2024-07-08 13:31:28 +00:00
|
|
|
#include "FilamentGroup.hpp"
|
|
|
|
#include "GCode/ToolOrdering.hpp"
|
|
|
|
|
|
|
|
namespace Slic3r
|
|
|
|
{
|
|
|
|
int FilamentGroup::calc_filament_group(const std::vector<std::vector<unsigned int>>& layer_filaments)
|
|
|
|
{
|
|
|
|
std::set<unsigned int>used_filaments;
|
|
|
|
for (const auto& lf : layer_filaments)
|
|
|
|
for (const auto& extruder : lf)
|
|
|
|
used_filaments.insert(extruder);
|
|
|
|
|
|
|
|
m_filament_labels.resize(used_filaments.size());
|
|
|
|
m_used_filaments = std::vector<unsigned int>(used_filaments.begin(), used_filaments.end());
|
|
|
|
std::sort(m_used_filaments.begin(), m_used_filaments.end());
|
|
|
|
|
|
|
|
if (m_filament_num <= 1)
|
|
|
|
return 0;
|
|
|
|
if (m_filament_num < 10)
|
|
|
|
return calc_filament_group_by_enum(layer_filaments);
|
|
|
|
else
|
|
|
|
return calc_filament_group_by_pam(layer_filaments,300);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
int FilamentGroup::calc_filament_group_by_enum(const std::vector<std::vector<unsigned int>>& layer_filaments)
|
|
|
|
{
|
|
|
|
auto bit_count_one = [](int n)
|
|
|
|
{
|
|
|
|
int count = 0;
|
|
|
|
while (n != 0)
|
|
|
|
{
|
|
|
|
n &= n - 1;
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
return count;
|
|
|
|
};
|
|
|
|
|
2024-07-10 07:54:27 +00:00
|
|
|
uint64_t max_group_num = static_cast<uint64_t>(1 << m_filament_num);
|
2024-07-08 13:31:28 +00:00
|
|
|
int best_cost = std::numeric_limits<int>::max();
|
|
|
|
std::vector<int>best_label;
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < max_group_num; ++i) {
|
|
|
|
int num_to_group_1 = bit_count_one(i);
|
|
|
|
if (num_to_group_1 > m_max_group_size[1] || (m_filament_num - num_to_group_1) > m_max_group_size[0])
|
|
|
|
continue;
|
|
|
|
std::set<int>group_0, group_1;
|
|
|
|
for (int j = 0; j < m_filament_num; ++j) {
|
2024-07-10 07:54:27 +00:00
|
|
|
if (i & static_cast<uint64_t>(1 << j))
|
2024-07-08 13:31:28 +00:00
|
|
|
group_1.insert(m_used_filaments[j]);
|
|
|
|
else
|
|
|
|
group_0.insert(m_used_filaments[j]);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (group_0.size() < m_max_group_size[0] && group_1.size() < m_max_group_size[1]){
|
|
|
|
|
|
|
|
std::vector<int>filament_maps(m_filament_num);
|
|
|
|
for (int i = 0; i < m_filament_num; ++i) {
|
|
|
|
if (group_0.find(m_used_filaments[i]) != group_0.end())
|
|
|
|
filament_maps[i] = 0;
|
|
|
|
if (group_1.find(m_used_filaments[i]) != group_1.end())
|
|
|
|
filament_maps[i] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int total_cost = reorder_filaments_for_minimum_flush_volume(
|
|
|
|
m_used_filaments,
|
|
|
|
filament_maps,
|
|
|
|
layer_filaments,
|
|
|
|
m_flush_matrix,
|
|
|
|
get_custom_seq,
|
|
|
|
nullptr
|
|
|
|
);
|
|
|
|
|
|
|
|
if (total_cost < best_cost) {
|
|
|
|
best_cost = total_cost;
|
|
|
|
best_label = filament_maps;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
m_filament_labels = best_label;
|
|
|
|
|
|
|
|
return best_cost;
|
|
|
|
}
|
|
|
|
|
|
|
|
int FilamentGroup::calc_filament_group_by_pam(const std::vector<std::vector<unsigned int>>& layer_filaments, int timeout_ms)
|
|
|
|
{
|
|
|
|
//calc pair counts
|
|
|
|
