988 lines
41 KiB
C++
988 lines
41 KiB
C++
|
#include "SeamPlacer.hpp"
|
||
|
|
||
|
#include "libslic3r/ExtrusionEntity.hpp"
|
||
|
#include "libslic3r/Print.hpp"
|
||
|
#include "libslic3r/BoundingBox.hpp"
|
||
|
#include "libslic3r/EdgeGrid.hpp"
|
||
|
#include "libslic3r/ClipperUtils.hpp"
|
||
|
#include "libslic3r/SVG.hpp"
|
||
|
#include "libslic3r/Layer.hpp"
|
||
|
|
||
|
namespace Slic3r {
|
||
|
|
||
|
// This penalty is added to all points inside custom blockers (subtracted from pts inside enforcers).
|
||
|
static constexpr float ENFORCER_BLOCKER_PENALTY = 100;
|
||
|
|
||
|
// In case there are custom enforcers/blockers, the loop polygon shall always have
|
||
|
// sides smaller than this (so it isn't limited to original resolution).
|
||
|
static constexpr float MINIMAL_POLYGON_SIDE = scaled<float>(0.2f);
|
||
|
|
||
|
// When spAligned is active and there is a support enforcer,
|
||
|
// add this penalty to its center.
|
||
|
static constexpr float ENFORCER_CENTER_PENALTY = -10.f;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
static float extrudate_overlap_penalty(float nozzle_r, float weight_zero, float overlap_distance)
|
||
|
{
|
||
|
// The extrudate is not fully supported by the lower layer. Fit a polynomial penalty curve.
|
||
|
// Solved by sympy package:
|
||
|
/*
|
||
|
from sympy import *
|
||
|
(x,a,b,c,d,r,z)=symbols('x a b c d r z')
|
||
|
p = a + b*x + c*x*x + d*x*x*x
|
||
|
p2 = p.subs(solve([p.subs(x, -r), p.diff(x).subs(x, -r), p.diff(x,x).subs(x, -r), p.subs(x, 0)-z], [a, b, c, d]))
|
||
|
from sympy.plotting import plot
|
||
|
plot(p2.subs(r,0.2).subs(z,1.), (x, -1, 3), adaptive=False, nb_of_points=400)
|
||
|
*/
|
||
|
if (overlap_distance < - nozzle_r) {
|
||
|
// The extrudate is fully supported by the lower layer. This is the ideal case, therefore zero penalty.
|
||
|
return 0.f;
|
||
|
} else {
|
||
|
float x = overlap_distance / nozzle_r;
|
||
|
float x2 = x * x;
|
||
|
float x3 = x2 * x;
|
||
|
return weight_zero * (1.f + 3.f * x + 3.f * x2 + x3);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// Return a value in <0, 1> of a cubic B-spline kernel centered around zero.
|
||
|
// The B-spline is re-scaled so it has value 1 at zero.
|
||
|
static inline float bspline_kernel(float x)
|
||
|
{
|
||
|
x = std::abs(x);
|
||
|
if (x < 1.f) {
|
||
|
return 1.f - (3.f / 2.f) * x * x + (3.f / 4.f) * x * x * x;
|
||
|
}
|
||
|
else if (x < 2.f) {
|
||
|
x -= 1.f;
|
||
|
float x2 = x * x;
|
||
|
float x3 = x2 * x;
|
||
|
return (1.f / 4.f) - (3.f / 4.f) * x + (3.f / 4.f) * x2 - (1.f / 4.f) * x3;
|
||
|
}
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static Points::const_iterator project_point_to_polygon_and_insert(Polygon &polygon, const Point &pt, double eps)
|
||
|
{
|
||
|
assert(polygon.points.size() >= 2);
|
||
|
if (polygon.points.size() <= 1)
|
||
|
if (polygon.points.size() == 1)
|
||
|
return polygon.points.begin();
|
||
|
|
||
|
Point pt_min;
|
||
|
double d_min = std::numeric_limits<double>::max();
|
||
|
size_t i_min = size_t(-1);
|
||
|
|
||
|
for (size_t i = 0; i < polygon.points.size(); ++ i) {
|
||
|
size_t j = i + 1;
|
||
|
if (j == polygon.points.size())
|
||
|
j = 0;
|
||
|
const Point &p1 = polygon.points[i];
|
||
|
const Point &p2 = polygon.points[j];
|
||
|
const Slic3r::Point v_seg = p2 - p1;
|
||
|
const Slic3r::Point v_pt = pt - p1;
|
||
|
const int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1));
|
||
|
int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1));
|
||
|
if (t_pt < 0) {
|
||
|
// Closest to p1.
|
||
|
double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1)));
|
||
|
if (dabs < d_min) {
|
||
|
d_min = dabs;
|
||
|
i_min = i;
|
||
|
pt_min = p1;
|
||
|
}
|
||
|
}
|
||
|
else if (t_pt > l2_seg) {
|
||
|
// Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the next step.
|
||
|
continue;
|
||
|
} else {
|
||
|
// Closest to the segment.
|
||
|
assert(t_pt >= 0 && t_pt <= l2_seg);
|
||
|
int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1));
|
||
|
double d = double(d_seg) / sqrt(double(l2_seg));
|
||
|
double dabs = std::abs(d);
|
||
|
if (dabs < d_min) {
|
||
|
d_min = dabs;
|
||
|
i_min = i;
|
||
|
// Evaluate the foot point.
|
||
|
pt_min = p1;
|
||
|
double linv = double(d_seg) / double(l2_seg);
|
||
|
pt_min(0) = pt(0) - coord_t(floor(double(v_seg(1)) * linv + 0.5));
|
||
|
pt_min(1) = pt(1) + coord_t(floor(double(v_seg(0)) * linv + 0.5));
|
||
|
assert(Line(p1, p2).distance_to(pt_min) < scale_(1e-5));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
assert(i_min != size_t(-1));
|
||
|
if ((pt_min - polygon.points[i_min]).cast<double>().norm() > eps) {
|
||
|
// Insert a new point on the segment i_min, i_min+1.
|
||
|
return polygon.points.insert(polygon.points.begin() + (i_min + 1), pt_min);
|
||
|
}
|
||
|
return polygon.points.begin() + i_min;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static std::vector<float> polygon_angles_at_vertices(const Polygon &polygon, const std::vector<float> &lengths, float min_arm_length)
|
||
|
{
|
||
|
assert(polygon.points.size() + 1 == lengths.size());
|
||
|
if (min_arm_length > 0.25f * lengths.back())
|
||
|
min_arm_length = 0.25f * lengths.back();
|
||
|
|
||
|
// Find the initial prev / next point span.
