2022-07-15 15:37:19 +00:00
# include "WipeTower.hpp"
# include <cassert>
# include <iostream>
# include <vector>
# include <numeric>
# include <sstream>
# include <iomanip>
# include "GCodeProcessor.hpp"
# include "BoundingBox.hpp"
# include "LocalesUtils.hpp"
namespace Slic3r
{
inline float align_round ( float value , float base )
{
return std : : round ( value / base ) * base ;
}
inline float align_ceil ( float value , float base )
{
return std : : ceil ( value / base ) * base ;
}
inline float align_floor ( float value , float base )
{
return std : : floor ( ( value ) / base ) * base ;
}
class WipeTowerWriter
{
public :
WipeTowerWriter ( float layer_height , float line_width , GCodeFlavor flavor , const std : : vector < WipeTower : : FilamentParameters > & filament_parameters ) :
m_current_pos ( std : : numeric_limits < float > : : max ( ) , std : : numeric_limits < float > : : max ( ) ) ,
m_current_z ( 0.f ) ,
m_current_feedrate ( 0.f ) ,
m_layer_height ( layer_height ) ,
m_extrusion_flow ( 0.f ) ,
m_preview_suppressed ( false ) ,
m_elapsed_time ( 0.f ) ,
# if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_default_analyzer_line_width ( line_width ) ,
# endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
m_gcode_flavor ( flavor ) ,
m_filpar ( filament_parameters )
{
// adds tag for analyzer:
std : : ostringstream str ;
str < < " ; " < < GCodeProcessor : : reserved_tag ( GCodeProcessor : : ETags : : Height ) < < m_layer_height < < " \n " ; // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming
str < < " ; " < < GCodeProcessor : : reserved_tag ( GCodeProcessor : : ETags : : Role ) < < ExtrusionEntity : : role_to_string ( erWipeTower ) < < " \n " ;
m_gcode + = str . str ( ) ;
change_analyzer_line_width ( line_width ) ;
}
WipeTowerWriter & change_analyzer_line_width ( float line_width ) {
// adds tag for analyzer:
std : : stringstream str ;
str < < " ; " < < GCodeProcessor : : reserved_tag ( GCodeProcessor : : ETags : : Width ) < < line_width < < " \n " ;
m_gcode + = str . str ( ) ;
return * this ;
}
# if ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter & change_analyzer_mm3_per_mm ( float len , float e ) {
static const float area = float ( M_PI ) * 1.75f * 1.75f / 4.f ;
float mm3_per_mm = ( len = = 0.f ? 0.f : area * e / len ) ;
// adds tag for processor:
std : : stringstream str ;
str < < " ; " < < GCodeProcessor : : Mm3_Per_Mm_Tag < < mm3_per_mm < < " \n " ;
m_gcode + = str . str ( ) ;
return * this ;
}
# endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter & set_initial_position ( const Vec2f & pos , float width = 0.f , float depth = 0.f , float internal_angle = 0.f ) {
m_wipe_tower_width = width ;
m_wipe_tower_depth = depth ;
m_internal_angle = internal_angle ;
m_start_pos = this - > rotate ( pos ) ;
m_current_pos = pos ;
return * this ;
}
WipeTowerWriter & set_initial_tool ( size_t tool ) { m_current_tool = tool ; return * this ; }
WipeTowerWriter & set_z ( float z )
{ m_current_z = z ; return * this ; }
WipeTowerWriter & set_extrusion_flow ( float flow )
{ m_extrusion_flow = flow ; return * this ; }
WipeTowerWriter & set_y_shift ( float shift ) {
m_current_pos . y ( ) - = shift - m_y_shift ;
m_y_shift = shift ;
return ( * this ) ;
}
WipeTowerWriter & disable_linear_advance ( ) {
m_gcode + = ( m_gcode_flavor = = gcfRepRapSprinter | | m_gcode_flavor = = gcfRepRapFirmware
? ( std : : string ( " M572 D " ) + std : : to_string ( m_current_tool ) + " S0 \n " )
: std : : string ( " M900 K0 \n " ) ) ;
return * this ;
}
// Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various
// filament loading and cooling moves from normal extrusion moves. Therefore the writer
// is asked to suppres output of some lines, which look like extrusions.
# if ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter & suppress_preview ( ) { change_analyzer_line_width ( 0.f ) ; m_preview_suppressed = true ; return * this ; }
WipeTowerWriter & resume_preview ( ) { change_analyzer_line_width ( m_default_analyzer_line_width ) ; m_preview_suppressed = false ; return * this ; }
# else
WipeTowerWriter & suppress_preview ( ) { m_preview_suppressed = true ; return * this ; }
WipeTowerWriter & resume_preview ( ) { m_preview_suppressed = false ; return * this ; }
# endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter & feedrate ( float f )
{
if ( f ! = m_current_feedrate ) {
m_gcode + = " G1 " + set_format_F ( f ) + " \n " ;
m_current_feedrate = f ;
}
return * this ;
}
const std : : string & gcode ( ) const { return m_gcode ; }
const std : : vector < WipeTower : : Extrusion > & extrusions ( ) const { return m_extrusions ; }
float x ( ) const { return m_current_pos . x ( ) ; }
float y ( ) const { return m_current_pos . y ( ) ; }
const Vec2f & pos ( ) const { return m_current_pos ; }
const Vec2f start_pos_rotated ( ) const { return m_start_pos ; }
const Vec2f pos_rotated ( ) const { return this - > rotate ( m_current_pos ) ; }
float elapsed_time ( ) const { return m_elapsed_time ; }
float get_and_reset_used_filament_length ( ) { float temp = m_used_filament_length ; m_used_filament_length = 0.f ; return temp ; }
// Extrude with an explicitely provided amount of extrusion.
WipeTowerWriter & extrude_explicit ( float x , float y , float e , float f = 0.f , bool record_length = false , bool limit_volumetric_flow = true )
{
if ( x = = m_current_pos . x ( ) & & y = = m_current_pos . y ( ) & & e = = 0.f & & ( f = = 0.f | | f = = m_current_feedrate ) )
// Neither extrusion nor a travel move.
return * this ;
float dx = x - m_current_pos . x ( ) ;
float dy = y - m_current_pos . y ( ) ;
float len = std : : sqrt ( dx * dx + dy * dy ) ;
if ( record_length )
m_used_filament_length + = e ;
// Now do the "internal rotation" with respect to the wipe tower center
Vec2f rotated_current_pos ( this - > pos_rotated ( ) ) ;
Vec2f rot ( this - > rotate ( Vec2f ( x , y ) ) ) ; // this is where we want to go
if ( ! m_preview_suppressed & & e > 0.f & & len > 0.f ) {
# if ENABLE_GCODE_VIEWER_DATA_CHECKING
change_analyzer_mm3_per_mm ( len , e ) ;
# endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
// This is left zero if it is a travel move.
float width = e * m_filpar [ 0 ] . filament_area / ( len * m_layer_height ) ;
// Correct for the roundings of a squished extrusion.
width + = m_layer_height * float ( 1. - M_PI / 4. ) ;
if ( m_extrusions . empty ( ) | | m_extrusions . back ( ) . pos ! = rotated_current_pos )
m_extrusions . emplace_back ( WipeTower : : Extrusion ( rotated_current_pos , 0 , m_current_tool ) ) ;
m_extrusions . emplace_back ( WipeTower : : Extrusion ( rot , width , m_current_tool ) ) ;
}
m_gcode + = " G1 " ;
if ( std : : abs ( rot . x ( ) - rotated_current_pos . x ( ) ) > ( float ) EPSILON )
m_gcode + = set_format_X ( rot . x ( ) ) ;
if ( std : : abs ( rot . y ( ) - rotated_current_pos . y ( ) ) > ( float ) EPSILON )
m_gcode + = set_format_Y ( rot . y ( ) ) ;
if ( e ! = 0.f )
m_gcode + = set_format_E ( e ) ;
if ( f ! = 0.f & & f ! = m_current_feedrate ) {
if ( limit_volumetric_flow ) {
float e_speed = e / ( ( ( len = = 0.f ) ? std : : abs ( e ) : len ) / f * 60.f ) ;
f / = std : : max ( 1.f , e_speed / m_filpar [ m_current_tool ] . max_e_speed ) ;
}
m_gcode + = set_format_F ( f ) ;
}
m_current_pos . x ( ) = x ;
m_current_pos . y ( ) = y ;
// Update the elapsed time with a rough estimate.
m_elapsed_time + = ( ( len = = 0.f ) ? std : : abs ( e ) : len ) / m_current_feedrate * 60.f ;
m_gcode + = " \n " ;
return * this ;
}
WipeTowerWriter & extrude_explicit ( const Vec2f & dest , float e , float f = 0.f , bool record_length = false , bool limit_volumetric_flow = true )
{ return extrude_explicit ( dest . x ( ) , dest . y ( ) , e , f , record_length ) ; }
// Travel to a new XY position. f=0 means use the current value.
WipeTowerWriter & travel ( float x , float y , float f = 0.f )
{ return extrude_explicit ( x , y , 0.f , f ) ; }
WipeTowerWriter & travel ( const Vec2f & dest , float f = 0.f )
{ return extrude_explicit ( dest . x ( ) , dest . y ( ) , 0.f , f ) ; }
// Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow.