std::vector<std::vector<int>>count_matrix(m_filament_num,std::vector<int>(m_filament_num));
|
|
|
|
for (const auto& lf : layer_filaments) {
|
|
|
|
for (auto iter = lf.begin(); iter != lf.end(); ++iter) {
|
|
|
|
auto idx1 = std::find(m_used_filaments.begin(), m_used_filaments.end(), *iter)-m_used_filaments.begin();
|
|
|
|
for (auto niter = std::next(iter); niter != lf.end(); ++niter) {
|
|
|
|
auto idx2 = std::find(m_used_filaments.begin(), m_used_filaments.end(), *niter) - m_used_filaments.begin();
|
|
|
|
count_matrix[idx1][idx2] += 1;
|
|
|
|
count_matrix[idx2][idx1] += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//calc distance matrix
|
|
|
|
std::vector<std::vector<float>>distance_matrix(m_filament_num, std::vector<float>(m_filament_num));
|
|
|
|
for (size_t i = 0; i < m_used_filaments.size(); ++i) {
|
|
|
|
for (size_t j = 0; j < m_used_filaments.size(); ++j) {
|
|
|
|
if (i == j)
|
|
|
|
distance_matrix[i][j] = 0;
|
|
|
|
else {
|
|
|
|
//TODO: check m_flush_matrix
|
|
|
|
float max_val = std::max(m_flush_matrix[0][m_used_filaments[i]][m_used_filaments[j]], m_flush_matrix[0][m_used_filaments[j]][m_used_filaments[i]]);
|
|
|
|
float min_val = std::min(m_flush_matrix[0][m_used_filaments[i]][m_used_filaments[j]], m_flush_matrix[0][m_used_filaments[j]][m_used_filaments[i]]);
|
|
|
|
|
|
|
|
double p = 0;
|
|
|
|
distance_matrix[i][j] = (max_val * p + min_val * (1 - p)) * count_matrix[i][j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
KMediods PAM(distance_matrix, m_filament_num,m_max_group_size);
|
|
|
|
PAM.fit(timeout_ms);
|
|
|
|
this->m_filament_labels = PAM.get_filament_labels();
|
|
|
|
|
|
|
|
int cost = reorder_filaments_for_minimum_flush_volume(
|
|
|
|
m_used_filaments,
|
|
|
|
this->m_filament_labels,
|
|
|
|
layer_filaments,
|
|
|
|
m_flush_matrix,
|
|
|
|
get_custom_seq,
|
|
|
|
nullptr
|
|
|
|
);
|
|
|
|
|
|
|
|
return cost;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void KMediods::fit( int timeout_ms)
|
|
|
|
{
|
|
|
|
std::vector<int>best_medoids;
|
|
|
|
std::vector<int>best_labels;
|
|
|
|
int best_cost = std::numeric_limits<int>::max();
|
|
|
|
|
|
|
|
FlushTimeMachine T;
|
|
|
|
T.time_machine_start();
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
while (true)
|
|
|
|
{
|
|
|
|
std::vector<int>medoids;
|
|
|
|
std::vector<int>labels;
|
|
|
|
if (count == 0)
|
|
|
|
medoids = initialize(INIT_TYPE::Farthest);
|
|
|
|
else
|
|
|
|
medoids = initialize(INIT_TYPE::Random);
|
|
|
|
|
|
|
|
labels = assign_label(medoids);
|
|
|
|
int cost = calc_cost(labels, medoids);
|
|
|
|
|
|
|
|
for (int i = 0; i < m_filament_num; ++i) {
|
|
|
|
if (std::find(medoids.begin(), medoids.end(), i) != medoids.end())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (int j = 0; j < 2; ++j) {
|
|
|
|
std::vector<int> new_medoids = medoids;
|
|
|
|
new_medoids[j] = i;
|
|
|
|
std::vector<int> new_labels = assign_label(new_medoids);
|
|
|
|
int new_cost = calc_cost(new_labels, new_medoids);
|
|
|
|
|
|
|
|
if (new_cost < cost)
|
|
|
|
{
|
|
|
|
labels = new_labels;
|
|
|
|
cost = new_cost;
|
|
|
|
medoids = new_medoids;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (cost < best_cost)
|
|
|
|
{
|
|
|
|
best_cost = cost;
|
|
|
|
best_labels = labels;
|
|
|
|