|
||
|
size_t idx_prev = polygon.points.size();
|
||
|
size_t idx_curr = 0;
|
||
|
size_t idx_next = 1;
|
||
|
while (idx_prev > idx_curr && lengths.back() - lengths[idx_prev] < min_arm_length)
|
||
|
-- idx_prev;
|
||
|
while (idx_next < idx_prev && lengths[idx_next] < min_arm_length)
|
||
|
++ idx_next;
|
||
|
|
||
|
std::vector<float> angles(polygon.points.size(), 0.f);
|
||
|
for (; idx_curr < polygon.points.size(); ++ idx_curr) {
|
||
|
// Move idx_prev up until the distance between idx_prev and idx_curr is lower than min_arm_length.
|
||
|
if (idx_prev >= idx_curr) {
|
||
|
while (idx_prev < polygon.points.size() && lengths.back() - lengths[idx_prev] + lengths[idx_curr] > min_arm_length)
|
||
|
++ idx_prev;
|
||
|
if (idx_prev == polygon.points.size())
|
||
|
idx_prev = 0;
|
||
|
}
|
||
|
while (idx_prev < idx_curr && lengths[idx_curr] - lengths[idx_prev] > min_arm_length)
|
||
|
++ idx_prev;
|
||
|
// Move idx_prev one step back.
|
||
|
if (idx_prev == 0)
|
||
|
idx_prev = polygon.points.size() - 1;
|
||
|
else
|
||
|
-- idx_prev;
|
||
|
// Move idx_next up until the distance between idx_curr and idx_next is greater than min_arm_length.
|
||
|
if (idx_curr <= idx_next) {
|
||
|
while (idx_next < polygon.points.size() && lengths[idx_next] - lengths[idx_curr] < min_arm_length)
|
||
|
++ idx_next;
|
||
|
if (idx_next == polygon.points.size())
|
||
|
idx_next = 0;
|
||
|
}
|
||
|
while (idx_next < idx_curr && lengths.back() - lengths[idx_curr] + lengths[idx_next] < min_arm_length)
|
||
|
++ idx_next;
|
||
|
// Calculate angle between idx_prev, idx_curr, idx_next.
|
||
|
const Point &p0 = polygon.points[idx_prev];
|
||
|
const Point &p1 = polygon.points[idx_curr];
|
||
|
const Point &p2 = polygon.points[idx_next];
|
||
|
const Point v1 = p1 - p0;
|
||
|
const Point v2 = p2 - p1;
|
||
|
int64_t dot = int64_t(v1(0))*int64_t(v2(0)) + int64_t(v1(1))*int64_t(v2(1));
|
||
|
int64_t cross = int64_t(v1(0))*int64_t(v2(1)) - int64_t(v1(1))*int64_t(v2(0));
|
||
|
float angle = float(atan2(double(cross), double(dot)));
|
||
|
angles[idx_curr] = angle;
|
||
|
}
|
||
|
|
||
|
return angles;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void SeamPlacer::init(const Print& print)
|
||
|
{
|
||
|
m_enforcers.clear();
|
||
|
m_blockers.clear();
|
||
|
m_seam_history.clear();
|
||
|
m_po_list.clear();
|
||
|
|
||
|
const std::vector<double>& nozzle_dmrs = print.config().nozzle_diameter.values;
|
||
|
float max_nozzle_dmr = *std::max_element(nozzle_dmrs.begin(), nozzle_dmrs.end());
|
||
|
|
||
|
|
||
|
std::vector<ExPolygons> temp_enf;
|
||
|
std::vector<ExPolygons> temp_blk;
|
||
|
std::vector<Polygons> temp_polygons;
|
||
|
|
||
|
for (const PrintObject* po : print.objects()) {
|
||
|
|
||
|
auto merge_and_offset = [po, &temp_polygons, max_nozzle_dmr](EnforcerBlockerType type, std::vector<ExPolygons>& out) {
|
||
|
// Offset the triangles out slightly.
|
||
|
auto offset_out = [](Polygon& input, float offset) -> ExPolygons {
|
||
|
ClipperLib::Paths out(1);
|
||
|
std::vector<float> deltas(input.points.size(), offset);
|
||
|
input.make_counter_clockwise();
|
||
|
out.front() = mittered_offset_path_scaled(input.points, deltas, 3.);
|
||
|
return ClipperPaths_to_Slic3rExPolygons(out, true); // perform union
|
||
|
};
|
||
|
|
||
|
|
||
|
temp_polygons.clear();
|
||
|
po->project_and_append_custom_facets(true, type, temp_polygons);
|
||
|
out.clear();
|
||
|
out.reserve(temp_polygons.size());
|
||
|
float offset = scale_(max_nozzle_dmr + po->config().elefant_foot_compensation);
|
||
|
for (Polygons &src : temp_polygons) {
|
||
|
out.emplace_back(ExPolygons());
|
||
|
for (Polygon& plg : src) {
|
||
|
ExPolygons offset_explg = offset_out(plg, offset);
|
||
|
if (! offset_explg.empty())
|
||
|
out.back().emplace_back(std::move(offset_explg.front()));
|
||
|
}
|
||
|
|
||
|
offset = scale_(max_nozzle_dmr);
|
||
|
}
|
||
|
};
|
||
|
merge_and_offset(EnforcerBlockerType::BLOCKER, temp_blk);
|
||
|
merge_and_offset(EnforcerBlockerType::ENFORCER, temp_enf);
|
||
|
|
||
|
// Remember this PrintObject and initialize a store of enforcers and blockers for it.
|
||
|
m_po_list.push_back(po);
|
||
|
size_t po_idx = m_po_list.size() - 1;
|
||
|
m_enforcers.emplace_back(std::vector<CustomTrianglesPerLayer>(temp_enf.size()));
|
||
|
m_blockers.emplace_back(std::vector<CustomTrianglesPerLayer>(temp_blk.size()));
|
||
|
|
||
|
// A helper class to store data to build the AABB tree from.