WipeTowerWriter & extrude ( float x , float y , float f = 0.f )
{
float dx = x - m_current_pos . x ( ) ;
float dy = y - m_current_pos . y ( ) ;
return extrude_explicit ( x , y , std : : sqrt ( dx * dx + dy * dy ) * m_extrusion_flow , f , true ) ;
}
WipeTowerWriter & extrude ( const Vec2f & dest , const float f = 0.f )
{ return extrude ( dest . x ( ) , dest . y ( ) , f ) ; }
WipeTowerWriter & rectangle ( const Vec2f & ld , float width , float height , const float f = 0.f )
{
Vec2f corners [ 4 ] ;
corners [ 0 ] = ld ;
corners [ 1 ] = ld + Vec2f ( width , 0.f ) ;
corners [ 2 ] = ld + Vec2f ( width , height ) ;
corners [ 3 ] = ld + Vec2f ( 0.f , height ) ;
int index_of_closest = 0 ;
if ( x ( ) - ld . x ( ) > ld . x ( ) + width - x ( ) ) // closer to the right
index_of_closest = 1 ;
if ( y ( ) - ld . y ( ) > ld . y ( ) + height - y ( ) ) // closer to the top
index_of_closest = ( index_of_closest = = 0 ? 3 : 2 ) ;
travel ( corners [ index_of_closest ] . x ( ) , y ( ) ) ; // travel to the closest corner
travel ( x ( ) , corners [ index_of_closest ] . y ( ) ) ;
int i = index_of_closest ;
do {
+ + i ;
if ( i = = 4 ) i = 0 ;
extrude ( corners [ i ] , f ) ;
} while ( i ! = index_of_closest ) ;
return ( * this ) ;
}
WipeTowerWriter & rectangle ( const WipeTower : : box_coordinates & box , const float f = 0.f )
{
rectangle ( Vec2f ( box . ld . x ( ) , box . ld . y ( ) ) ,
box . ru . x ( ) - box . lu . x ( ) ,
box . ru . y ( ) - box . rd . y ( ) , f ) ;
return ( * this ) ;
}
WipeTowerWriter & load ( float e , float f = 0.f )
{
if ( e = = 0.f & & ( f = = 0.f | | f = = m_current_feedrate ) )
return * this ;
m_gcode + = " G1 " ;
if ( e ! = 0.f )
m_gcode + = set_format_E ( e ) ;
if ( f ! = 0.f & & f ! = m_current_feedrate )
m_gcode + = set_format_F ( f ) ;
m_gcode + = " \n " ;
return * this ;
}
WipeTowerWriter & retract ( float e , float f = 0.f )
{ return load ( - e , f ) ; }
// Loads filament while also moving towards given points in x-axis (x feedrate is limited by cutting the distance short if necessary)
WipeTowerWriter & load_move_x_advanced ( float farthest_x , float loading_dist , float loading_speed , float max_x_speed = 50.f )
{
float time = std : : abs ( loading_dist / loading_speed ) ; // time that the move must take
float x_distance = std : : abs ( farthest_x - x ( ) ) ; // max x-distance that we can travel
float x_speed = x_distance / time ; // x-speed to do it in that time
if ( x_speed > max_x_speed ) {
// Necessary x_speed is too high - we must shorten the distance to achieve max_x_speed and still respect the time.
x_distance = max_x_speed * time ;
x_speed = max_x_speed ;
}
float end_point = x ( ) + ( farthest_x > x ( ) ? 1.f : - 1.f ) * x_distance ;
return extrude_explicit ( end_point , y ( ) , loading_dist , x_speed * 60.f , false , false ) ;
}
// Elevate the extruder head above the current print_z position.
WipeTowerWriter & z_hop ( float hop , float f = 0.f )
{
m_gcode + = std : : string ( " G1 " ) + set_format_Z ( m_current_z + hop ) ;
if ( f ! = 0 & & f ! = m_current_feedrate )
m_gcode + = set_format_F ( f ) ;
m_gcode + = " \n " ;
return * this ;
}
// Lower the extruder head back to the current print_z position.
WipeTowerWriter & z_hop_reset ( float f = 0.f )
{ return z_hop ( 0 , f ) ; }
// Move to x1, +y_increment,
// extrude quickly amount e to x2 with feed f.
WipeTowerWriter & ram ( float x1 , float x2 , float dy , float e0 , float e , float f )
{
extrude_explicit ( x1 , m_current_pos . y ( ) + dy , e0 , f , true , false ) ;
extrude_explicit ( x2 , m_current_pos . y ( ) , e , 0.f , true , false ) ;
return * this ;
}
// Let the end of the pulled out filament cool down in the cooling tube
// by moving up and down and moving the print head left / right
// at the current Y position to spread the leaking material.
WipeTowerWriter & cool ( float x1 , float x2 , float e1 , float e2 , float f )
{
extrude_explicit ( x1 , m_current_pos . y ( ) , e1 , f , false , false ) ;
extrude_explicit ( x2 , m_current_pos . y ( ) , e2 , false , false ) ;
return * this ;
}
WipeTowerWriter & set_tool ( size_t tool )
{
m_current_tool = tool ;
return * this ;
}
// Set extruder temperature, don't wait by default.
WipeTowerWriter & set_extruder_temp ( int temperature , bool wait = false )
{
m_gcode + = " M " + std : : to_string ( wait ? 109 : 104 ) + " S " + std : : to_string ( temperature ) + " \n " ;
return * this ;
}
// Wait for a period of time (seconds).
WipeTowerWriter & wait ( float time )
{
if ( time = = 0.f )
return * this ;
m_gcode + = " G4 S " + Slic3r : : float_to_string_decimal_point ( time , 3 ) + " \n " ;
return * this ;
}
// Set speed factor override percentage.
WipeTowerWriter & speed_override ( int speed )
{
m_gcode + = " M220 S " + std : : to_string ( speed ) + " \n " ;
return * this ;
}
// Let the firmware back up the active speed override value.
WipeTowerWriter & speed_override_backup ( )
{
// BBS: BBL machine don't support speed backup
#if 0
if ( m_gcode_flavor = = gcfMarlinLegacy | | m_gcode_flavor = = gcfMarlinFirmware )
m_gcode + = " M220 B \n " ;
# endif
return * this ;
}
// Let the firmware restore the active speed override value.
WipeTowerWriter & speed_override_restore ( )
{
// BBS: BBL machine don't support speed restore
#if 0
if ( m_gcode_flavor = = gcfMarlinLegacy | | m_gcode_flavor = = gcfMarlinFirmware )
m_gcode + = " M220 R \n " ;
# endif
return * this ;
}
// Set digital trimpot motor
WipeTowerWriter & set_extruder_trimpot ( int current )
{
// BBS: don't control trimpot
#if 0
if ( m_gcode_flavor = = gcfRepRapSprinter | | m_gcode_flavor = = gcfRepRapFirmware )
m_gcode + = " M906 E " ;
else
m_gcode + = " M907 E " ;
m_gcode + = std : : to_string ( current ) + " \n " ;
# endif
return * this ;
}
WipeTowerWriter & flush_planner_queue ( )
{
m_gcode + = " G4 S0 \n " ;
return * this ;
}
// Reset internal extruder counter.
