BambuStudio/src/libslic3r/FilamentGroup.cpp

280 lines
9.9 KiB
C++
Raw Normal View History

#include "FilamentGroup.hpp"
#include "GCode/ToolOrdering.hpp"
namespace Slic3r
{
int FilamentGroup::calc_filament_group(const std::vector<std::vector<unsigned int>>& layer_filaments)
{
std::set<unsigned int>used_filaments;
for (const auto& lf : layer_filaments)
for (const auto& extruder : lf)
used_filaments.insert(extruder);
m_filament_labels.resize(used_filaments.size());
m_used_filaments = std::vector<unsigned int>(used_filaments.begin(), used_filaments.end());
std::sort(m_used_filaments.begin(), m_used_filaments.end());
if (m_filament_num <= 1)
return 0;
if (m_filament_num < 10)
return calc_filament_group_by_enum(layer_filaments);
else
return calc_filament_group_by_pam(layer_filaments,300);
}
int FilamentGroup::calc_filament_group_by_enum(const std::vector<std::vector<unsigned int>>& layer_filaments)
{
auto bit_count_one = [](int n)
{
int count = 0;
while (n != 0)
{
n &= n - 1;
count++;
}
return count;
};
uint64_t max_group_num = static_cast<uint64_t>(1 << m_filament_num);
int best_cost = std::numeric_limits<int>::max();
std::vector<int>best_label;
for (uint64_t i = 0; i < max_group_num; ++i) {
int num_to_group_1 = bit_count_one(i);
if (num_to_group_1 > m_max_group_size[1] || (m_filament_num - num_to_group_1) > m_max_group_size[0])
continue;
std::set<int>group_0, group_1;
for (int j = 0; j < m_filament_num; ++j) {
if (i & static_cast<uint64_t>(1 << j))
group_1.insert(m_used_filaments[j]);
else
group_0.insert(m_used_filaments[j]);
}
if (group_0.size() < m_max_group_size[0] && group_1.size() < m_max_group_size[1]){
std::vector<int>filament_maps(m_filament_num);
for (int i = 0; i < m_filament_num; ++i) {
if (group_0.find(m_used_filaments[i]) != group_0.end())
filament_maps[i] = 0;
if (group_1.find(m_used_filaments[i]) != group_1.end())
filament_maps[i] = 1;
}
int total_cost = reorder_filaments_for_minimum_flush_volume(
m_used_filaments,
filament_maps,
layer_filaments,
m_flush_matrix,
get_custom_seq,
nullptr
);
if (total_cost < best_cost) {
best_cost = total_cost;
best_label = filament_maps;
}
}
}
m_filament_labels = best_label;
return best_cost;
}
int FilamentGroup::calc_filament_group_by_pam(const std::vector<std::vector<unsigned int>>& layer_filaments, int timeout_ms)
{
//calc pair counts
std::vector<std::vector<int>>count_matrix(m_filament_num,std::vector<int>(m_filament_num));
for (const auto& lf : layer_filaments) {
for (auto iter = lf.begin(); iter != lf.end(); ++iter) {
auto idx1 = std::find(m_used_filaments.begin(), m_used_filaments.end(), *iter)-m_used_filaments.begin();
for (auto niter = std::next(iter); niter != lf.end(); ++niter) {
auto idx2 = std::find(m_used_filaments.begin(), m_used_filaments.end(), *niter) - m_used_filaments.begin();
count_matrix[idx1][idx2] += 1;
count_matrix[idx2][idx1] += 1;
}
}
}
//calc distance matrix
std::vector<std::vector<float>>distance_matrix(m_filament_num, std::vector<float>(m_filament_num));
for (size_t i = 0; i < m_used_filaments.size(); ++i) {
for (size_t j = 0; j < m_used_filaments.size(); ++j) {
if (i == j)
distance_matrix[i][j] = 0;
else {
//TODO: check m_flush_matrix
float max_val = std::max(m_flush_matrix[0][m_used_filaments[i]][m_used_filaments[j]], m_flush_matrix[0][m_used_filaments[j]][m_used_filaments[i]]);
float min_val = std::min(m_flush_matrix[0][m_used_filaments[i]][m_used_filaments[j]], m_flush_matrix[0][m_used_filaments[j]][m_used_filaments[i]]);
double p = 0;
distance_matrix[i][j] = (max_val * p + min_val * (1 - p)) * count_matrix[i][j];
}
}
}
KMediods PAM(distance_matrix, m_filament_num,m_max_group_size);