|
||
|
class CustomTriangleRef {
|
||
|
public:
|
||
|
CustomTriangleRef(size_t idx,
|
||
|
Point&& centroid,
|
||
|
BoundingBox&& bb)
|
||
|
: m_idx{idx}, m_centroid{centroid},
|
||
|
m_bbox{AlignedBoxType(bb.min, bb.max)}
|
||
|
{}
|
||
|
size_t idx() const { return m_idx; }
|
||
|
const Point& centroid() const { return m_centroid; }
|
||
|
const TreeType::BoundingBox& bbox() const { return m_bbox; }
|
||
|
|
||
|
private:
|
||
|
size_t m_idx;
|
||
|
Point m_centroid;
|
||
|
AlignedBoxType m_bbox;
|
||
|
};
|
||
|
|
||
|
// A lambda to extract the ExPolygons and save them into the member AABB tree.
|
||
|
// Will be called for enforcers and blockers separately.
|
||
|
auto add_custom = [](std::vector<ExPolygons>& src, std::vector<CustomTrianglesPerLayer>& dest) {
|
||
|
// Go layer by layer, and append all the ExPolygons into the AABB tree.
|
||
|
size_t layer_idx = 0;
|
||
|
for (ExPolygons& expolys_on_layer : src) {
|
||
|
CustomTrianglesPerLayer& layer_data = dest[layer_idx];
|
||
|
std::vector<CustomTriangleRef> triangles_data;
|
||
|
layer_data.polys.reserve(expolys_on_layer.size());
|
||
|
triangles_data.reserve(expolys_on_layer.size());
|
||
|
|
||
|
for (ExPolygon& expoly : expolys_on_layer) {
|
||
|
if (expoly.empty())
|
||
|
continue;
|
||
|
layer_data.polys.emplace_back(std::move(expoly));
|
||
|
triangles_data.emplace_back(layer_data.polys.size() - 1,
|
||
|
layer_data.polys.back().centroid(),
|
||
|
layer_data.polys.back().bounding_box());
|
||
|
}
|
||
|
// All polygons are saved, build the AABB tree for them.
|
||
|
layer_data.tree.build(std::move(triangles_data));
|
||
|
++layer_idx;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
add_custom(temp_enf, m_enforcers.at(po_idx));
|
||
|
add_custom(temp_blk, m_blockers.at(po_idx));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void SeamPlacer::plan_perimeters(const std::vector<const ExtrusionEntity*> perimeters,
|
||
|
const Layer& layer, SeamPosition seam_position,
|
||
|
Point last_pos, coordf_t nozzle_dmr, const PrintObject* po,
|
||
|
const EdgeGrid::Grid* lower_layer_edge_grid)
|
||
|
{
|
||
|
// When printing the perimeters, we want the seams on external and internal perimeters to match.
|
||
|
// We have a list of perimeters in the order to be printed. Each internal perimeter must inherit
|
||
|
// the seam from the previous external perimeter.
|
||
|
|
||
|
m_plan.clear();
|
||
|
m_plan_idx = 0;
|
||
|
|
||
|
if (perimeters.empty() || ! po)
|
||
|
return;
|
||
|
|
||
|
m_plan.resize(perimeters.size());
|
||
|
|
||
|
for (int i = 0; i < int(perimeters.size()); ++i) {
|
||
|
if (perimeters[i]->role() == erExternalPerimeter && perimeters[i]->is_loop()) {
|
||
|
last_pos = this->calculate_seam(
|
||
|
layer, seam_position, *dynamic_cast<const ExtrusionLoop*>(perimeters[i]), nozzle_dmr,
|
||
|
po, lower_layer_edge_grid, last_pos);
|
||
|
m_plan[i].external = true;
|
||
|
m_plan[i].seam_position = seam_position;
|
||
|
m_plan[i].layer = &layer;
|
||
|
m_plan[i].po = po;
|
||
|
}
|
||
|
m_plan[i].pt = last_pos;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void SeamPlacer::place_seam(ExtrusionLoop& loop, const Point& last_pos, bool external_first, double nozzle_diameter,
|
||
|
const EdgeGrid::Grid* lower_layer_edge_grid)
|
||
|
{
|
||
|
const double seam_offset = nozzle_diameter;
|
||
|
|
||
|
Point seam = last_pos;
|
||
|
if (! m_plan.empty() && m_plan_idx < m_plan.size()) {
|
||
|
if (m_plan[m_plan_idx].external) {
|
||
|
seam = m_plan[m_plan_idx].pt;
|
||
|
// One more heuristics: if the seam is too far from current nozzle position,
|
||
|
// try to place it again. This can happen in cases where the external perimeter
|
||
|
// does not belong to the preceding ones and they are ordered so they end up
|
||
|
// far from each other.
|
||
|
if ((seam.cast<double>() - last_pos.cast<double>()).squaredNorm() > std::pow(scale_(5.*nozzle_diameter), 2.))
|
||
|
seam = this->calculate_seam(*m_plan[m_plan_idx].layer, m_plan[m_plan_idx].seam_position, loop, nozzle_diameter,
|
||
|
m_plan[m_plan_idx].po, lower_layer_edge_grid, last_pos);
|
||
|
}
|
||
|
else if (! external_first) {
|
||
|
// Internal perimeter printed before the external.
|
||
|
// First get list of external seams.
|
||
|
std::vector<size_t> ext_seams;
|
||
|
for (size_t i = 0; i < m_plan.size(); ++i) {
|
||
|
if (m_plan[i].external)
|
||
|
ext_seams.emplace_back(i);
|
||
|
}
|
||
|
|
||
|
if (! ext_seams.empty()) {
|
||
|
// First find the line segment closest to an external seam:
|
||
|
int path_idx = 0;
|
||
|
int line_idx = 0;
|
||
|
size_t ext_seam_idx = size_t(-1);
|
||
|
double min_dist_sqr = std::numeric_limits<double>::max();
|
||
|
std::vector<Lines> lines_vect;
|
||
|
for (int i = 0; i < int(loop.paths.size()); ++i) {
|
||
|
lines_vect.emplace_back(loop.paths[i].polyline.lines());
|
||
|
const Lines& lines = lines_vect.back();
|
||
|
for (int j = 0; j < int(lines.size()); ++j) {
|
||
|
for (size_t k : ext_seams) {
|
||
|
double d_sqr = lines[j].distance_to_squared(m_plan[k].pt);
|
||
|
if (d_sqr < min_dist_sqr) {
|
||
|
path_idx = i;
|
||
|
line_idx = j;
|
||
|
ext_seam_idx = k;
|
||
|
min_dist_sqr = d_sqr;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Only accept seam that is reasonably close.