WipeTowerWriter & reset_extruder ( )
{
m_gcode + = " G92 E0 \n " ;
return * this ;
}
WipeTowerWriter & comment_with_value ( const char * comment , int value )
{
m_gcode + = std : : string ( " ; " ) + comment + std : : to_string ( value ) + " \n " ;
return * this ;
}
WipeTowerWriter & set_fan ( unsigned speed )
{
if ( speed = = m_last_fan_speed )
return * this ;
if ( speed = = 0 )
m_gcode + = " M107 \n " ;
else
m_gcode + = " M106 S " + std : : to_string ( unsigned ( 255.0 * speed / 100.0 ) ) + " \n " ;
m_last_fan_speed = speed ;
return * this ;
}
WipeTowerWriter & append ( const std : : string & text ) { m_gcode + = text ; return * this ; }
const std : : vector < Vec2f > & wipe_path ( ) const
{
return m_wipe_path ;
}
WipeTowerWriter & add_wipe_point ( const Vec2f & pt )
{
m_wipe_path . push_back ( rotate ( pt ) ) ;
return * this ;
}
WipeTowerWriter & add_wipe_point ( float x , float y )
{
return add_wipe_point ( Vec2f ( x , y ) ) ;
}
private :
Vec2f m_start_pos ;
Vec2f m_current_pos ;
std : : vector < Vec2f > m_wipe_path ;
float m_current_z ;
float m_current_feedrate ;
size_t m_current_tool ;
float m_layer_height ;
float m_extrusion_flow ;
bool m_preview_suppressed ;
std : : string m_gcode ;
std : : vector < WipeTower : : Extrusion > m_extrusions ;
float m_elapsed_time ;
float m_internal_angle = 0.f ;
float m_y_shift = 0.f ;
float m_wipe_tower_width = 0.f ;
float m_wipe_tower_depth = 0.f ;
unsigned m_last_fan_speed = 0 ;
int current_temp = - 1 ;
# if ENABLE_GCODE_VIEWER_DATA_CHECKING
const float m_default_analyzer_line_width ;
# endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
float m_used_filament_length = 0.f ;
GCodeFlavor m_gcode_flavor ;
const std : : vector < WipeTower : : FilamentParameters > & m_filpar ;
std : : string set_format_X ( float x )
{
m_current_pos . x ( ) = x ;
return " X " + Slic3r : : float_to_string_decimal_point ( x , 3 ) ;
}
std : : string set_format_Y ( float y ) {
m_current_pos . y ( ) = y ;
return " Y " + Slic3r : : float_to_string_decimal_point ( y , 3 ) ;
}
std : : string set_format_Z ( float z ) {
return " Z " + Slic3r : : float_to_string_decimal_point ( z , 3 ) ;
}
std : : string set_format_E ( float e ) {
return " E " + Slic3r : : float_to_string_decimal_point ( e , 4 ) ;
}
std : : string set_format_F ( float f ) {
char buf [ 64 ] ;
sprintf ( buf , " F%d " , int ( floor ( f + 0.5f ) ) ) ;
m_current_feedrate = f ;
return buf ;
}
WipeTowerWriter & operator = ( const WipeTowerWriter & rhs ) ;
// Rotate the point around center of the wipe tower about given angle (in degrees)
Vec2f rotate ( Vec2f pt ) const
{
pt . x ( ) - = m_wipe_tower_width / 2.f ;
pt . y ( ) + = m_y_shift - m_wipe_tower_depth / 2.f ;
double angle = m_internal_angle * float ( M_PI / 180. ) ;
double c = cos ( angle ) ;
double s = sin ( angle ) ;
return Vec2f ( float ( pt . x ( ) * c - pt . y ( ) * s ) + m_wipe_tower_width / 2.f , float ( pt . x ( ) * s + pt . y ( ) * c ) + m_wipe_tower_depth / 2.f ) ;
}
} ; // class WipeTowerWriter
WipeTower : : ToolChangeResult WipeTower : : construct_tcr ( WipeTowerWriter & writer ,
bool priming ,
size_t old_tool ,
bool is_finish ,
float purge_volume ) const
{
ToolChangeResult result ;
result . priming = priming ;
result . initial_tool = int ( old_tool ) ;
result . new_tool = int ( m_current_tool ) ;
result . print_z = m_z_pos ;
result . layer_height = m_layer_height ;
result . elapsed_time = writer . elapsed_time ( ) ;
result . start_pos = writer . start_pos_rotated ( ) ;
result . end_pos = priming ? writer . pos ( ) : writer . pos_rotated ( ) ;
result . gcode = std : : move ( writer . gcode ( ) ) ;
result . extrusions = std : : move ( writer . extrusions ( ) ) ;
result . wipe_path = std : : move ( writer . wipe_path ( ) ) ;
result . is_finish_first = is_finish ;
// BBS
result . purge_volume = purge_volume ;
return result ;
}
// BBS
const std : : map < float , float > WipeTower : : min_depth_per_height = {
{ 100.f , 20.f } , { 250.f , 40.f }
} ;
WipeTower : : WipeTower ( const PrintConfig & config , int plate_idx , Vec3d plate_origin , const float prime_volume , size_t initial_tool , const float wipe_tower_height ) :
m_semm ( config . single_extruder_multi_material . value ) ,
m_wipe_tower_pos ( config . wipe_tower_x . get_at ( plate_idx ) , config . wipe_tower_y . get_at ( plate_idx ) ) ,
m_wipe_tower_width ( float ( config . prime_tower_width ) ) ,
// BBS
m_wipe_tower_height ( wipe_tower_height ) ,
m_wipe_tower_rotation_angle ( float ( config . wipe_tower_rotation_angle ) ) ,
m_wipe_tower_brim_width ( float ( config . prime_tower_brim_width ) ) ,
m_y_shift ( 0.f ) ,
m_z_pos ( 0.f ) ,
//m_bridging(float(config.wipe_tower_bridging)),
m_bridging ( 10.f ) ,
m_no_sparse_layers ( config . wipe_tower_no_sparse_layers ) ,
m_gcode_flavor ( config . gcode_flavor ) ,
m_travel_speed ( config . travel_speed ) ,
m_current_tool ( initial_tool ) ,
//wipe_volumes(flush_matrix)
2022-08-15 06:41:28 +00:00
m_wipe_volume ( prime_volume ) ,
2022-09-07 06:15:14 +00:00
m_enable_timelapse_print ( config . timelapse_type . value = = TimelapseType : : tlSmooth )
2022-07-15 15:37:19 +00:00
{
// Read absolute value of first layer speed, if given as percentage,
// it is taken over following default. Speeds from config are not
// easily accessible here.
const float default_speed = 60.f ;
m_first_layer_speed = config . get_abs_value ( " initial_layer_speed " ) ;
if ( m_first_layer_speed = = 0.f ) // just to make sure autospeed doesn't break it.
m_first_layer_speed = default_speed / 2.f ;
// If this is a single extruder MM printer, we will use all the SE-specific config values.
// Otherwise, the defaults will be used to turn off the SE stuff.
// BBS: remove useless config
#if 0
if ( m_semm ) {
m_cooling_tube_retraction = float ( config . cooling_tube_retraction ) ;
m_cooling_tube_length = float ( config . cooling_tube_length ) ;
m_parking_pos_retraction = float ( config . parking_pos_retraction ) ;
m_extra_loading_move = float ( config . extra_loading_move ) ;
m_set_extruder_trimpot = config . high_current_on_filament_swap ;
}
# endif
// Calculate where the priming lines should be - very naive test not detecting parallelograms etc.
const std : : vector < Vec2d > & bed_points = config . printable_area . values ;
BoundingBoxf bb ( bed_points ) ;
m_bed_width = float ( bb . size ( ) . x ( ) ) ;
m_bed_shape = ( bed_points . size ( ) = = 4 ? RectangularBed : CircularBed ) ;
if ( m_bed_shape = = CircularBed ) {
// this may still be a custom bed, check that the points are roughly on a circle
double r2 = std : : pow ( m_bed_width / 2. , 2. ) ;
double lim2 = std : : pow ( m_bed_width / 10. , 2. ) ;
Vec2d center = bb . center ( ) ;
for ( const Vec2d & pt : bed_points )
if ( std : : abs ( std : : pow ( pt . x ( ) - center . x ( ) , 2. ) + std : : pow ( pt . y ( ) - center . y ( ) , 2. ) - r2 ) > lim2 ) {
m_bed_shape = CustomBed ;
break ;
}
}
m_bed_bottom_left = m_bed_shape = = RectangularBed
? Vec2f ( bed_points . front ( ) . x ( ) , bed_points . front ( ) . y ( ) )
: Vec2f : : Zero ( ) ;
}
void WipeTower : : set_extruder ( size_t idx , const PrintConfig & config )
{
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
m_filpar . push_back ( FilamentParameters ( ) ) ;
m_filpar [ idx ] . material = config . filament_type . get_at ( idx ) ;
m_filpar [ idx ] . is_soluble = config . filament_soluble . get_at ( idx ) ;
// BBS
m_filpar [ idx ] . is_support = config . filament_is_support . get_at ( idx ) ;
m_filpar [ idx ] . nozzle_temperature = config . nozzle_temperature . get_at ( idx ) ;
m_filpar [ idx ] . nozzle_temperature_initial_layer = config . nozzle_temperature_initial_layer . get_at ( idx ) ;
// If this is a single extruder MM printer, we will use all the SE-specific config values.
// Otherwise, the defaults will be used to turn off the SE stuff.
// BBS: remove useless config
#if 0
if ( m_semm ) {
m_filpar [ idx ] . loading_speed = float ( config . filament_loading_speed . get_at ( idx ) ) ;
m_filpar [ idx ] . loading_speed_start = float ( config . filament_loading_speed_start . get_at ( idx ) ) ;
m_filpar [ idx ] . unloading_speed = float ( config . filament_unloading_speed . get_at ( idx ) ) ;
m_filpar [ idx ] . unloading_speed_start = float ( config . filament_unloading_speed_start . get_at ( idx ) ) ;
m_filpar [ idx ] . delay = float ( config . filament_toolchange_delay . get_at ( idx ) ) ;
m_filpar [ idx ] . cooling_moves = config . filament_cooling_moves . get_at ( idx ) ;
m_filpar [ idx ] . cooling_initial_speed = float ( config . filament_cooling_initial_speed . get_at ( idx ) ) ;
m_filpar [ idx ] . cooling_final_speed = float ( config . filament_cooling_final_speed . get_at ( idx ) ) ;
}
# endif
m_filpar [ idx ] . filament_area = float ( ( M_PI / 4.f ) * pow ( config . filament_diameter . get_at ( idx ) , 2 ) ) ; // all extruders are assumed to have the same filament diameter at this point
float nozzle_diameter = float ( config . nozzle_diameter . get_at ( idx ) ) ;
m_filpar [ idx ] . nozzle_diameter = nozzle_diameter ; // to be used in future with (non-single) multiextruder MM
float max_vol_speed = float ( config . filament_max_volumetric_speed . get_at ( idx ) ) ;
if ( max_vol_speed ! = 0.f )
m_filpar [ idx ] . max_e_speed = ( max_vol_speed / filament_area ( ) ) ;
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio ; // all extruders are now assumed to have the same diameter
// BBS: remove useless config
#if 0
if ( m_semm ) {
std : : istringstream stream { config . filament_ramming_parameters . get_at ( idx ) } ;
float speed = 0.f ;
stream > > m_filpar [ idx ] . ramming_line_width_multiplicator > > m_filpar [ idx ] . ramming_step_multiplicator ;
m_filpar [ idx ] . ramming_line_width_multiplicator / = 100 ;
m_filpar [ idx ] . ramming_step_multiplicator / = 100 ;
while ( stream > > speed )
m_filpar [ idx ] . ramming_speed . push_back ( speed ) ;
}
# endif
m_used_filament_length . resize ( std : : max ( m_used_filament_length . size ( ) , idx + 1 ) ) ; // makes sure that the vector is big enough so we don't have to check later
}
// Returns gcode to prime the nozzles at the front edge of the print bed.
std : : vector < WipeTower : : ToolChangeResult > WipeTower : : prime (
// print_z of the first layer.
float initial_layer_print_height ,
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
const std : : vector < unsigned int > & tools ,
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
bool /*last_wipe_inside_wipe_tower*/ )
{
return std : : vector < ToolChangeResult > ( ) ;
}
WipeTower : : ToolChangeResult WipeTower : : tool_change ( size_t tool , bool extrude_perimeter )
{
size_t old_tool = m_current_tool ;
float wipe_depth = 0.f ;
float wipe_length = 0.f ;
float purge_volume = 0.f ;
// Finds this toolchange info
if ( tool ! = ( unsigned int ) ( - 1 ) )
{
for ( const auto & b : m_layer_info - > tool_changes )
if ( b . new_tool = = tool ) {
wipe_length = b . wipe_length ;
wipe_depth = b . required_depth ;
purge_volume = b . purge_volume ;
break ;
}
}
else {
// Otherwise we are going to Unload only. And m_layer_info would be invalid.
