerRegion(layer, pr.get()));
}
std::vector<float> slice_zs = zs_from_layers(m_layers);
std::vector<VolumeSlices> objSliceByVolume;
if (!slice_zs.empty()) {
objSliceByVolume = slice_volumes_inner(
print->config(), this->config(), this->trafo_centered(),
this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs, throw_on_cancel_callback);
}
//BBS: "model_part" volumes are grouded according to their connections
//const auto scaled_resolution = scaled<double>(print->config().resolution.value);
//firstLayerObjSliceByVolume = findPartVolumes(objSliceByVolume, this->model_object()->volumes);
//groupingVolumes(objSliceByVolumeParts, firstLayerObjSliceByGroups, scaled_resolution);
//applyNegtiveVolumes(this->model_object()->volumes, objSliceByVolume, firstLayerObjSliceByGroups, scaled_resolution);
//BBS:“model_part”卷根据其连接进行分组
//const auto-scaled_resolution=scaled<double>(打印->config.reresolution.value
//firstLayerObjSliceByVolume=findPartVolumesobjSliceByVolume此->模型对象()->卷);
//分组卷objSliceByVolumeParts、firstLayerObjSliceByGroups、scaled_session
//applyNegativeVolumes此->模型对象()->卷、objSliceByVolume、firstLayerObjSliceByGroups、scaled_session
firstLayerObjSliceByVolume = objSliceByVolume;
std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, *m_shared_regions, slice_zs,
std::move(objSliceByVolume),
PrintObject::clip_multipart_objects,
throw_on_cancel_callback);
for (size_t region_id = 0; region_id < region_slices.size(); ++ region_id) {
std::vector<ExPolygons> &by_layer = region_slices[region_id];
for (size_t layer_id = 0; layer_id < by_layer.size(); ++ layer_id)
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(by_layer[layer_id]), stInternal);
}
region_slices.clear();
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - removing top empty layers";
while (! m_layers.empty()) {
const Layer *layer = m_layers.back();
if (! layer->empty())
break;
delete layer;
m_layers.pop_back();
}
if (! m_layers.empty())
m_layers.back()->upper_layer = nullptr;
m_print->throw_if_canceled();
// Is any ModelVolume MMU painted?
//是否有任何ModelVolume MMU涂漆
if (const auto& volumes = this->model_object()->volumes;
m_print->config().filament_diameter.size() > 1 && // BBS
std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume* v) { return !v->mmu_segmentation_facets.empty(); }) != volumes.end()) {
// If XY Size compensation is also enabled, notify the user that XY Size compensation
// would not be used because the object is multi-material painted.
//如果还启用了XY尺寸补偿请通知用户XY尺寸补偿
//不会使用,因为该对象是多材质绘制的。
if (m_config.xy_hole_compensation.value != 0.f || m_config.xy_contour_compensation.value != 0.f) {
this->active_step_add_warning(
PrintStateBase::WarningLevel::CRITICAL,
L("An object's XY size compensation will not be used because it is also color-painted.\nXY Size "
"compensation can not be combined with color-painting."));
BOOST_LOG_TRIVIAL(info) << "xy compensation will not work for object " << this->model_object()->name << " for multi filament.";
}
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - MMU segmentation";
apply_mm_segmentation(*this, [print]() { print->throw_if_canceled(); });
}
InterlockingGenerator::generate_interlocking_structure(this);
m_print->throw_if_canceled();
// SuperSlicer: filament shrink
//SuperSlicer长丝收缩
for (Layer *layer : m_layers) {
for (size_t i = 0; i < layer->region_count(); ++i) {
LayerRegion *region = layer->get_region(i);
ExPolygons ex_polys = to_expolygons(region->slices.surfaces);
int filament_id = region->region().extruder(FlowRole::frPerimeter) - 1;
double scale = print->config().filament_shrink.values[filament_id] * 0.01;
if (scale != 1) {
scale = 1 / scale;
for (ExPolygon &poly : ex_polys)
poly.scale(scale);
}
region->slices.set(std::move(ex_polys), stInternal);
}
}
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
{
// Compensation value, scaled. Only applying the negative scaling here, as the positive scaling has already been applied during slicing.
//补偿值,按比例计算。此处仅应用负缩放,因为在切片过程中已经应用了正缩放。
const size_t num_extruders = print->config().filament_diameter.size();
const auto xy_hole_scaled = (num_extruders > 1 && this->is_mm_painted()) ? scaled<float>(0.f) : scaled<float>(m_config.xy_hole_compensation.value);
const auto xy_contour_scaled = (num_extruders > 1 && this->is_mm_painted()) ? scaled<float>(0.f) : scaled<float>(m_config.xy_contour_compensation.value);
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
// Only enable Elephant foot compensation if printing directly on the print bed.