|
||
|
double limit_dist_sqr = std::pow(double(scale_((ext_seam_idx - m_plan_idx) * nozzle_diameter * 2.)), 2.);
|
||
|
if (ext_seam_idx != size_t(-1) && min_dist_sqr < limit_dist_sqr) {
|
||
|
// Now find a projection of the external seam
|
||
|
const Lines& lines = lines_vect[path_idx];
|
||
|
Point closest = m_plan[ext_seam_idx].pt.projection_onto(lines[line_idx]);
|
||
|
double dist = (closest.cast<double>() - lines[line_idx].b.cast<double>()).norm();
|
||
|
|
||
|
// And walk along the perimeter until we make enough space for
|
||
|
// seams of all perimeters beforethe external one.
|
||
|
double offset = (ext_seam_idx - m_plan_idx) * scale_(seam_offset);
|
||
|
double last_offset = offset;
|
||
|
offset -= dist;
|
||
|
const Point* a = &closest;
|
||
|
const Point* b = &lines[line_idx].b;
|
||
|
while (++line_idx < int(lines.size()) && offset > 0.) {
|
||
|
last_offset = offset;
|
||
|
offset -= lines[line_idx].length();
|
||
|
a = &lines[line_idx].a;
|
||
|
b = &lines[line_idx].b;
|
||
|
}
|
||
|
|
||
|
// We have walked far enough, too far maybe. Interpolate on the
|
||
|
// last segment to find the end precisely.
|
||
|
offset = std::min(0., offset); // In case that offset is still positive (we may have "wrapped around")
|
||
|
double ratio = last_offset / (last_offset - offset);
|
||
|
seam = (a->cast<double>() + ((b->cast<double>() - a->cast<double>()) * ratio)).cast<coord_t>();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// We should have a candidate ready from before. If not, use last_pos.
|
||
|
if (m_plan_idx > 0 && m_plan[m_plan_idx - 1].precalculated)
|
||
|
seam = m_plan[m_plan_idx - 1].pt;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Split the loop at the point with a minium penalty.
|
||
|
if (!loop.split_at_vertex(seam))
|
||
|
// The point is not in the original loop. Insert it.
|
||
|
loop.split_at(seam, true);
|
||
|
|
||
|
if (external_first && m_plan_idx+1<m_plan.size() && ! m_plan[m_plan_idx+1].external) {
|
||
|
// Next perimeter should start near this one.
|
||
|
const double dist_sqr = std::pow(double(scale_(seam_offset)), 2.);
|
||
|
double running_sqr = 0.;
|
||
|
double running_sqr_last = 0.;
|
||
|
if (!loop.paths.empty() && loop.paths.back().polyline.points.size() > 1) {
|
||
|
const ExtrusionPath& last = loop.paths.back();
|
||
|
auto it = last.polyline.points.crbegin() + 1;
|
||
|
for (; it != last.polyline.points.crend(); ++it) {
|
||
|
running_sqr += (it->cast<double>() - (it - 1)->cast<double>()).squaredNorm();
|
||
|
if (running_sqr > dist_sqr)
|
||
|
break;
|
||
|
running_sqr_last = running_sqr;
|
||
|
}
|
||
|
if (running_sqr <= dist_sqr)
|
||
|
it = last.polyline.points.crend() - 1;
|
||
|
// Now interpolate.
|
||
|
double ratio = (std::sqrt(dist_sqr) - std::sqrt(running_sqr_last)) / (std::sqrt(running_sqr) - std::sqrt(running_sqr_last));
|
||
|
m_plan[m_plan_idx + 1].pt = ((it - 1)->cast<double>() + (it->cast<double>() - (it - 1)->cast<double>()) * std::min(ratio, 1.)).cast<coord_t>();
|
||
|
m_plan[m_plan_idx + 1].precalculated = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
++m_plan_idx;
|
||
|
}
|
||
|
|
||
|
constexpr float CLOSE_TO_LAST_SEAM_THRESHOLD = 5;
|
||
|
|
||
|
// Returns a seam for an EXTERNAL perimeter.
|
||
|
Point SeamPlacer::calculate_seam(const Layer& layer, const SeamPosition seam_position,
|
||
|
const ExtrusionLoop& loop, coordf_t nozzle_dmr, const PrintObject* po,
|
||
|
const EdgeGrid::Grid* lower_layer_edge_grid, Point last_pos)
|
||
|
{
|
||
|
assert(loop.role() == erExternalPerimeter);
|
||
|
Polygon polygon = loop.polygon();
|
||
|
bool was_clockwise = polygon.make_counter_clockwise();
|
||
|
BoundingBox polygon_bb = polygon.bounding_box();
|
||
|
const coord_t nozzle_r = coord_t(scale_(0.5 * nozzle_dmr) + 0.5);
|
||
|
|
||
|
size_t po_idx = std::find(m_po_list.begin(), m_po_list.end(), po) - m_po_list.begin();
|
||
|
|
||
|
// Find current layer in respective PrintObject. Cache the result so the
|
||
|
// lookup is only done once per layer, not for each loop.
|
||
|
const Layer* layer_po = nullptr;
|
||
|
if (po == m_last_po && layer.print_z == m_last_print_z)
|
||
|
layer_po = m_last_layer_po;
|
||
|
else {
|
||
|
layer_po = po->get_layer_at_printz(layer.print_z);
|
||
|
m_last_po = po;
|
||
|
m_last_print_z = layer.print_z;
|
||
|
m_last_layer_po = layer_po;
|
||
|
}
|
||
|
if (! layer_po)
|
||
|
return last_pos;
|
||
|
|
||
|
// Index of this layer in the respective PrintObject.
|
||
|
size_t layer_idx = layer_po->id() - po->layers().front()->id(); // raft layers
|
||
|
|
||
|
assert(layer_idx < po->layer_count());
|
||
|
|
||
|
if (this->is_custom_seam_on_layer(layer_idx, po_idx)) {
|
||
|
// Seam enf/blockers can begin and end in between the original vertices.
|
||
|
// Let add extra points in between and update the leghths.
|
||
|
polygon.densify(MINIMAL_POLYGON_SIDE);
|
||
|
}
|
||
|
|
||
|
if (seam_position != spRandom) {
|
||
|
// Retrieve the last start position for this object.
|
||
|
float last_pos_weight = 1.f;
|
||
|
|
||
|
if (seam_position == spAligned) {
|
||
|
// Seam is aligned to the seam at the preceding layer.