}
box_coordinates cleaning_box (
Vec2f ( m_perimeter_width , m_perimeter_width ) ,
m_wipe_tower_width - 2 * m_perimeter_width ,
( tool ! = ( unsigned int ) ( - 1 ) ? wipe_depth + m_depth_traversed - m_perimeter_width
: m_wipe_tower_depth - m_perimeter_width ) ) ;
WipeTowerWriter writer ( m_layer_height , m_perimeter_width , m_gcode_flavor , m_filpar ) ;
writer . set_extrusion_flow ( m_extrusion_flow )
. set_z ( m_z_pos )
. set_initial_tool ( m_current_tool )
. set_y_shift ( m_y_shift + ( tool ! = ( unsigned int ) ( - 1 ) & & ( m_current_shape = = SHAPE_REVERSED ) ? m_layer_info - > depth - m_layer_info - > toolchanges_depth ( ) : 0.f ) )
. append ( " ;-------------------- \n "
" ; CP TOOLCHANGE START \n " )
. comment_with_value ( " toolchange # " , m_num_tool_changes + 1 ) ; // the number is zero-based
if ( tool ! = ( unsigned ) ( - 1 ) )
writer . append ( std : : string ( " ; material : " + ( m_current_tool < m_filpar . size ( ) ? m_filpar [ m_current_tool ] . material : " (NONE) " ) + " -> " + m_filpar [ tool ] . material + " \n " ) . c_str ( ) )
. append ( " ;-------------------- \n " ) ;
writer . speed_override_backup ( ) ;
writer . speed_override ( 100 ) ;
Vec2f initial_position = cleaning_box . ld + Vec2f ( 0.f , m_depth_traversed ) ;
writer . set_initial_position ( initial_position , m_wipe_tower_width , m_wipe_tower_depth , m_internal_rotation ) ;
// Increase the extruder driver current to allow fast ramming.
//BBS
//if (m_set_extruder_trimpot)
// writer.set_extruder_trimpot(750);
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
if ( tool ! = ( unsigned int ) - 1 ) { // This is not the last change.
toolchange_Unload ( writer , cleaning_box , m_filpar [ m_current_tool ] . material ,
is_first_layer ( ) ? m_filpar [ tool ] . nozzle_temperature_initial_layer : m_filpar [ tool ] . nozzle_temperature ) ;
toolchange_Change ( writer , tool , m_filpar [ tool ] . material ) ; // Change the tool, set a speed override for soluble and flex materials.
toolchange_Load ( writer , cleaning_box ) ;
// BBS
//writer.travel(writer.x(), writer.y()-m_perimeter_width); // cooling and loading were done a bit down the road
if ( extrude_perimeter ) {
box_coordinates wt_box ( Vec2f ( 0.f , ( m_current_shape = = SHAPE_REVERSED ) ? m_layer_info - > toolchanges_depth ( ) - m_layer_info - > depth : 0.f ) ,
m_wipe_tower_width , m_layer_info - > depth + m_perimeter_width ) ;
// align the perimeter
wt_box = align_perimeter ( wt_box ) ;
writer . rectangle ( wt_box ) ;
writer . travel ( initial_position ) ;
}
toolchange_Wipe ( writer , cleaning_box , wipe_length ) ; // Wipe the newly loaded filament until the end of the assigned wipe area.
+ + m_num_tool_changes ;
} else
toolchange_Unload ( writer , cleaning_box , m_filpar [ m_current_tool ] . material , m_filpar [ m_current_tool ] . nozzle_temperature ) ;
m_depth_traversed + = wipe_depth ;
//BBS
//if (m_set_extruder_trimpot)
// writer.set_extruder_trimpot(550); // Reset the extruder current to a normal value.
writer . speed_override_restore ( ) ;
writer . feedrate ( m_travel_speed * 60.f )
. flush_planner_queue ( )
. reset_extruder ( )
. append ( " ; CP TOOLCHANGE END \n "
" ;------------------ \n "
" \n \n " ) ;
// Ask our writer about how much material was consumed:
if ( m_current_tool < m_used_filament_length . size ( ) )
m_used_filament_length [ m_current_tool ] + = writer . get_and_reset_used_filament_length ( ) ;
return construct_tcr ( writer , false , old_tool , false , purge_volume ) ;
}
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
void WipeTower : : toolchange_Unload (
WipeTowerWriter & writer ,
const box_coordinates & cleaning_box ,
const std : : string & current_material ,
const int new_temperature )
{
// BBS: toolchange unload is done in change_filament_gcode
#if 0
float xl = cleaning_box . ld . x ( ) + 1.f * m_perimeter_width ;
float xr = cleaning_box . rd . x ( ) - 1.f * m_perimeter_width ;
const float line_width = m_perimeter_width * m_filpar [ m_current_tool ] . ramming_line_width_multiplicator ; // desired ramming line thickness
const float y_step = line_width * m_filpar [ m_current_tool ] . ramming_step_multiplicator * m_extra_spacing ; // spacing between lines in mm
writer . append ( " ; CP TOOLCHANGE UNLOAD \n " )
. change_analyzer_line_width ( line_width ) ;
unsigned i = 0 ; // iterates through ramming_speed
m_left_to_right = true ; // current direction of ramming
float remaining = xr - xl ; // keeps track of distance to the next turnaround
float e_done = 0 ; // measures E move done from each segment
writer . travel ( xl , cleaning_box . ld . y ( ) + m_depth_traversed + y_step / 2.f ) ; // move to starting position
// if the ending point of the ram would end up in mid air, align it with the end of the wipe tower:
if ( m_layer_info > m_plan . begin ( ) & & m_layer_info < m_plan . end ( ) & & ( m_layer_info - 1 ! = m_plan . begin ( ) | | ! m_adhesion ) ) {
// this is y of the center of previous sparse infill border
float sparse_beginning_y = 0.f ;
if ( m_current_shape = = SHAPE_REVERSED )
sparse_beginning_y + = ( ( m_layer_info - 1 ) - > depth - ( m_layer_info - 1 ) - > toolchanges_depth ( ) )
- ( ( m_layer_info ) - > depth - ( m_layer_info ) - > toolchanges_depth ( ) ) ;
else
sparse_beginning_y + = ( m_layer_info - 1 ) - > toolchanges_depth ( ) + m_perimeter_width ;
float sum_of_depths = 0.f ;
for ( const auto & tch : m_layer_info - > tool_changes ) { // let's find this toolchange
if ( tch . old_tool = = m_current_tool ) {
sum_of_depths + = tch . ramming_depth ;
float ramming_end_y = sum_of_depths ;
ramming_end_y - = ( y_step / m_extra_spacing - m_perimeter_width ) / 2.f ; // center of final ramming line
if ( ( m_current_shape = = SHAPE_REVERSED & & ramming_end_y < sparse_beginning_y - 0.5f * m_perimeter_width ) | |
( m_current_shape = = SHAPE_NORMAL & & ramming_end_y > sparse_beginning_y + 0.5f * m_perimeter_width ) )
{
writer . extrude ( xl + tch . first_wipe_line - 1.f * m_perimeter_width , writer . y ( ) ) ;
remaining - = tch . first_wipe_line - 1.f * m_perimeter_width ;
}
break ;
}
sum_of_depths + = tch . required_depth ;
}
}
writer . disable_linear_advance ( ) ;
// now the ramming itself:
while ( i < m_filpar [ m_current_tool ] . ramming_speed . size ( ) )
{
const float x = volume_to_length ( m_filpar [ m_current_tool ] . ramming_speed [ i ] * 0.25f , line_width , m_layer_height ) ;
const float e = m_filpar [ m_current_tool ] . ramming_speed [ i ] * 0.25f / filament_area ( ) ; // transform volume per sec to E move;
const float dist = std : : min ( x - e_done , remaining ) ; // distance to travel for either the next 0.25s, or to the next turnaround
const float actual_time = dist / x * 0.25f ;
writer . ram ( writer . x ( ) , writer . x ( ) + ( m_left_to_right ? 1.f : - 1.f ) * dist , 0.f , 0.f , e * ( dist / x ) , dist / ( actual_time / 60.f ) ) ;
remaining - = dist ;
if ( remaining < WT_EPSILON ) { // we reached a turning point
writer . travel ( writer . x ( ) , writer . y ( ) + y_step , 7200 ) ;
m_left_to_right = ! m_left_to_right ;
remaining = xr - xl ;
}
e_done + = dist ; // subtract what was actually done
if ( e_done > x - WT_EPSILON ) { // current segment finished
+ + i ;
e_done = 0 ;
}
}
Vec2f end_of_ramming ( writer . x ( ) , writer . y ( ) ) ;
writer . change_analyzer_line_width ( m_perimeter_width ) ; // so the next lines are not affected by ramming_line_width_multiplier
// Retraction:
float old_x = writer . x ( ) ;
float turning_point = ( ! m_left_to_right ? xl : xr ) ;
if ( m_semm & & ( m_cooling_tube_retraction ! = 0 | | m_cooling_tube_length ! = 0 ) ) {
float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length / 2.f - 15.f ; // the 15mm is reserved for the first part after ramming
writer . suppress_preview ( )
. retract ( 15.f , m_filpar [ m_current_tool ] . unloading_speed_start * 60.f ) // feedrate 5000mm/min = 83mm/s
. retract ( 0.70f * total_retraction_distance , 1.0f * m_filpar [ m_current_tool ] . unloading_speed * 60.f )
. retract ( 0.20f * total_retraction_distance , 0.5f * m_filpar [ m_current_tool ] . unloading_speed * 60.f )
. retract ( 0.10f * total_retraction_distance , 0.3f * m_filpar [ m_current_tool ] . unloading_speed * 60.f )
. resume_preview ( ) ;
}
// Wipe tower should only change temperature with single extruder MM. Otherwise, all temperatures should
// be already set and there is no need to change anything. Also, the temperature could be changed
// for wrong extruder.
if ( m_semm ) {
if ( new_temperature ! = 0 & & ( new_temperature ! = m_old_temperature | | is_first_layer ( ) ) ) { // Set the extruder temperature, but don't wait.