best_medoids = medoids;
|
|
|
|
}
|
|
|
|
count += 1;
|
|
|
|
|
|
|
|
if (T.time_machine_end() > timeout_ms)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
this->m_filament_labels = best_labels;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int> KMediods::assign_label(const std::vector<int>& medoids) const
|
|
|
|
{
|
|
|
|
std::vector<int>labels(m_filament_num);
|
|
|
|
struct Comp {
|
|
|
|
bool operator()(const std::pair<int, int>& a, const std::pair<int, int>& b) {
|
|
|
|
return a.second > b.second;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>,Comp>min_heap;
|
|
|
|
|
|
|
|
for (int i = 0; i < m_filament_num; ++i) {
|
|
|
|
int distancec_to_0 = m_distance_matrix[i][medoids[0]];
|
|
|
|
int distancec_to_1 = m_distance_matrix[i][medoids[1]];
|
|
|
|
min_heap.push({ i,distancec_to_0 - distancec_to_1 });
|
|
|
|
}
|
|
|
|
std::set<int> group_0, group_1;
|
|
|
|
while (!min_heap.empty()) {
|
|
|
|
auto top = min_heap.top();
|
|
|
|
min_heap.pop();
|
|
|
|
if (group_0.size() < m_max_group_size[0] && (top.second <= 0 || group_1.size() >= m_max_group_size[1]))
|
|
|
|
group_0.insert(top.first);
|
|
|
|
else
|
|
|
|
group_1.insert(top.first);
|
|
|
|
|
|
|
|
}
|
|
|
|
for (auto& item : group_0)
|
|
|
|
labels[item] = 0;
|
|
|
|
for (auto& item : group_1)
|
|
|
|
labels[item] = 1;
|
|
|
|
|
|
|
|
return labels;
|
|
|
|
}
|
|
|
|
|
|
|
|
int KMediods::calc_cost(const std::vector<int>& labels, const std::vector<int>& medoids) const
|
|
|
|
{
|
|
|
|
int total_cost = 0;
|
|
|
|
for (int i = 0; i < m_filament_num; ++i)
|
|
|
|
total_cost += m_distance_matrix[i][medoids[labels[i]]];
|
|
|
|
return total_cost;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int> KMediods::initialize(INIT_TYPE type) const
|
|
|
|
{
|
|
|
|
auto hash_func = [](int n1, int n2) {
|
|
|
|
return n1 * 100 + n2;
|
|
|
|
};
|
|
|
|
srand(time(nullptr));
|
|
|
|
std::vector<int>ret;
|
|
|
|
if (type == INIT_TYPE::Farthest) {
|
|
|
|
//get the farthest items
|
|
|
|
int target_i=0,target_j=0,target_val=std::numeric_limits<int>::min();
|
|
|
|
for(int i=0;i<m_distance_matrix.size();++i){
|
|
|
|
for(int j=0;j<m_distance_matrix[0].size();++j){
|
|
|
|
if(i!=j &&m_distance_matrix[i][j]>target_val){
|
|
|
|
target_val=m_distance_matrix[i][j];
|
|
|
|
target_i=i;
|
|
|
|
target_j=j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ret.emplace_back(std::min(target_i, target_j));
|
|
|
|
ret.emplace_back(std::max(target_i, target_j));
|
|
|
|
}
|
|
|
|
else if (type == INIT_TYPE::Random) {
|
|
|
|
while (true) {
|
|
|
|
std::vector<int>medoids;
|
|
|
|
while (medoids.size() < 2)
|
|
|
|
{
|
|
|
|
int candidate = rand() % m_filament_num;
|
|
|
|
if (std::find(medoids.begin(), medoids.end(), candidate) == medoids.end())
|
|
|
|
medoids.push_back(candidate);
|
|
|
|
}
|
|
|
|
std::sort(medoids.begin(), medoids.end());
|
|
|
|
|
|
|
|
if (m_medoids_set.find(hash_func(medoids[0], medoids[1])) != m_medoids_set.end() && m_medoids_set.size() != (m_filament_num * (m_filament_num - 1) / 2))
|
|
|
|
continue;
|
|
|
|
else {
|
|
|
|
ret = medoids;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
m_medoids_set.insert(hash_func(ret[0],ret[1]));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|