|
||
|
if (po != nullptr) {
|
||
|
std::optional<Point> pos = m_seam_history.get_last_seam(m_po_list[po_idx], layer_idx, polygon_bb);
|
||
|
if (pos.has_value()) {
|
||
|
last_pos = *pos;
|
||
|
last_pos_weight = is_custom_enforcer_on_layer(layer_idx, po_idx) ? 0.f : 1.f;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (seam_position == spRear) {
|
||
|
// Object is centered around (0,0) in its current coordinate system.
|
||
|
last_pos.x() = 0;
|
||
|
last_pos.y() = coord_t(3. * po->bounding_box().radius());
|
||
|
last_pos_weight = 5.f;
|
||
|
} if (seam_position == spNearest) {
|
||
|
// last_pos already contains current nozzle position
|
||
|
|
||
|
// BBS: if the project point of current nozzle position is close to the last seam of this object
|
||
|
// then we think the current nozzle position is almost same with last same.
|
||
|
// So that last seam can be treat as one factor even in cost based strategy to make seam more posible to be aligned
|
||
|
if (po != nullptr) {
|
||
|
std::optional<Point> pos = m_seam_history.get_last_seam(m_po_list[po_idx], layer_idx, polygon_bb);
|
||
|
if (pos.has_value()) {
|
||
|
Point project_point = polygon.point_projection(last_pos);
|
||
|
if ((pos->cast<double>() - project_point.cast<double>()).squaredNorm() < std::pow(scale_(CLOSE_TO_LAST_SEAM_THRESHOLD), 2.))
|
||
|
last_pos = *pos;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Insert a projection of last_pos into the polygon.
|
||
|
size_t last_pos_proj_idx;
|
||
|
{
|
||
|
auto it = project_point_to_polygon_and_insert(polygon, last_pos, 0.1 * nozzle_r);
|
||
|
last_pos_proj_idx = it - polygon.points.begin();
|
||
|
}
|
||
|
|
||
|
// Parametrize the polygon by its length.
|
||
|
std::vector<float> lengths = polygon.parameter_by_length();
|
||
|
|
||
|
// For each polygon point, store a penalty.
|
||
|
// First calculate the angles, store them as penalties. The angles are caluculated over a minimum arm length of nozzle_r.
|
||
|
std::vector<float> penalties = polygon_angles_at_vertices(polygon, lengths, float(nozzle_r));
|
||
|
// No penalty for reflex points, slight penalty for convex points, high penalty for flat surfaces.
|
||
|
const float penaltyConvexVertex = 1.f;
|
||
|
const float penaltyFlatSurface = 5.f;
|
||
|
const float penaltyOverhangHalf = 10.f;
|
||
|
// Penalty for visible seams.
|
||
|
for (size_t i = 0; i < polygon.points.size(); ++ i) {
|
||
|
float ccwAngle = penalties[i];
|
||
|
if (was_clockwise)
|
||
|
ccwAngle = - ccwAngle;
|
||
|
float penalty = 0;
|
||
|
if (ccwAngle <- float(0.6 * PI))
|
||
|
// Sharp reflex vertex. We love that, it hides the seam perfectly.
|
||
|
penalty = 0.f;
|
||
|
else if (ccwAngle > float(0.6 * PI))
|
||
|
// Seams on sharp convex vertices are more visible than on reflex vertices.
|
||
|
penalty = penaltyConvexVertex;
|
||
|
else if (ccwAngle < 0.f) {
|
||
|
// Interpolate penalty between maximum and zero.
|
||
|
penalty = penaltyFlatSurface * bspline_kernel(ccwAngle * float(PI * 2. / 3.));
|
||
|
} else {
|
||
|
assert(ccwAngle >= 0.f);
|
||
|
// Interpolate penalty between maximum and the penalty for a convex vertex.
|
||
|
penalty = penaltyConvexVertex + (penaltyFlatSurface - penaltyConvexVertex) * bspline_kernel(ccwAngle * float(PI * 2. / 3.));
|
||
|
}
|
||
|
// Give a negative penalty for points close to the last point or the prefered seam location.
|
||
|
float dist_to_last_pos_proj = (i < last_pos_proj_idx) ?
|
||
|
std::min(lengths[last_pos_proj_idx] - lengths[i], lengths.back() - lengths[last_pos_proj_idx] + lengths[i]) :
|
||
|
std::min(lengths[i] - lengths[last_pos_proj_idx], lengths.back() - lengths[i] + lengths[last_pos_proj_idx]);
|
||
|
float dist_max = 0.1f * lengths.back(); // 5.f * nozzle_dmr
|
||
|
penalty -= last_pos_weight * bspline_kernel(dist_to_last_pos_proj / dist_max);
|
||
|
penalties[i] = std::max(0.f, penalty);
|
||
|
}
|
||
|
|
||
|
// Penalty for overhangs.
|
||
|
if (lower_layer_edge_grid) {
|
||
|
// Use the edge grid distance field structure over the lower layer to calculate overhangs.
|
||
|
coord_t nozzle_r = coord_t(std::floor(scale_(0.5 * nozzle_dmr) + 0.5));
|
||
|
coord_t search_r = coord_t(std::floor(scale_(0.8 * nozzle_dmr) + 0.5));
|
||
|
for (size_t i = 0; i < polygon.points.size(); ++ i) {
|
||
|
const Point &p = polygon.points[i];
|
||
|
coordf_t dist;
|
||
|
// Signed distance is positive outside the object, negative inside the object.
|
||
|
// The point is considered at an overhang, if it is more than nozzle radius
|
||
|
// outside of the lower layer contour.
|
||
|
[[maybe_unused]] bool found = lower_layer_edge_grid->signed_distance(p, search_r, dist);
|
||
|
// If the approximate Signed Distance Field was initialized over lower_layer_edge_grid,
|
||
|
// then the signed distnace shall always be known.
|
||
|
assert(found);
|
||
|
penalties[i] += extrudate_overlap_penalty(float(nozzle_r), penaltyOverhangHalf, float(dist));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Custom seam. Huge (negative) constant penalty is applied inside
|
||
|
// blockers (enforcers) to rule out points that should not win.
|
||
|
this->apply_custom_seam(polygon, po_idx, penalties, lengths, layer_idx, seam_position);
|
||
|
|
||
|
// Find a point with a minimum penalty.