// If the required temperature is the same as last time, don't emit the M104 again (if user adjusted the value, it would be reset)
// However, always change temperatures on the first layer (this is to avoid issues with priming lines turned off).
writer . set_extruder_temp ( new_temperature , false ) ;
m_old_temperature = new_temperature ;
}
}
// Cooling:
const int & number_of_moves = m_filpar [ m_current_tool ] . cooling_moves ;
if ( number_of_moves > 0 ) {
const float & initial_speed = m_filpar [ m_current_tool ] . cooling_initial_speed ;
const float & final_speed = m_filpar [ m_current_tool ] . cooling_final_speed ;
float speed_inc = ( final_speed - initial_speed ) / ( 2.f * number_of_moves - 1.f ) ;
writer . suppress_preview ( )
. travel ( writer . x ( ) , writer . y ( ) + y_step ) ;
old_x = writer . x ( ) ;
turning_point = xr - old_x > old_x - xl ? xr : xl ;
for ( int i = 0 ; i < number_of_moves ; + + i ) {
float speed = initial_speed + speed_inc * 2 * i ;
writer . load_move_x_advanced ( turning_point , m_cooling_tube_length , speed ) ;
speed + = speed_inc ;
writer . load_move_x_advanced ( old_x , - m_cooling_tube_length , speed ) ;
}
}
// let's wait is necessary:
writer . wait ( m_filpar [ m_current_tool ] . delay ) ;
// we should be at the beginning of the cooling tube again - let's move to parking position:
writer . retract ( - m_cooling_tube_length / 2.f + m_parking_pos_retraction - m_cooling_tube_retraction , 2000 ) ;
// this is to align ramming and future wiping extrusions, so the future y-steps can be uniform from the start:
// the perimeter_width will later be subtracted, it is there to not load while moving over just extruded material
writer . travel ( end_of_ramming . x ( ) , end_of_ramming . y ( ) + ( y_step / m_extra_spacing - m_perimeter_width ) / 2.f + m_perimeter_width , 2400.f ) ;
writer . resume_preview ( )
. flush_planner_queue ( ) ;
# endif
}
// Change the tool, set a speed override for soluble and flex materials.
void WipeTower : : toolchange_Change (
WipeTowerWriter & writer ,
const size_t new_tool ,
const std : : string & new_material )
{
// Ask the writer about how much of the old filament we consumed:
if ( m_current_tool < m_used_filament_length . size ( ) )
m_used_filament_length [ m_current_tool ] + = writer . get_and_reset_used_filament_length ( ) ;
// This is where we want to place the custom gcodes. We will use placeholders for this.
// These will be substituted by the actual gcodes when the gcode is generated.
writer . append ( " [filament_end_gcode] \n " ) ;
writer . append ( " [change_filament_gcode] \n " ) ;
// BBS: do travel in GCode::append_tcr() for lazy_lift
#if 0
// Travel to where we assume we are. Custom toolchange or some special T code handling (parking extruder etc)
// gcode could have left the extruder somewhere, we cannot just start extruding. We should also inform the
// postprocessor that we absolutely want to have this in the gcode, even if it thought it is the same as before.
Vec2f current_pos = writer . pos_rotated ( ) ;
writer . feedrate ( m_travel_speed * 60.f )
. append ( std : : string ( " G1 X " ) + Slic3r : : float_to_string_decimal_point ( current_pos . x ( ) )
+ " Y " + Slic3r : : float_to_string_decimal_point ( current_pos . y ( ) )
+ never_skip_tag ( ) + " \n " ) ;
# endif
// The toolchange Tn command will be inserted later, only in case that the user does
// not provide a custom toolchange gcode.
writer . set_tool ( new_tool ) ; // This outputs nothing, the writer just needs to know the tool has changed.
writer . append ( " [filament_start_gcode] \n " ) ;
writer . flush_planner_queue ( ) ;
m_current_tool = new_tool ;
}
void WipeTower : : toolchange_Load (
WipeTowerWriter & writer ,
const box_coordinates & cleaning_box )
{
// BBS: tool load is done in change_filament_gcode
#if 0
if ( m_semm & & ( m_parking_pos_retraction ! = 0 | | m_extra_loading_move ! = 0 ) ) {
float xl = cleaning_box . ld . x ( ) + m_perimeter_width * 0.75f ;
float xr = cleaning_box . rd . x ( ) - m_perimeter_width * 0.75f ;
float oldx = writer . x ( ) ; // the nozzle is in place to do the first wiping moves, we will remember the position
// Load the filament while moving left / right, so the excess material will not create a blob at a single position.
float turning_point = ( oldx - xl < xr - oldx ? xr : xl ) ;
float edist = m_parking_pos_retraction + m_extra_loading_move ;
writer . append ( " ; CP TOOLCHANGE LOAD \n " )
. suppress_preview ( )
. load ( 0.2f * edist , 60.f * m_filpar [ m_current_tool ] . loading_speed_start )
. load_move_x_advanced ( turning_point , 0.7f * edist , m_filpar [ m_current_tool ] . loading_speed ) // Fast phase
. load_move_x_advanced ( oldx , 0.1f * edist , 0.1f * m_filpar [ m_current_tool ] . loading_speed ) // Super slow*/
. travel ( oldx , writer . y ( ) ) // in case last move was shortened to limit x feedrate
. resume_preview ( ) ;
// Reset the extruder current to the normal value.
if ( m_set_extruder_trimpot )
writer . set_extruder_trimpot ( 550 ) ;
}
# endif
}
// Wipe the newly loaded filament until the end of the assigned wipe area.
void WipeTower : : toolchange_Wipe (
WipeTowerWriter & writer ,
const box_coordinates & cleaning_box ,
float wipe_length )
{
// Increase flow on first layer, slow down print.
writer . set_extrusion_flow ( m_extrusion_flow * ( is_first_layer ( ) ? 1.15f : 1.f ) )
. append ( " ; CP TOOLCHANGE WIPE \n " ) ;
const float & xl = cleaning_box . ld . x ( ) ;
const float & xr = cleaning_box . rd . x ( ) ;
// Variables x_to_wipe and traversed_x are here to be able to make sure it always wipes at least
// the ordered volume, even if it means violating the box. This can later be removed and simply
// wipe until the end of the assigned area.
float x_to_wipe = wipe_length ;
float dy = m_layer_info - > extra_spacing * m_perimeter_width ;
const float target_speed = is_first_layer ( ) ? std : : min ( m_first_layer_speed * 60.f , 4800.f ) : 4800.f ;
float wipe_speed = 0.33f * target_speed ;
float start_y = writer . y ( ) ;
#if 0
// if there is less than 2.5*m_perimeter_width to the edge, advance straightaway (there is likely a blob anyway)
if ( ( m_left_to_right ? xr - writer . x ( ) : writer . x ( ) - xl ) < 2.5f * m_perimeter_width ) {
writer . travel ( ( m_left_to_right ? xr - m_perimeter_width : xl + m_perimeter_width ) , writer . y ( ) + dy ) ;
m_left_to_right = ! m_left_to_right ;
}
# endif
m_left_to_right = true ;
// BBS: do not need to move dy
#if 0
if ( m_depth_traversed ! = 0 )
writer . travel ( xl , writer . y ( ) + dy ) ;
# endif
// now the wiping itself:
for ( int i = 0 ; true ; + + i ) {
if ( i ! = 0 ) {
if ( wipe_speed < 0.34f * target_speed ) wipe_speed = 0.375f * target_speed ;
else if ( wipe_speed < 0.377 * target_speed ) wipe_speed = 0.458f * target_speed ;
else if ( wipe_speed < 0.46f * target_speed ) wipe_speed = 0.875f * target_speed ;
else wipe_speed = std : : min ( target_speed , wipe_speed + 50.f ) ;
}
if ( m_left_to_right )
writer . extrude ( xr + 0.25f * m_perimeter_width , writer . y ( ) , wipe_speed ) ;
else
writer . extrude ( xl - 0.25f * m_perimeter_width , writer . y ( ) , wipe_speed ) ;
if ( writer . y ( ) - float ( EPSILON ) > cleaning_box . lu . y ( ) )
break ; // in case next line would not fit
x_to_wipe - = ( xr - xl ) ;
if ( x_to_wipe < WT_EPSILON ) {
writer . travel ( m_left_to_right ? xl + 1.5f * m_perimeter_width : xr - 1.5f * m_perimeter_width , writer . y ( ) , 7200 ) ;
break ;
}
// stepping to the next line:
writer . extrude ( writer . x ( ) , writer . y ( ) + dy ) ;
m_left_to_right = ! m_left_to_right ;
}
float end_y = writer . y ( ) ;
// We may be going back to the model - wipe the nozzle. If this is followed
// by finish_layer, this wipe path will be overwritten.
writer . add_wipe_point ( writer . x ( ) , writer . y ( ) )
. add_wipe_point ( writer . x ( ) , writer . y ( ) - dy )
. add_wipe_point ( ! m_left_to_right ? m_wipe_tower_width : 0.f , writer . y ( ) - dy ) ;
if ( m_layer_info ! = m_plan . end ( ) & & m_current_tool ! = m_layer_info - > tool_changes . back ( ) . new_tool )
m_left_to_right = ! m_left_to_right ;
writer . set_extrusion_flow ( m_extrusion_flow ) ; // Reset the extrusion flow.