//仅在直接在打印床上打印时启用象脚补偿。
float(scale_(m_config.elefant_foot_compensation.value)) :
0.f;
// Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
//在应用象脚补偿的情况下,第一层的无补偿切片。
ExPolygons lslices_1st_layer;
//BBS: this part has been changed a lot to support seperated contour and hole size compensation
//BBS这部分已经做了很多更改以支持单独的轮廓和孔尺寸补偿
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, xy_hole_scaled, xy_contour_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer](const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_id];
// Apply size compensation and perform clipping of multi-part objects.
//应用尺寸补偿并对多部分对象进行剪裁。
float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f;
if (layer->m_regions.size() == 1) {
// Optimized version for a single region layer.
// Single region, growing or shrinking.
//针对单个区域层的优化版本。
//单一地区,增长或萎缩。
LayerRegion *layerm = layer->m_regions.front();
if (elfoot > 0) {
// Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied.
//应用象脚补偿,并存储未应用象脚赔偿的第一层切片。
lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces));
if (xy_contour_scaled > 0 || xy_hole_scaled > 0) {
lslices_1st_layer = _shrink_contour_holes(std::max(0.f, xy_contour_scaled),
std::max(0.f, xy_hole_scaled),
lslices_1st_layer);
}
if (xy_contour_scaled < 0 || xy_hole_scaled < 0) {
lslices_1st_layer = _shrink_contour_holes(std::min(0.f, xy_contour_scaled),
std::min(0.f, xy_hole_scaled),
lslices_1st_layer);
}
layerm->slices.set(
union_ex(
Slic3r::elephant_foot_compensation(lslices_1st_layer,
layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
stInternal);
} else {
// Apply the XY contour and hole size compensation.
//应用XY轮廓和孔尺寸补偿。
if (xy_contour_scaled != 0.0f || xy_hole_scaled != 0.0f) {
ExPolygons expolygons = to_expolygons(std::move(layerm->slices.surfaces));
if (xy_contour_scaled > 0 || xy_hole_scaled > 0) {
expolygons = _shrink_contour_holes(std::max(0.f, xy_contour_scaled),
std::max(0.f, xy_hole_scaled),
expolygons);
}
if (xy_contour_scaled < 0 || xy_hole_scaled < 0) {
expolygons = _shrink_contour_holes(std::min(0.f, xy_contour_scaled),
std::min(0.f, xy_hole_scaled),
expolygons);
}
layerm->slices.set(std::move(expolygons), stInternal);
}
}
} else {
float max_growth = std::max(xy_hole_scaled, xy_contour_scaled);
float min_growth = std::min(xy_hole_scaled, xy_contour_scaled);
ExPolygons merged_poly_for_holes_growing;
if (max_growth > 0) {
//BBS: merge polygons because region can cut "holes".
//Then, cut them to give them again later to their region
//BBS合并多边形因为该区域可以切割“孔”。
//然后,把它们剪下来,稍后再送给它们所在的地区
merged_poly_for_holes_growing = layer->merged(float(SCALED_EPSILON));
merged_poly_for_holes_growing = _shrink_contour_holes(std::max(0.f, xy_contour_scaled),
std::max(0.f, xy_hole_scaled),
union_ex(merged_poly_for_holes_growing));
// BBS: clipping regions, priority is given to the first regions.
//BBS剪切区域优先剪切第一个区域。
Polygons processed;
for (size_t region_id = 0; region_id < layer->regions().size(); ++region_id) {
ExPolygons slices = to_expolygons(std::move(layer->m_regions[region_id]->slices.surfaces));
if (max_growth > 0.f) {
slices = intersection_ex(offset_ex(slices, max_growth), merged_poly_for_holes_growing);
}
//BBS: Trim by the slices of already processed regions.
//BBS按已加工区域的切片进行修剪。
if (region_id > 0)
slices = diff_ex(to_polygons(std::move(slices)), processed);
if (region_id + 1 < layer->regions().size())
// Collect the already processed regions to trim the to be processed regions.
//收集已处理的区域以修剪待处理的区域。
polygons_append(processed, slices);
layer->m_regions[region_id]->slices.set(std::move(slices), stInternal);
}
}
if (min_growth < 0.f || elfoot > 0.f) {
// Apply the negative XY compensation. (the ones that is <0)
//应用负XY补偿。小于0的那些
ExPolygons trimming;
static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
if (elfoot > 0.f) {
lslices_1st_layer = offset_ex(layer->merged(eps), -eps);
trimming = Slic3r::elephant_foot_compensation(lslices_1st_layer,
layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot));
} else {
trimming = layer->merged(float(SCALED_EPSILON));
}
if (min_growth < 0.0f)
trimming = _shrink_contour_holes(std::min(0.f, xy_contour_scaled),
std::min(0.f, xy_hole_scaled),
trimming);
//BBS: trim surfaces
//BBS修整表面
for (size_t region_id = 0; region_id < layer->regions().size(); ++region_id) {
// BBS: split trimming result by region
//BBS按地区划分修剪结果
ExPolygons contour_exp = to_expolygons(std::move(layer->regions()[region_id]->slices.surfaces));
layer->regions()[region_id]->slices.set(intersection_ex(contour_exp, to_polygons(trimming)), stInternal);
}
}
}
// Merge all regions' slices to get islands, chain them by a shortest path.