|
||
|
size_t idx_min = std::min_element(penalties.begin(), penalties.end()) - penalties.begin();
|
||
|
|
||
|
if (seam_position != spAligned || ! is_custom_enforcer_on_layer(layer_idx, po_idx)) {
|
||
|
// Very likely the weight of idx_min is very close to the weight of last_pos_proj_idx.
|
||
|
// In that case use last_pos_proj_idx instead.
|
||
|
float penalty_aligned = penalties[last_pos_proj_idx];
|
||
|
float penalty_min = penalties[idx_min];
|
||
|
float penalty_diff_abs = std::abs(penalty_min - penalty_aligned);
|
||
|
float penalty_max = std::max(std::abs(penalty_min), std::abs(penalty_aligned));
|
||
|
float penalty_diff_rel = (penalty_max == 0.f) ? 0.f : penalty_diff_abs / penalty_max;
|
||
|
// printf("Align seams, penalty aligned: %f, min: %f, diff abs: %f, diff rel: %f\n", penalty_aligned, penalty_min, penalty_diff_abs, penalty_diff_rel);
|
||
|
if (std::abs(penalty_diff_rel) < 0.05) {
|
||
|
// Penalty of the aligned point is very close to the minimum penalty.
|
||
|
// Align the seams as accurately as possible.
|
||
|
idx_min = last_pos_proj_idx;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (seam_position == spAligned || seam_position == spNearest)
|
||
|
m_seam_history.add_seam(po, polygon.points[idx_min], polygon_bb);
|
||
|
|
||
|
|
||
|
// Export the contour into a SVG file.
|
||
|
#if 0
|
||
|
{
|
||
|
static int iRun = 0;
|
||
|
SVG svg(debug_out_path("GCode_extrude_loop-%d.svg", iRun ++));
|
||
|
if (m_layer->lower_layer != NULL)
|
||
|
svg.draw(m_layer->lower_layer->slices);
|
||
|
for (size_t i = 0; i < loop.paths.size(); ++ i)
|
||
|
svg.draw(loop.paths[i].as_polyline(), "red");
|
||
|
Polylines polylines;
|
||
|
for (size_t i = 0; i < loop.paths.size(); ++ i)
|
||
|
polylines.push_back(loop.paths[i].as_polyline());
|
||
|
Slic3r::Polygons polygons;
|
||
|
coordf_t nozzle_dmr = EXTRUDER_CONFIG(nozzle_diameter);
|
||
|
coord_t delta = scale_(0.5*nozzle_dmr);
|
||
|
Slic3r::offset(polylines, &polygons, delta);
|
||
|
// for (size_t i = 0; i < polygons.size(); ++ i) svg.draw((Polyline)polygons[i], "blue");
|
||
|
svg.draw(last_pos, "green", 3);
|
||
|
svg.draw(polygon.points[idx_min], "yellow", 3);
|
||
|
svg.Close();
|
||
|
}
|
||
|
#endif
|
||
|
return polygon.points[idx_min];
|
||
|
|
||
|
} else
|
||
|
return this->get_random_seam(layer_idx, polygon, po_idx);
|
||
|
}
|
||
|
|
||
|
|
||
|
Point SeamPlacer::get_random_seam(size_t layer_idx, const Polygon& polygon, size_t po_idx,
|
||
|
bool* saw_custom) const
|
||
|
{
|
||
|
// Parametrize the polygon by its length.
|
||
|
const std::vector<float> lengths = polygon.parameter_by_length();
|
||
|
|
||
|
// Which of the points are inside enforcers/blockers?
|
||
|
std::vector<size_t> enforcers_idxs;
|
||
|
std::vector<size_t> blockers_idxs;
|
||
|
this->get_enforcers_and_blockers(layer_idx, polygon, po_idx, enforcers_idxs, blockers_idxs);
|
||
|
|
||
|
bool has_enforcers = ! enforcers_idxs.empty();
|
||
|
bool has_blockers = ! blockers_idxs.empty();
|
||
|
if (saw_custom)
|
||
|
*saw_custom = has_enforcers || has_blockers;
|
||
|
|
||
|
assert(std::is_sorted(enforcers_idxs.begin(), enforcers_idxs.end()));
|
||
|
assert(std::is_sorted(blockers_idxs.begin(), blockers_idxs.end()));
|
||
|
std::vector<float> edges;
|
||
|
|
||
|
// Lambda to calculate lengths of all edges of interest. Last parameter
|
||
|
// decides whether to measure edges inside or outside idxs.
|
||
|
// Negative number = not an edge of interest.
|
||
|
auto get_valid_length = [&lengths](const std::vector<size_t>& idxs,
|
||
|
std::vector<float>& edges,
|
||
|
bool measure_inside_edges) -> float
|
||
|
{
|
||
|
// First mark edges we are interested in by assigning a positive number.
|
||
|
edges.assign(lengths.size()-1, measure_inside_edges ? -1.f : 1.f);
|
||
|
for (size_t i=0; i<idxs.size(); ++i) {
|
||
|
size_t this_pt_idx = idxs[i];
|
||
|
// Two concurrent indices in the list -> the edge between them is the enforcer/blocker.
|
||
|
bool inside_edge = ((i != idxs.size()-1 && idxs[i+1] == this_pt_idx + 1)
|
||
|
|| (i == idxs.size()-1 && idxs.back() == lengths.size()-2 && idxs[0] == 0));
|
||
|
if (inside_edge)
|
||
|
edges[this_pt_idx] = measure_inside_edges ? 1.f : -1.f;
|
||
|
}
|
||
|
// Now measure them.
|
||
|
float running_total = 0.f;
|
||
|
for (size_t i=0; i<edges.size(); ++i) {
|
||
|
if (edges[i] > 0.f) {
|
||
|
edges[i] = lengths[i+1] - lengths[i];
|
||
|
running_total += edges[i];
|
||
|
}
|
||
|
}
|
||
|
return running_total;
|
||
|
};
|
||
|
|
||
|
// Find all seam candidate edges and their lengths.
|
||
|
float valid_length = 0.f;
|
||
|
if (has_enforcers)
|
||
|
valid_length = get_valid_length(enforcers_idxs, edges, true);
|
||
|
|
||
|
if (! has_enforcers || valid_length == 0.f) {
|
||
|
// Second condition covers case with isolated enf points. Given how the painted
|
||
|
// triangles are projected, this should not happen. Stay on the safe side though.