PAM.fit(timeout_ms);
this->m_filament_labels = PAM.get_filament_labels();
int cost = reorder_filaments_for_minimum_flush_volume(
m_used_filaments,
this->m_filament_labels,
layer_filaments,
m_flush_matrix,
get_custom_seq,
nullptr
);
return cost;
}
void KMediods::fit( int timeout_ms)
{
std::vector<int>best_medoids;
std::vector<int>best_labels;
int best_cost = std::numeric_limits<int>::max();
FlushTimeMachine T;
T.time_machine_start();
int count = 0;
while (true)
{
std::vector<int>medoids;
std::vector<int>labels;
if (count == 0)
medoids = initialize(INIT_TYPE::Farthest);
else
medoids = initialize(INIT_TYPE::Random);
labels = assign_label(medoids);
int cost = calc_cost(labels, medoids);
for (int i = 0; i < m_filament_num; ++i) {
if (std::find(medoids.begin(), medoids.end(), i) != medoids.end())
continue;
for (int j = 0; j < 2; ++j) {
std::vector<int> new_medoids = medoids;
new_medoids[j] = i;
std::vector<int> new_labels = assign_label(new_medoids);
int new_cost = calc_cost(new_labels, new_medoids);
if (new_cost < cost)
{
labels = new_labels;
cost = new_cost;
medoids = new_medoids;
}
}
}
if (cost < best_cost)
{
best_cost = cost;
best_labels = labels;
best_medoids = medoids;
}
count += 1;
if (T.time_machine_end() > timeout_ms)
break;
}
this->m_filament_labels = best_labels;
}
std::vector<int> KMediods::assign_label(const std::vector<int>& medoids) const
{
std::vector<int>labels(m_filament_num);
struct Comp {
bool operator()(const std::pair<int, int>& a, const std::pair<int, int>& b) {
return a.second > b.second;
}
};
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>,Comp>min_heap;
for (int i = 0; i < m_filament_num; ++i) {
int distancec_to_0 = m_distance_matrix[i][medoids[0]];
int distancec_to_1 = m_distance_matrix[i][medoids[1]];
min_heap.push({ i,distancec_to_0 - distancec_to_1 });
}
std::set<int> group_0, group_1;
while (!min_heap.empty()) {
auto top = min_heap.top();
min_heap.pop();
if (group_0.size() < m_max_group_size[0] && (top.second <= 0 || group_1.size() >= m_max_group_size[1]))
group_0.insert(top.first);
else
group_1.insert(top.first);
}
for (auto& item : group_0)
labels[item] = 0;
for (auto& item : group_1)
labels[item] = 1;
return labels;
}
int KMediods::calc_cost(const std::vector<int>& labels, const std::vector<int>& medoids) const
{
int total_cost = 0;
for (int i = 0; i < m_filament_num; ++i)
total_cost += m_distance_matrix[i][medoids[labels[i]]];
return total_cost;
}
std::vector<int> KMediods::initialize(INIT_TYPE type) const
{
auto hash_func = [](int n1, int n2) {
return n1 * 100 + n2;
};
srand(time(nullptr));
std::vector<int>ret;
if (type == INIT_TYPE::Farthest) {
//get the farthest items
int target_i=0,target_j=0,target_val=std::numeric_limits<int>::min();
for(int i=0;i<m_distance_matrix.size();++i){
for(int j=0;j<m_distance_matrix[0].size();++j){
if(i!=j &&m_distance_matrix[i][j]>target_val){
target_val=m_distance_matrix[i][j];
target_i=i;
target_j=j;
}
}
}
ret.emplace_back(std::min(target_i, target_j));
ret.emplace_back(std::max(target_i, target_j));
}
else if (type == INIT_TYPE::Random) {
while (true) {
std::vector<int>medoids;
while (medoids.size() < 2)
{
int candidate = rand() % m_filament_num;
if (std::find(medoids.begin(), medoids.end(), candidate) == medoids.end())
medoids.push_back(candidate);
}
std::sort(medoids.begin(), medoids.end());
if (m_medoids_set.find(hash_func(medoids[0], medoids[1])) != m_medoids_set.end() && m_medoids_set.size() != (m_filament_num * (m_filament_num - 1) / 2))
continue;
else {
ret = medoids;
break;
}
}
}
m_medoids_set.insert(hash_func(ret[0],ret[1]));
return ret;
}
}