BambuStudio/src/libslic3r/Fill/FillPlanePath.cpp

186 lines
6.0 KiB
C++
Raw Normal View History

#include "../ClipperUtils.hpp"
#include "../ShortestPath.hpp"
#include "../Surface.hpp"
#include "FillPlanePath.hpp"
namespace Slic3r {
void FillPlanePath::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon expolygon,
Polylines &polylines_out)
{
expolygon.rotate(- direction.first);
coord_t distance_between_lines = coord_t(scale_(this->spacing) / params.density);
// align infill across layers using the object's bounding box
// Rotated bounding box of the whole object.
BoundingBox bounding_box = this->bounding_box.rotated(- direction.first);
Point shift = this->_centered() ?
bounding_box.center() :
bounding_box.min;
expolygon.translate(-shift.x(), -shift.y());
bounding_box.translate(-shift.x(), -shift.y());
Pointfs pts = _generate(
coord_t(ceil(coordf_t(bounding_box.min.x()) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.min.y()) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.x()) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.y()) / distance_between_lines)),
params.resolution);
if (pts.size() >= 2) {
// Convert points to a polyline, upscale.
Polylines polylines(1, Polyline());
Polyline &polyline = polylines.front();
polyline.points.reserve(pts.size());
for (const Vec2d &pt : pts)
polyline.points.emplace_back(
coord_t(floor(pt.x() * distance_between_lines + 0.5)),
coord_t(floor(pt.y() * distance_between_lines + 0.5)));
polylines = intersection_pl(polylines, expolygon);
Polylines chained;
if (params.dont_connect() || params.density > 0.5 || polylines.size() <= 1)
chained = chain_polylines(std::move(polylines));
else
connect_infill(std::move(polylines), expolygon, chained, this->spacing, params);
// paths must be repositioned and rotated back
for (Polyline &pl : chained) {
pl.translate(shift.x(), shift.y());
pl.rotate(direction.first);
}
append(polylines_out, std::move(chained));
}
}
// Follow an Archimedean spiral, in polar coordinates: r=a+b\theta
Pointfs FillArchimedeanChords::_generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y, const double resolution)
{
// Radius to achieve.
coordf_t rmax = std::sqrt(coordf_t(max_x)*coordf_t(max_x)+coordf_t(max_y)*coordf_t(max_y)) * std::sqrt(2.) + 1.5;
// Now unwind the spiral.
coordf_t a = 1.;
coordf_t b = 1./(2.*M_PI);
coordf_t theta = 0.;
coordf_t r = 1;
Pointfs out;
//FIXME Vojtech: If used as a solid infill, there is a gap left at the center.
out.emplace_back(0, 0);
out.emplace_back(1, 0);
while (r < rmax) {
// Discretization angle to achieve a discretization error lower than resolution.
theta += 2. * acos(1. - resolution / r);
r = a + b * theta;
out.emplace_back(r * cos(theta), r * sin(theta));
}
return out;
}
// Adapted from
// http://cpansearch.perl.org/src/KRYDE/Math-PlanePath-122/lib/Math/PlanePath/HilbertCurve.pm
//
// state=0 3--2 plain
// |
// 0--1
//
// state=4 1--2 transpose
// | |
// 0 3
//
// state=8
//
// state=12 3 0 rot180 + transpose
// | |
// 2--1
//
static inline Point hilbert_n_to_xy(const size_t n)
{
static constexpr const int next_state[16] { 4,0,0,12, 0,4,4,8, 12,8,8,4, 8,12,12,0 };
static constexpr const int digit_to_x[16] { 0,1,1,0, 0,0,1,1, 1,0,0,1, 1,1,0,0 };
static constexpr const int digit_to_y[16] { 0,0,1,1, 0,1,1,0, 1,1,0,0, 1,0,0,1 };
// Number of 2 bit digits.
size_t ndigits = 0;
{
size_t nc = n;
while(nc > 0) {
nc >>= 2;
++ ndigits;
}
}
int state = (ndigits & 1) ? 4 : 0;
coord_t x = 0;
coord_t y = 0;
for (int i = (int)ndigits - 1; i >= 0; -- i) {
int digit = (n >> (i * 2)) & 3;
state += digit;
x |= digit_to_x[state] << i;
y |= digit_to_y[state] << i;
state = next_state[state];
}
return Point(x, y);
}
Pointfs FillHilbertCurve::_generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y, const double /* resolution */)
{
// Minimum power of two square to fit the domain.
size_t sz = 2;
size_t pw = 1;
{
size_t sz0 = std::max(max_x + 1 - min_x, max_y + 1 - min_y);
while (sz < sz0) {
sz = sz << 1;
++ pw;
}
}
size_t sz2 = sz * sz;
Pointfs line;
line.reserve(sz2);
for (size_t i = 0; i < sz2; ++ i) {
Point p = hilbert_n_to_xy(i);
line.emplace_back(p.x() + min_x, p.y() + min_y);
}
return line;
}
Pointfs FillOctagramSpiral::_generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y, const double /* resolution */)
{
// Radius to achieve.
coordf_t rmax = std::sqrt(coordf_t(max_x)*coordf_t(max_x)+coordf_t(max_y)*coordf_t(max_y)) * std::sqrt(2.) + 1.5;
// Now unwind the spiral.
coordf_t r = 0;
coordf_t r_inc = sqrt(2.);
Pointfs out;
out.emplace_back(0., 0.);
while (r < rmax) {
r += r_inc;
coordf_t rx = r / sqrt(2.);
coordf_t r2 = r + rx;
out.emplace_back( r, 0.);
out.emplace_back( r2, rx);
out.emplace_back( rx, rx);
out.emplace_back( rx, r2);
out.emplace_back( 0., r);
out.emplace_back(-rx, r2);
out.emplace_back(-rx, rx);
out.emplace_back(-r2, rx);
out.emplace_back(- r, 0.);
out.emplace_back(-r2, -rx);
out.emplace_back(-rx, -rx);
out.emplace_back(-rx, -r2);
out.emplace_back( 0., -r);
out.emplace_back( rx, -r2);
out.emplace_back( rx, -rx);
out.emplace_back( r2+r_inc, -rx);
}
return out;
}
} // namespace Slic3r