}
// BBS
WipeTower : : box_coordinates WipeTower : : align_perimeter ( const WipeTower : : box_coordinates & perimeter_box )
{
box_coordinates aligned_box = perimeter_box ;
float spacing = m_extra_spacing * m_perimeter_width ;
float up = perimeter_box . lu ( 1 ) - m_perimeter_width ;
up = align_ceil ( up , spacing ) ;
up + = m_perimeter_width ;
up = std : : min ( up , m_wipe_tower_depth ) ;
float down = perimeter_box . ld ( 1 ) - m_perimeter_width ;
down = align_floor ( down , spacing ) ;
down + = m_perimeter_width ;
down = std : : max ( down , - m_y_shift ) ;
aligned_box . lu ( 1 ) = aligned_box . ru ( 1 ) = up ;
aligned_box . ld ( 1 ) = aligned_box . rd ( 1 ) = down ;
return aligned_box ;
}
WipeTower : : ToolChangeResult WipeTower : : finish_layer ( bool extrude_perimeter )
{
assert ( ! this - > layer_finished ( ) ) ;
m_current_layer_finished = true ;
size_t old_tool = m_current_tool ;
WipeTowerWriter writer ( m_layer_height , m_perimeter_width , m_gcode_flavor , m_filpar ) ;
writer . set_extrusion_flow ( m_extrusion_flow )
. set_z ( m_z_pos )
. set_initial_tool ( m_current_tool )
. set_y_shift ( m_y_shift - ( m_current_shape = = SHAPE_REVERSED ? m_layer_info - > toolchanges_depth ( ) : 0.f ) ) ;
// Slow down on the 1st layer.
bool first_layer = is_first_layer ( ) ;
// BBS: speed up perimeter speed to 90mm/s for non-first layer
float feedrate = first_layer ? std : : min ( m_first_layer_speed * 60.f , 5400.f ) : 5400.f ;
float fill_box_y = m_layer_info - > toolchanges_depth ( ) + m_perimeter_width ;
box_coordinates fill_box ( Vec2f ( m_perimeter_width , fill_box_y ) ,
m_wipe_tower_width - 2 * m_perimeter_width , m_layer_info - > depth - fill_box_y ) ;
writer . set_initial_position ( ( m_left_to_right ? fill_box . ru : fill_box . lu ) , // so there is never a diagonal travel
m_wipe_tower_width , m_wipe_tower_depth , m_internal_rotation ) ;
bool toolchanges_on_layer = m_layer_info - > toolchanges_depth ( ) > WT_EPSILON ;
// inner perimeter of the sparse section, if there is space for it:
if ( fill_box . ru . y ( ) - fill_box . rd . y ( ) > m_perimeter_width - WT_EPSILON )
writer . rectangle ( fill_box . ld , fill_box . rd . x ( ) - fill_box . ld . x ( ) , fill_box . ru . y ( ) - fill_box . rd . y ( ) , feedrate ) ;
// we are in one of the corners, travel to ld along the perimeter:
if ( writer . x ( ) > fill_box . ld . x ( ) + EPSILON ) writer . travel ( fill_box . ld . x ( ) , writer . y ( ) ) ;
if ( writer . y ( ) > fill_box . ld . y ( ) + EPSILON ) writer . travel ( writer . x ( ) , fill_box . ld . y ( ) ) ;
// Extrude infill to support the material to be printed above.
const float dy = ( fill_box . lu . y ( ) - fill_box . ld . y ( ) - m_perimeter_width ) ;
float left = fill_box . lu . x ( ) + 2 * m_perimeter_width ;
float right = fill_box . ru . x ( ) - 2 * m_perimeter_width ;
if ( dy > m_perimeter_width )
{
writer . travel ( fill_box . ld + Vec2f ( m_perimeter_width * 2 , 0.f ) )
. append ( " ;-------------------- \n "
" ; CP EMPTY GRID START \n " )
. comment_with_value ( " layer # " , m_num_layer_changes + 1 ) ;
// Is there a soluble filament wiped/rammed at the next layer?
// If so, the infill should not be sparse.
bool solid_infill = m_layer_info + 1 = = m_plan . end ( )
? false
: std : : any_of ( ( m_layer_info + 1 ) - > tool_changes . begin ( ) ,
( m_layer_info + 1 ) - > tool_changes . end ( ) ,
[ this ] ( const WipeTowerInfo : : ToolChange & tch ) {
return m_filpar [ tch . new_tool ] . is_soluble
| | m_filpar [ tch . old_tool ] . is_soluble ;
} ) ;
solid_infill | = first_layer & & m_adhesion ;
if ( solid_infill ) {
float sparse_factor = 1.5f ; // 1=solid, 2=every other line, etc.
if ( first_layer ) { // the infill should touch perimeters
left - = m_perimeter_width ;
right + = m_perimeter_width ;
sparse_factor = 1.f ;
}
float y = fill_box . ld . y ( ) + m_perimeter_width ;
int n = dy / ( m_perimeter_width * sparse_factor ) ;
float spacing = ( dy - m_perimeter_width ) / ( n - 1 ) ;
int i = 0 ;
for ( i = 0 ; i < n ; + + i ) {
writer . extrude ( writer . x ( ) , y , feedrate )
. extrude ( i % 2 ? left : right , y ) ;
y = y + spacing ;
}
writer . extrude ( writer . x ( ) , fill_box . lu . y ( ) ) ;
} else {
// Extrude an inverse U at the left of the region and the sparse infill.
writer . extrude ( fill_box . lu + Vec2f ( m_perimeter_width * 2 , 0.f ) , feedrate ) ;
const int n = 1 + int ( ( right - left ) / m_bridging ) ;
const float dx = ( right - left ) / n ;
for ( int i = 1 ; i < = n ; + + i ) {
float x = left + dx * i ;
writer . travel ( x , writer . y ( ) ) ;
writer . extrude ( x , i % 2 ? fill_box . rd . y ( ) : fill_box . ru . y ( ) ) ;
}
}
writer . append ( " ; CP EMPTY GRID END \n "
" ;------------------ \n \n \n \n \n \n \n " ) ;
}
// outer perimeter (always):
// BBS
box_coordinates wt_box ( Vec2f ( 0.f , ( m_current_shape = = SHAPE_REVERSED ? m_layer_info - > toolchanges_depth ( ) : 0.f ) ) ,
m_wipe_tower_width , m_layer_info - > depth + m_perimeter_width ) ;
wt_box = align_perimeter ( wt_box ) ;
if ( extrude_perimeter ) {
writer . rectangle ( wt_box , feedrate ) ;
}
// brim chamfer
float spacing = m_perimeter_width - m_layer_height * float ( 1. - M_PI_4 ) ;
// How many perimeters shall the brim have?
int loops_num = ( m_wipe_tower_brim_width + spacing / 2.f ) / spacing ;
const float max_chamfer_width = 3.f ;
if ( ! first_layer ) {
// stop print chamfer if depth changes
if ( m_layer_info - > depth ! = m_plan . front ( ) . depth ) {
loops_num = 0 ;
}
else {
// limit max chamfer width to 3 mm
int chamfer_loops_num = ( int ) ( max_chamfer_width / spacing ) ;
int dist_to_1st = m_layer_info - m_plan . begin ( ) - m_first_layer_idx ;
loops_num = std : : min ( loops_num , chamfer_loops_num ) - dist_to_1st ;
}
}
if ( loops_num > 0 ) {
box_coordinates box = wt_box ;
for ( size_t i = 0 ; i < loops_num ; + + i ) {
box . expand ( spacing ) ;
writer . rectangle ( box ) ;
}
if ( first_layer ) {
// Save actual brim width to be later passed to the Print object, which will use it
// for skirt calculation and pass it to GLCanvas for precise preview box
m_wipe_tower_brim_width_real = wt_box . ld . x ( ) - box . ld . x ( ) + spacing / 2.f ;
}
wt_box = box ;
}
// Now prepare future wipe. box contains rectangle that was extruded last (ccw).
Vec2f target = ( writer . pos ( ) = = wt_box . ld ? wt_box . rd :
( writer . pos ( ) = = wt_box . rd ? wt_box . ru :
( writer . pos ( ) = = wt_box . ru ? wt_box . lu :
wt_box . ld ) ) ) ;
writer . add_wipe_point ( writer . pos ( ) )
. add_wipe_point ( target ) ;
// Ask our writer about how much material was consumed.