//合并所有区域的切片以获得岛屿,用最短路径将它们链接起来。
if (this->config().enable_circle_compensation)
layer->apply_auto_circle_compensation();
layer->make_slices();
}
});
if (elephant_foot_compensation_scaled > 0.f && ! m_layers.empty()) {
// The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
// Store the uncompensated value there.
//大象脚已经得到补偿,因此第一层的切片缩小了大象脚补偿值。
//将未补偿的价值存储在那里。
assert(m_layers.front()->id() == 0);
//BBS: sort the lslices_1st_layer according to shortest path before saving
//Otherwise the travel of first layer would be mess.
//BBS保存前按最短路径对lslices_1st_layer进行排序
//否则,第一层的旅行会一团糟。
Points ordering_points;
ordering_points.reserve(lslices_1st_layer.size());
for (const ExPolygon& ex : lslices_1st_layer)
ordering_points.push_back(ex.contour.first_point());
std::vector<Points::size_type> order = chain_points(ordering_points);
ExPolygons lslices_1st_layer_sorted;
lslices_1st_layer_sorted.reserve(lslices_1st_layer.size());
for (size_t i : order)
lslices_1st_layer_sorted.emplace_back(std::move(lslices_1st_layer[i]));
m_layers.front()->lslices = std::move(lslices_1st_layer_sorted);
}
}
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - end";
}
//BBS: this function is used to offset contour and holes of expolygons seperately by different value
ExPolygons PrintObject::_shrink_contour_holes(double contour_delta, double hole_delta, const ExPolygons& polys) const
{
ExPolygons new_ex_polys;
for (const ExPolygon& ex_poly : polys) {
Polygons contours;
Polygons holes;
//BBS: modify hole
for (const Polygon& hole : ex_poly.holes) {
if (hole_delta != 0) {
for (Polygon& newHole : offset(hole, -hole_delta)) {
newHole.make_counter_clockwise();
holes.emplace_back(std::move(newHole));
}
} else {
holes.push_back(hole);
holes.back().make_counter_clockwise();
}
}
//BBS: modify contour
if (contour_delta != 0) {
Polygons new_contours = offset(ex_poly.contour, contour_delta);
if (new_contours.size() == 0)
continue;
contours.insert(contours.end(), std::make_move_iterator(new_contours.begin()), std::make_move_iterator(new_contours.end()));
} else {
contours.push_back(ex_poly.contour);
}
ExPolygons temp = diff_ex(union_(contours), union_(holes));
new_ex_polys.insert(new_ex_polys.end(), std::make_move_iterator(temp.begin()), std::make_move_iterator(temp.end()));
}
return union_ex(new_ex_polys);
}
std::vector<Polygons> PrintObject::slice_support_volumes(const ModelVolumeType model_volume_type) const
{
auto it_volume = this->model_object()->volumes.begin();
auto it_volume_end = this->model_object()->volumes.end();
for (; it_volume != it_volume_end && (*it_volume)->type() != model_volume_type; ++ it_volume) ;
std::vector<Polygons> slices;
if (it_volume != it_volume_end) {
// Found at least a single support volume of model_volume_type.
std::vector<float> zs = zs_from_layers(this->layers());
std::vector<char> merge_layers;
bool merge = false;
const Print *print = this->print();
auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
MeshSlicingParamsEx params;
params.trafo = this->trafo_centered();
for (; it_volume != it_volume_end; ++ it_volume)
if ((*it_volume)->type() == model_volume_type) {
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, params, throw_on_cancel_callback);
if (slices.empty()) {
slices.reserve(slices2.size());
for (ExPolygons &src : slices2)
slices.emplace_back(to_polygons(std::move(src)));
} else if (!slices2.empty()) {
if (merge_layers.empty())
merge_layers.assign(zs.size(), false);
for (size_t i = 0; i < zs.size(); ++ i) {
if (slices[i].empty())
slices[i] = to_polygons(std::move(slices2[i]));
else if (! slices2[i].empty()) {
append(slices[i], to_polygons(std::move(slices2[i])));
merge_layers[i] = true;
merge = true;
}
}
}
}
if (merge) {
std::vector<Polygons*> to_merge;
to_merge.reserve(zs.size());
for (size_t i = 0; i < zs.size(); ++ i)
if (merge_layers[i])
to_merge.emplace_back(&slices[i]);
tbb::parallel_for(
tbb::blocked_range<size_t>(0, to_merge.size()),
[&to_merge](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++ i)
*to_merge[i] = union_(*to_merge[i]);
});
}
}
return slices;
}
} // namespace Slic3r