|
||
|
if (has_blockers)
|
||
|
valid_length = get_valid_length(blockers_idxs, edges, false);
|
||
|
if (valid_length == 0.f) // No blockers or everything blocked - use the whole polygon.
|
||
|
valid_length = lengths.back();
|
||
|
}
|
||
|
assert(valid_length != 0.f);
|
||
|
// Now generate a random length and find the respective edge.
|
||
|
float rand_len = valid_length * (rand()/float(RAND_MAX));
|
||
|
size_t pt_idx = 0; // Index of the edge where to put the seam.
|
||
|
if (valid_length == lengths.back()) {
|
||
|
// Whole polygon is used for placing the seam.
|
||
|
auto it = std::lower_bound(lengths.begin(), lengths.end(), rand_len);
|
||
|
pt_idx = it == lengths.begin() ? 0 : (it-lengths.begin()-1); // this takes care of a corner case where rand() returns 0
|
||
|
} else {
|
||
|
float running = 0.f;
|
||
|
for (size_t i=0; i<edges.size(); ++i) {
|
||
|
running += edges[i] > 0.f ? edges[i] : 0.f;
|
||
|
if (running >= rand_len) {
|
||
|
pt_idx = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (! has_enforcers && ! has_blockers) {
|
||
|
// The polygon may be too coarse, calculate the point exactly.
|
||
|
assert(valid_length == lengths.back());
|
||
|
bool last_seg = pt_idx == polygon.points.size()-1;
|
||
|
size_t next_idx = last_seg ? 0 : pt_idx+1;
|
||
|
const Point& prev = polygon.points[pt_idx];
|
||
|
const Point& next = polygon.points[next_idx];
|
||
|
assert(next_idx == 0 || pt_idx+1 == next_idx);
|
||
|
coordf_t diff_x = next.x() - prev.x();
|
||
|
coordf_t diff_y = next.y() - prev.y();
|
||
|
coordf_t dist = lengths[last_seg ? pt_idx+1 : next_idx] - lengths[pt_idx];
|
||
|
return Point(prev.x() + (rand_len - lengths[pt_idx]) * (diff_x/dist),
|
||
|
prev.y() + (rand_len - lengths[pt_idx]) * (diff_y/dist));
|
||
|
|
||
|
} else {
|
||
|
// The polygon should be dense enough.
|
||
|
return polygon.points[pt_idx];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void SeamPlacer::get_enforcers_and_blockers(size_t layer_id,
|
||
|
const Polygon& polygon,
|
||
|
size_t po_idx,
|
||
|
std::vector<size_t>& enforcers_idxs,
|
||
|
std::vector<size_t>& blockers_idxs) const
|
||
|
{
|
||
|
enforcers_idxs.clear();
|
||
|
blockers_idxs.clear();
|
||
|
|
||
|
auto is_inside = [](const Point& pt,
|
||
|
const CustomTrianglesPerLayer& custom_data) -> bool {
|
||
|
assert(! custom_data.polys.empty());
|
||
|
// Now ask the AABB tree which polygons we should check and check them.
|
||
|
std::vector<size_t> candidates;
|
||
|
AABBTreeIndirect::get_candidate_idxs(custom_data.tree, pt, candidates);
|
||
|
if (! candidates.empty())
|
||
|
for (size_t idx : candidates)
|
||
|
if (custom_data.polys[idx].contains(pt))
|
||
|
return true;
|
||
|
return false;
|
||
|
};
|
||
|
|
||
|
if (! m_enforcers[po_idx].empty()) {
|
||
|
const CustomTrianglesPerLayer& enforcers = m_enforcers[po_idx][layer_id];
|
||
|
if (! enforcers.polys.empty()) {
|
||
|
for (size_t i=0; i<polygon.points.size(); ++i) {
|
||
|
if (is_inside(polygon.points[i], enforcers))
|
||
|
enforcers_idxs.emplace_back(i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (! m_blockers[po_idx].empty()) {
|
||
|
const CustomTrianglesPerLayer& blockers = m_blockers[po_idx][layer_id];
|
||
|
if (! blockers.polys.empty()) {
|
||
|
for (size_t i=0; i<polygon.points.size(); ++i) {
|
||
|
if (is_inside(polygon.points[i], blockers))
|
||
|
blockers_idxs.emplace_back(i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
// Go through the polygon, identify points inside support enforcers and return
|
||
|
// indices of points in the middle of each enforcer (measured along the contour).
|
||
|
static std::vector<size_t> find_enforcer_centers(const Polygon& polygon,
|
||
|
const std::vector<float>& lengths,
|
||
|
const std::vector<size_t>& enforcers_idxs)
|
||
|
{
|
||
|
std::vector<size_t> out;
|
||
|
assert(polygon.points.size()+1 == lengths.size());
|
||
|
assert(std::is_sorted(enforcers_idxs.begin(), enforcers_idxs.end()));
|
||
|
if (polygon.size() < 2 || enforcers_idxs.empty())
|
||
|
return out;
|
||
|
|
||
|
auto get_center_idx = [&lengths](size_t start_idx, size_t end_idx) -> size_t {
|
||
|
assert(end_idx >= start_idx);
|
||
|
if (start_idx == end_idx)
|
||
|
return start_idx;
|
||
|
float t_c = lengths[start_idx] + 0.5f * (lengths[end_idx] - lengths[start_idx]);
|
||
|
auto it = std::lower_bound(lengths.begin() + start_idx, lengths.begin() + end_idx, t_c);
|
||
|
int ret = it - lengths.begin();
|
||
|
return ret;
|
||
|
};
|
||
|
|
||
|
int last_enforcer_start_idx = enforcers_idxs.front();
|
||
|
bool first_pt_in_list = enforcers_idxs.front() != 0;
|
||
|
bool last_pt_in_list = enforcers_idxs.back() == polygon.points.size() - 1;
|
||
|
bool wrap_around = last_pt_in_list && first_pt_in_list;
|
||
|
|
||
|
for (size_t i=0; i<enforcers_idxs.size(); ++i) {
|
||
|
if (i != enforcers_idxs.size() - 1) {
|
||
|
if (enforcers_idxs[i+1] != enforcers_idxs[i] + 1) {
|
||
|
// i is last point of current enforcer
|
||
|
out.push_back(get_center_idx(last_enforcer_start_idx, enforcers_idxs[i]));
|
||
|
last_enforcer_start_idx = enforcers_idxs[i+1];
|
||
|
}
|
||
|
} else {
|
||
|
if (! wrap_around) {
|
||
|
// we can safely use the last enforcer point.
|
||
|
out.push_back(get_center_idx(last_enforcer_start_idx, enforcers_idxs[i]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (wrap_around) {
|
||
|
// Update first center already found.
|
||
|
if (out.empty()) {
|
||
|
// Probably an enforcer around the whole contour. Return nothing.