// Skip this in case the layer is sparse and config option to not print sparse layers is enabled.
if ( ! m_no_sparse_layers | | toolchanges_on_layer )
if ( m_current_tool < m_used_filament_length . size ( ) )
m_used_filament_length [ m_current_tool ] + = writer . get_and_reset_used_filament_length ( ) ;
return construct_tcr ( writer , false , old_tool , true , 0.f ) ;
}
// Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box
void WipeTower : : plan_toolchange ( float z_par , float layer_height_par , unsigned int old_tool ,
unsigned int new_tool , float wipe_volume , float purge_volume )
{
assert ( m_plan . empty ( ) | | m_plan . back ( ) . z < = z_par + WT_EPSILON ) ; // refuses to add a layer below the last one
if ( m_plan . empty ( ) | | m_plan . back ( ) . z + WT_EPSILON < z_par ) // if we moved to a new layer, we'll add it to m_plan first
m_plan . push_back ( WipeTowerInfo ( z_par , layer_height_par ) ) ;
if ( m_first_layer_idx = = size_t ( - 1 ) & & ( ! m_no_sparse_layers | | old_tool ! = new_tool ) )
m_first_layer_idx = m_plan . size ( ) - 1 ;
if ( old_tool = = new_tool ) // new layer without toolchanges - we are done
return ;
// this is an actual toolchange - let's calculate depth to reserve on the wipe tower
float depth = 0.f ;
float width = m_wipe_tower_width - 2 * m_perimeter_width ;
// BBS: remove old filament ramming and first line
#if 0
float length_to_extrude = volume_to_length ( 0.25f * std : : accumulate ( m_filpar [ old_tool ] . ramming_speed . begin ( ) , m_filpar [ old_tool ] . ramming_speed . end ( ) , 0.f ) ,
m_perimeter_width * m_filpar [ old_tool ] . ramming_line_width_multiplicator ,
layer_height_par ) ;
depth = ( int ( length_to_extrude / width ) + 1 ) * ( m_perimeter_width * m_filpar [ old_tool ] . ramming_line_width_multiplicator * m_filpar [ old_tool ] . ramming_step_multiplicator ) ;
float ramming_depth = depth ;
length_to_extrude = width * ( ( length_to_extrude / width ) - int ( length_to_extrude / width ) ) - width ;
float first_wipe_line = - length_to_extrude ;
length_to_extrude + = volume_to_length ( wipe_volume , m_perimeter_width , layer_height_par ) ;
length_to_extrude = std : : max ( length_to_extrude , 0.f ) ;
depth + = ( int ( length_to_extrude / width ) + 1 ) * m_perimeter_width ;
depth * = m_extra_spacing ;
m_plan . back ( ) . tool_changes . push_back ( WipeTowerInfo : : ToolChange ( old_tool , new_tool , depth , ramming_depth , first_wipe_line , wipe_volume ) ) ;
# else
float length_to_extrude = volume_to_length ( wipe_volume , m_perimeter_width , layer_height_par ) ;
depth + = std : : ceil ( length_to_extrude / width ) * m_perimeter_width ;
//depth *= m_extra_spacing;
m_plan . back ( ) . tool_changes . push_back ( WipeTowerInfo : : ToolChange ( old_tool , new_tool , depth , 0.f , 0.f , wipe_volume , length_to_extrude , purge_volume ) ) ;
# endif
}
void WipeTower : : plan_tower ( )
{
// BBS
// calculate extra spacing
float max_depth = 0.f ;
for ( auto & info : m_plan )
max_depth = std : : max ( max_depth , info . toolchanges_depth ( ) ) ;
float min_wipe_tower_depth = 0.f ;
auto iter = WipeTower : : min_depth_per_height . begin ( ) ;
while ( iter ! = WipeTower : : min_depth_per_height . end ( ) ) {
auto curr_height_to_depth = * iter ;
// This is the case that wipe tower height is lower than the first min_depth_to_height member.
if ( curr_height_to_depth . first > = m_wipe_tower_height ) {
min_wipe_tower_depth = curr_height_to_depth . second ;
break ;
}
iter + + ;
// If curr_height_to_depth is the last member, use its min_depth.
if ( iter = = WipeTower : : min_depth_per_height . end ( ) ) {
min_wipe_tower_depth = curr_height_to_depth . second ;
break ;
}
// If wipe tower height is between the current and next member, set the min_depth as linear interpolation between them
auto next_height_to_depth = * iter ;
if ( next_height_to_depth . first > m_wipe_tower_height ) {
float height_base = curr_height_to_depth . first ;
float height_diff = next_height_to_depth . first - curr_height_to_depth . first ;
float min_depth_base = curr_height_to_depth . second ;
float depth_diff = next_height_to_depth . second - curr_height_to_depth . second ;
min_wipe_tower_depth = min_depth_base + ( m_wipe_tower_height - curr_height_to_depth . first ) / height_diff * depth_diff ;
break ;
}
}
2022-08-15 06:41:28 +00:00
{
if ( m_enable_timelapse_print & & max_depth < EPSILON )
max_depth = min_wipe_tower_depth ;
2022-07-15 15:37:19 +00:00
if ( max_depth + EPSILON < min_wipe_tower_depth )
m_extra_spacing = min_wipe_tower_depth / max_depth ;
else
m_extra_spacing = 1.f ;
for ( int idx = 0 ; idx < m_plan . size ( ) ; idx + + ) {
auto & info = m_plan [ idx ] ;
if ( idx = = 0 & & m_extra_spacing > 1.f + EPSILON ) {
// apply solid fill for the first layer
info . extra_spacing = 1.f ;
for ( auto & toolchange : info . tool_changes ) {
float x_to_wipe = volume_to_length ( toolchange . wipe_volume , m_perimeter_width , info . height ) ;
float line_len = m_wipe_tower_width - 2 * m_perimeter_width ;
float x_to_wipe_new = x_to_wipe * m_extra_spacing ;
x_to_wipe_new = std : : floor ( x_to_wipe_new / line_len ) * line_len ;
x_to_wipe_new = std : : max ( x_to_wipe_new , x_to_wipe ) ;
int line_count = std : : ceil ( ( x_to_wipe_new - WT_EPSILON ) / line_len ) ;
toolchange . required_depth = line_count * m_perimeter_width ;
toolchange . wipe_volume = x_to_wipe_new / x_to_wipe * toolchange . wipe_volume ;
toolchange . wipe_length = x_to_wipe_new ;
}
}
else {
info . extra_spacing = m_extra_spacing ;
for ( auto & toolchange : info . tool_changes ) {
toolchange . required_depth * = m_extra_spacing ;
toolchange . wipe_length = volume_to_length ( toolchange . wipe_volume , m_perimeter_width , info . height ) ;
}
}
}
}
// Calculate m_wipe_tower_depth (maximum depth for all the layers) and propagate depths downwards
m_wipe_tower_depth = 0.f ;
for ( auto & layer : m_plan )
layer . depth = 0.f ;
2022-08-15 06:41:28 +00:00
float max_depth_for_all = 0 ;
2022-07-15 15:37:19 +00:00
for ( int layer_index = int ( m_plan . size ( ) ) - 1 ; layer_index > = 0 ; - - layer_index )
{
float this_layer_depth = std : : max ( m_plan [ layer_index ] . depth , m_plan [ layer_index ] . toolchanges_depth ( ) ) ;
2022-08-15 06:41:28 +00:00
if ( m_enable_timelapse_print & & this_layer_depth < EPSILON )
this_layer_depth = min_wipe_tower_depth ;
2022-07-15 15:37:19 +00:00
m_plan [ layer_index ] . depth = this_layer_depth ;
if ( this_layer_depth > m_wipe_tower_depth - m_perimeter_width )
m_wipe_tower_depth = this_layer_depth + m_perimeter_width ;
for ( int i = layer_index - 1 ; i > = 0 ; i - - )
{
if ( m_plan [ i ] . depth - this_layer_depth < 2 * m_perimeter_width )
m_plan [ i ] . depth = this_layer_depth ;
}
2022-08-15 06:41:28 +00:00
if ( m_enable_timelapse_print & & layer_index = = 0 )
max_depth_for_all = m_plan [ 0 ] . depth ;
}
if ( m_enable_timelapse_print ) {
for ( int i = int ( m_plan . size ( ) ) - 1 ; i > = 0 ; i - - ) {
m_plan [ i ] . depth = max_depth_for_all ;
}
}
2022-07-15 15:37:19 +00:00
}
void WipeTower : : save_on_last_wipe ( )
{
for ( m_layer_info = m_plan . begin ( ) ; m_layer_info < m_plan . end ( ) ; + + m_layer_info ) {
set_layer ( m_layer_info - > z , m_layer_info - > height , 0 , m_layer_info - > z = = m_plan . front ( ) . z , m_layer_info - > z = = m_plan . back ( ) . z ) ;
if ( m_layer_info - > tool_changes . size ( ) = = 0 ) // we have no way to save anything on an empty layer
continue ;
// Which toolchange will finish_layer extrusions be subtracted from?
// BBS: consider both soluable and support properties
int idx = first_toolchange_to_nonsoluble_nonsupport ( m_layer_info - > tool_changes ) ;
for ( int i = 0 ; i < int ( m_layer_info - > tool_changes . size ( ) ) ; + + i ) {
auto & toolchange = m_layer_info - > tool_changes [ i ] ;
tool_change ( toolchange . new_tool ) ;
if ( i = = idx ) {
float width = m_wipe_tower_width - 3 * m_perimeter_width ; // width we draw into
float length_to_save = finish_layer ( ) . total_extrusion_length_in_plane ( ) ;
float length_to_wipe = volume_to_length ( toolchange . wipe_volume ,
m_perimeter_width , m_layer_info - > height ) - toolchange . first_wipe_line - length_to_save ;
length_to_wipe = std : : max ( length_to_wipe , 0.f ) ;
float depth_to_wipe = m_perimeter_width * ( std : : floor ( length_to_wipe / width ) + ( length_to_wipe > 0.f ? 1.f : 0.f ) ) * m_extra_spacing ;
toolchange . required_depth = toolchange . ramming_depth + depth_to_wipe ;
}
}
}
}
// BBS: consider both soluable and support properties
// Return index of first toolchange that switches to non-soluble and non-support extruder
// ot -1 if there is no such toolchange.
int WipeTower : : first_toolchange_to_nonsoluble_nonsupport (
const std : : vector < WipeTowerInfo : : ToolChange > & tool_changes ) const
{
for ( size_t idx = 0 ; idx < tool_changes . size ( ) ; + + idx )
if ( ! m_filpar [ tool_changes [ idx ] . new_tool ] . is_soluble & & ! m_filpar [ tool_changes [ idx ] . new_tool ] . is_support )
return idx ;
return - 1 ;
}
static WipeTower : : ToolChangeResult merge_tcr ( WipeTower : : ToolChangeResult & first ,
WipeTower : : ToolChangeResult & second )
{
assert ( first . new_tool = = second . initial_tool ) ;
WipeTower : : ToolChangeResult out = first ;
if ( first . end_pos ! = second . start_pos )
out . gcode + = " G1 X " + Slic3r : : float_to_string_decimal_point ( second . start_pos . x ( ) , 3 )
+ " Y " + Slic3r : : float_to_string_decimal_point ( second . start_pos . y ( ) , 3 )
+ " F7200 \n " ;
out . gcode + = second . gcode ;
out . extrusions . insert ( out . extrusions . end ( ) , second . extrusions . begin ( ) , second . extrusions . end ( ) ) ;
out . end_pos = second . end_pos ;
out . wipe_path = second . wipe_path ;
out . initial_tool = first . initial_tool ;
out . new_tool = second . new_tool ;
// BBS
out . purge_volume + = second . purge_volume ;
return out ;
}
// Processes vector m_plan and calls respective functions to generate G-code for the wipe tower
// Resulting ToolChangeResults are appended into vector "result"
void WipeTower : : generate ( std : : vector < std : : vector < WipeTower : : ToolChangeResult > > & result )
{
if ( m_plan . empty ( ) )
return ;
m_extra_spacing = 1.f ;
plan_tower ( ) ;
// BBS
#if 0
for ( int i = 0 ; i < 5 ; + + i ) {
save_on_last_wipe ( ) ;
plan_tower ( ) ;
}
# endif
m_layer_info = m_plan . begin ( ) ;
// we don't know which extruder to start with - we'll set it according to the first toolchange
for ( const auto & layer : m_plan ) {
if ( ! layer . tool_changes . empty ( ) ) {
m_current_tool = layer . tool_changes . front ( ) . old_tool ;
break ;
}
}
for ( auto & used : m_used_filament_length ) // reset used filament stats
used = 0.f ;
m_old_temperature = - 1 ; // reset last temperature written in the gcode
std : : vector < WipeTower : : ToolChangeResult > layer_result ;
for ( auto layer : m_plan )
{
set_layer ( layer . z , layer . height , 0 , false /*layer.z == m_plan.front().z*/ , layer . z = = m_plan . back ( ) . z ) ;
// BBS
//m_internal_rotation += 180.f;
if ( m_layer_info - > depth < m_wipe_tower_depth - m_perimeter_width ) {
// align y shift to perimeter width
float dy = m_extra_spacing * m_perimeter_width ;
m_y_shift = ( m_wipe_tower_depth - m_layer_info - > depth ) / 2.f ;
m_y_shift = align_round ( m_y_shift , dy ) ;
}
// BBS: consider both soluable and support properties
int idx = first_toolchange_to_nonsoluble_nonsupport ( layer . tool_changes ) ;
ToolChangeResult finish_layer_tcr ;
2022-08-15 06:41:28 +00:00
ToolChangeResult timelapse_wall ;
2022-07-15 15:37:19 +00:00
if ( idx = = - 1 ) {
// if there is no toolchange switching to non-soluble, finish layer
// will be called at the very beginning. That's the last possibility
// where a nonsoluble tool can be.
2022-08-15 06:41:28 +00:00
if ( m_enable_timelapse_print ) {
timelapse_wall = only_generate_out_wall ( ) ;
}
finish_layer_tcr = finish_layer ( m_enable_timelapse_print ? false : true ) ;
2022-07-15 15:37:19 +00:00
}
for ( int i = 0 ; i < int ( layer . tool_changes . size ( ) ) ; + + i ) {
2022-08-15 06:41:28 +00:00
if ( i = = 0 & & m_enable_timelapse_print ) {
timelapse_wall = only_generate_out_wall ( ) ;
}
2022-07-15 15:37:19 +00:00
if ( i = = idx ) {
2022-08-15 06:41:28 +00:00
layer_result . emplace_back ( tool_change ( layer . tool_changes [ i ] . new_tool , m_enable_timelapse_print ? false : true ) ) ;
2022-07-15 15:37:19 +00:00
// finish_layer will be called after this toolchange
finish_layer_tcr = finish_layer ( false ) ;
}
else {
layer_result . emplace_back ( tool_change ( layer . tool_changes [ i ] . new_tool ) ) ;
}
}
if ( layer_result . empty ( ) ) {
// there is nothing to merge finish_layer with
layer_result . emplace_back ( std : : move ( finish_layer_tcr ) ) ;
}
else {
if ( idx = = - 1 )
layer_result [ 0 ] = merge_tcr ( finish_layer_tcr , layer_result [ 0 ] ) ;
else
layer_result [ idx ] = merge_tcr ( layer_result [ idx ] , finish_layer_tcr ) ;
}
2022-08-15 06:41:28 +00:00
if ( m_enable_timelapse_print ) {
layer_result . insert ( layer_result . begin ( ) , std : : move ( timelapse_wall ) ) ;
}
2022-07-15 15:37:19 +00:00
result . emplace_back ( std : : move ( layer_result ) ) ;
}
}
2022-08-15 06:41:28 +00:00
WipeTower : : ToolChangeResult WipeTower : : only_generate_out_wall ( )
{
size_t old_tool = m_current_tool ;
m_extrusion_flow = 0.038f ; // hard code
WipeTowerWriter writer ( m_layer_height , m_perimeter_width , m_gcode_flavor , m_filpar ) ;
writer . set_extrusion_flow ( m_extrusion_flow )
. set_z ( m_z_pos )
. set_initial_tool ( m_current_tool )
. set_y_shift ( m_y_shift - ( m_current_shape = = SHAPE_REVERSED ? m_layer_info - > toolchanges_depth ( ) : 0.f ) ) ;
// Slow down on the 1st layer.
bool first_layer = is_first_layer ( ) ;
// BBS: speed up perimeter speed to 90mm/s for non-first layer
float feedrate = first_layer ? std : : min ( m_first_layer_speed * 60.f , 5400.f ) : 5400.f ;
float fill_box_y = m_layer_info - > toolchanges_depth ( ) + m_perimeter_width ;
box_coordinates fill_box ( Vec2f ( m_perimeter_width , fill_box_y ) , m_wipe_tower_width - 2 * m_perimeter_width , m_layer_info - > depth - fill_box_y ) ;
writer . set_initial_position ( ( m_left_to_right ? fill_box . ru : fill_box . lu ) , // so there is never a diagonal travel
m_wipe_tower_width , m_wipe_tower_depth , m_internal_rotation ) ;
bool toolchanges_on_layer = m_layer_info - > toolchanges_depth ( ) > WT_EPSILON ;
// we are in one of the corners, travel to ld along the perimeter:
if ( writer . x ( ) > fill_box . ld . x ( ) + EPSILON ) writer . travel ( fill_box . ld . x ( ) , writer . y ( ) ) ;
if ( writer . y ( ) > fill_box . ld . y ( ) + EPSILON ) writer . travel ( writer . x ( ) , fill_box . ld . y ( ) ) ;
// outer perimeter (always):
// BBS
box_coordinates wt_box ( Vec2f ( 0.f , ( m_current_shape = = SHAPE_REVERSED ? m_layer_info - > toolchanges_depth ( ) : 0.f ) ) , m_wipe_tower_width , m_layer_info - > depth + m_perimeter_width ) ;
wt_box = align_perimeter ( wt_box ) ;
writer . rectangle ( wt_box , feedrate ) ;
// Now prepare future wipe. box contains rectangle that was extruded last (ccw).
Vec2f target = ( writer . pos ( ) = = wt_box . ld ? wt_box . rd : ( writer . pos ( ) = = wt_box . rd ? wt_box . ru : ( writer . pos ( ) = = wt_box . ru ? wt_box . lu : wt_box . ld ) ) ) ;
writer . add_wipe_point ( writer . pos ( ) ) . add_wipe_point ( target ) ;
// Ask our writer about how much material was consumed.
// Skip this in case the layer is sparse and config option to not print sparse layers is enabled.
if ( ! m_no_sparse_layers | | toolchanges_on_layer )
if ( m_current_tool < m_used_filament_length . size ( ) ) m_used_filament_length [ m_current_tool ] + = writer . get_and_reset_used_filament_length ( ) ;
return construct_tcr ( writer , false , old_tool , true , 0.f ) ;
}
2022-07-15 15:37:19 +00:00
} // namespace Slic3r