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
// find last point of the enforcer at the beginning:
|
||
|
size_t idx = 0;
|
||
|
while (enforcers_idxs[idx]+1 == enforcers_idxs[idx+1])
|
||
|
++idx;
|
||
|
|
||
|
float t_s = lengths[last_enforcer_start_idx];
|
||
|
float t_e = lengths[idx];
|
||
|
float half_dist = 0.5f * (t_e + lengths.back() - t_s);
|
||
|
float t_c = (half_dist > t_e) ? t_s + half_dist : t_e - half_dist;
|
||
|
|
||
|
auto it = std::lower_bound(lengths.begin(), lengths.end(), t_c);
|
||
|
out[0] = it - lengths.begin();
|
||
|
if (out[0] == lengths.size() - 1)
|
||
|
--out[0];
|
||
|
assert(out[0] < lengths.size() - 1);
|
||
|
}
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void SeamPlacer::apply_custom_seam(const Polygon& polygon, size_t po_idx,
|
||
|
std::vector<float>& penalties,
|
||
|
const std::vector<float>& lengths,
|
||
|
int layer_id, SeamPosition seam_position) const
|
||
|
{
|
||
|
if (! is_custom_seam_on_layer(layer_id, po_idx))
|
||
|
return;
|
||
|
|
||
|
std::vector<size_t> enforcers_idxs;
|
||
|
std::vector<size_t> blockers_idxs;
|
||
|
this->get_enforcers_and_blockers(layer_id, polygon, po_idx, enforcers_idxs, blockers_idxs);
|
||
|
|
||
|
for (size_t i : enforcers_idxs) {
|
||
|
assert(i < penalties.size());
|
||
|
penalties[i] -= float(ENFORCER_BLOCKER_PENALTY);
|
||
|
}
|
||
|
for (size_t i : blockers_idxs) {
|
||
|
assert(i < penalties.size());
|
||
|
penalties[i] += float(ENFORCER_BLOCKER_PENALTY);
|
||
|
}
|
||
|
if (seam_position == spAligned) {
|
||
|
std::vector<size_t> enf_centers = find_enforcer_centers(polygon, lengths, enforcers_idxs);
|
||
|
for (size_t idx : enf_centers) {
|
||
|
assert(idx < penalties.size());
|
||
|
penalties[idx] += ENFORCER_CENTER_PENALTY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
std::ostringstream os;
|
||
|
os << std::setw(3) << std::setfill('0') << layer_id;
|
||
|
int a = scale_(30.);
|
||
|
SVG svg("custom_seam" + os.str() + ".svg", BoundingBox(Point(-a, -a), Point(a, a)));
|
||
|
if (! m_enforcers[po_idx].empty())
|
||
|
svg.draw(m_enforcers[po_idx][layer_id].polys, "blue");
|
||
|
if (! m_blockers[po_idx].empty())
|
||
|
svg.draw(m_blockers[po_idx][layer_id].polys, "red");
|
||
|
|
||
|
if (! blockers_idxs.empty()) {
|
||
|
;
|
||
|
}
|
||
|
|
||
|
|
||
|
size_t min_idx = std::min_element(penalties.begin(), penalties.end()) - penalties.begin();
|
||
|
|
||
|
for (size_t i=0; i<polygon.points.size(); ++i) {
|
||
|
std::string fill;
|
||
|
coord_t size = 5e5;
|
||
|
if (min_idx == i)
|
||
|
fill = "yellow";
|
||
|
else
|
||
|
fill = (std::find(blockers_idxs.begin(), blockers_idxs.end(), i) != blockers_idxs.end() ? "green" : "black");
|
||
|
if (i != 0)
|
||
|
svg.draw(polygon.points[i], fill, size);
|
||
|
else
|
||
|
svg.draw(polygon.points[i], "red", 5e5);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
std::optional<Point> SeamHistory::get_last_seam(const PrintObject* po, size_t layer_id, const BoundingBox& island_bb)
|
||
|
{
|
||
|
assert(layer_id >= m_layer_id || layer_id == 0);
|
||
|
if (layer_id != m_layer_id) {
|
||
|
// Get seam was called for different layer than last time.
|
||
|
if (layer_id == 0) // seq printing
|
||
|
m_data_this_layer.clear();
|
||
|
m_data_last_layer = m_data_this_layer;
|
||
|
m_data_this_layer.clear();
|
||
|
m_layer_id = layer_id;
|
||
|
}
|
||
|
|
||
|
std::optional<Point> out;
|
||
|
|
||
|
auto seams_it = m_data_last_layer.find(po);
|
||
|
if (seams_it == m_data_last_layer.end())
|
||
|
return out;
|
||
|
|
||
|
const std::vector<SeamPoint>& seam_data_po = seams_it->second;
|
||
|
|
||
|
// Find a bounding-box on the last layer that is close to one we see now.
|
||
|
double min_score = std::numeric_limits<double>::max();
|
||
|
for (const SeamPoint& sp : seam_data_po) {
|
||
|
const BoundingBox& bb = sp.m_island_bb;
|
||
|
|
||
|
if (! bb.overlap(island_bb)) {
|
||
|
// This bb does not even overlap. It is likely unrelated.
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
double score = std::pow(bb.min(0) - island_bb.min(0), 2.)
|
||
|
+ std::pow(bb.min(1) - island_bb.min(1), 2.)
|
||
|
+ std::pow(bb.max(0) - island_bb.max(0), 2.)
|
||
|
+ std::pow(bb.max(1) - island_bb.max(1), 2.);
|
||
|
|
||
|
if (score < min_score) {
|
||
|
min_score = score;
|
||
|
out = sp.m_pos;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void SeamHistory::add_seam(const PrintObject* po, const Point& pos, const BoundingBox& island_bb)
|
||
|
{
|
||
|
m_data_this_layer[po].push_back({pos, island_bb});;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void SeamHistory::clear()
|
||
|
{
|
||
|
m_layer_id = 0;
|
||
|
m_data_last_layer.clear();
|
||
|
m_data_this_layer.clear();
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|