diff --git a/resources/images/copy_menu.svg b/resources/images/copy_menu.svg new file mode 100644 index 000000000..23e0bfeb2 --- /dev/null +++ b/resources/images/copy_menu.svg @@ -0,0 +1,37 @@ + + + + + + + + + + + + + + + + + + + + diff --git a/resources/images/copy_menu_dark.svg b/resources/images/copy_menu_dark.svg new file mode 100644 index 000000000..eaee113a1 --- /dev/null +++ b/resources/images/copy_menu_dark.svg @@ -0,0 +1,37 @@ + + + + + + + + + + + + + + + + + + + + diff --git a/resources/images/toolbar_measure.svg b/resources/images/toolbar_measure.svg new file mode 100644 index 000000000..1606b5ee6 --- /dev/null +++ b/resources/images/toolbar_measure.svg @@ -0,0 +1,93 @@ + + + + + + + + + + + + + + + + diff --git a/resources/images/toolbar_measure_dark.svg b/resources/images/toolbar_measure_dark.svg new file mode 100644 index 000000000..a273e7534 --- /dev/null +++ b/resources/images/toolbar_measure_dark.svg @@ -0,0 +1,93 @@ + + + + + + + + + + + + + + + + diff --git a/src/imgui/imconfig.h b/src/imgui/imconfig.h index 87c73dc74..358912148 100644 --- a/src/imgui/imconfig.h +++ b/src/imgui/imconfig.h @@ -212,6 +212,8 @@ namespace ImGui const wchar_t AddFilamentDarkIcon = 0x0845; const wchar_t DeleteFilamentIcon = 0x0846; const wchar_t DeleteFilamentDarkIcon = 0x0847; + const wchar_t ClipboardBtnIcon = 0x0848; + const wchar_t ClipboardBtnDarkIcon = 0x0849; // void MyFunction(const char* name, const MyMatrix44& v); } diff --git a/src/libslic3r/CMakeLists.txt b/src/libslic3r/CMakeLists.txt index 75b981e99..04e0b4c82 100644 --- a/src/libslic3r/CMakeLists.txt +++ b/src/libslic3r/CMakeLists.txt @@ -48,6 +48,8 @@ set(lisbslic3r_sources ClipperUtils.hpp Clipper2Utils.cpp Clipper2Utils.hpp + Color.cpp + Color.hpp Config.cpp Config.hpp CurveAnalyzer.cpp @@ -197,6 +199,9 @@ set(lisbslic3r_sources ModelArrange.cpp MultiMaterialSegmentation.cpp MultiMaterialSegmentation.hpp + Measure.hpp + Measure.cpp + MeasureUtils.hpp CustomGCode.cpp CustomGCode.hpp Arrange.hpp @@ -280,6 +285,7 @@ set(lisbslic3r_sources Surface.hpp SurfaceCollection.cpp SurfaceCollection.hpp + SurfaceMesh.hpp SVG.cpp SVG.hpp Technologies.hpp diff --git a/src/libslic3r/Color.cpp b/src/libslic3r/Color.cpp new file mode 100644 index 000000000..7777b0e3e --- /dev/null +++ b/src/libslic3r/Color.cpp @@ -0,0 +1,425 @@ +#include "libslic3r.h" +#include "Color.hpp" + +#include + +static const float INV_255 = 1.0f / 255.0f; + +namespace Slic3r { + +// Conversion from RGB to HSV color space +// The input RGB values are in the range [0, 1] +// The output HSV values are in the ranges h = [0, 360], and s, v = [0, 1] +static void RGBtoHSV(float r, float g, float b, float& h, float& s, float& v) +{ + assert(0.0f <= r && r <= 1.0f); + assert(0.0f <= g && g <= 1.0f); + assert(0.0f <= b && b <= 1.0f); + + const float max_comp = std::max(std::max(r, g), b); + const float min_comp = std::min(std::min(r, g), b); + const float delta = max_comp - min_comp; + + if (delta > 0.0f) { + if (max_comp == r) + h = 60.0f * (std::fmod(((g - b) / delta), 6.0f)); + else if (max_comp == g) + h = 60.0f * (((b - r) / delta) + 2.0f); + else if (max_comp == b) + h = 60.0f * (((r - g) / delta) + 4.0f); + + s = (max_comp > 0.0f) ? delta / max_comp : 0.0f; + } + else { + h = 0.0f; + s = 0.0f; + } + v = max_comp; + + while (h < 0.0f) { h += 360.0f; } + while (h > 360.0f) { h -= 360.0f; } + + assert(0.0f <= s && s <= 1.0f); + assert(0.0f <= v && v <= 1.0f); + assert(0.0f <= h && h <= 360.0f); +} + +// Conversion from HSV to RGB color space +// The input HSV values are in the ranges h = [0, 360], and s, v = [0, 1] +// The output RGB values are in the range [0, 1] +static void HSVtoRGB(float h, float s, float v, float& r, float& g, float& b) +{ + assert(0.0f <= s && s <= 1.0f); + assert(0.0f <= v && v <= 1.0f); + assert(0.0f <= h && h <= 360.0f); + + const float chroma = v * s; + const float h_prime = std::fmod(h / 60.0f, 6.0f); + const float x = chroma * (1.0f - std::abs(std::fmod(h_prime, 2.0f) - 1.0f)); + const float m = v - chroma; + + if (0.0f <= h_prime && h_prime < 1.0f) { + r = chroma; + g = x; + b = 0.0f; + } + else if (1.0f <= h_prime && h_prime < 2.0f) { + r = x; + g = chroma; + b = 0.0f; + } + else if (2.0f <= h_prime && h_prime < 3.0f) { + r = 0.0f; + g = chroma; + b = x; + } + else if (3.0f <= h_prime && h_prime < 4.0f) { + r = 0.0f; + g = x; + b = chroma; + } + else if (4.0f <= h_prime && h_prime < 5.0f) { + r = x; + g = 0.0f; + b = chroma; + } + else if (5.0f <= h_prime && h_prime < 6.0f) { + r = chroma; + g = 0.0f; + b = x; + } + else { + r = 0.0f; + g = 0.0f; + b = 0.0f; + } + + r += m; + g += m; + b += m; + + assert(0.0f <= r && r <= 1.0f); + assert(0.0f <= g && g <= 1.0f); + assert(0.0f <= b && b <= 1.0f); +} + +class Randomizer +{ + std::random_device m_rd; + +public: + float random_float(float min, float max) { + std::mt19937 rand_generator(m_rd()); + std::uniform_real_distribution distrib(min, max); + return distrib(rand_generator); + } +}; + +ColorRGB::ColorRGB(float r, float g, float b) +: m_data({ std::clamp(r, 0.0f, 1.0f), std::clamp(g, 0.0f, 1.0f), std::clamp(b, 0.0f, 1.0f) }) +{ +} + +ColorRGB::ColorRGB(unsigned char r, unsigned char g, unsigned char b) +: m_data({ std::clamp(r * INV_255, 0.0f, 1.0f), std::clamp(g * INV_255, 0.0f, 1.0f), std::clamp(b * INV_255, 0.0f, 1.0f) }) +{ +} + +bool ColorRGB::operator < (const ColorRGB& other) const +{ + for (size_t i = 0; i < 3; ++i) { + if (m_data[i] < other.m_data[i]) + return true; + else if (m_data[i] > other.m_data[i]) + return false; + } + + return false; +} + +bool ColorRGB::operator > (const ColorRGB& other) const +{ + for (size_t i = 0; i < 3; ++i) { + if (m_data[i] > other.m_data[i]) + return true; + else if (m_data[i] < other.m_data[i]) + return false; + } + + return false; +} + +ColorRGB ColorRGB::operator + (const ColorRGB& other) const +{ + ColorRGB ret; + for (size_t i = 0; i < 3; ++i) { + ret.m_data[i] = std::clamp(m_data[i] + other.m_data[i], 0.0f, 1.0f); + } + return ret; +} + +ColorRGB ColorRGB::operator * (float value) const +{ + assert(value >= 0.0f); + ColorRGB ret; + for (size_t i = 0; i < 3; ++i) { + ret.m_data[i] = std::clamp(value * m_data[i], 0.0f, 1.0f); + } + return ret; +} + +ColorRGBA::ColorRGBA(float r, float g, float b, float a) +: m_data({ std::clamp(r, 0.0f, 1.0f), std::clamp(g, 0.0f, 1.0f), std::clamp(b, 0.0f, 1.0f), std::clamp(a, 0.0f, 1.0f) }) +{ +} + +ColorRGBA::ColorRGBA(std::array color) + : m_data({std::clamp(color[0], 0.0f, 1.0f), std::clamp(color[1], 0.0f, 1.0f), std::clamp(color[2], 0.0f, 1.0f), std::clamp(color[3], 0.0f, 1.0f)}) +{ + +} +ColorRGBA::ColorRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a) +: m_data({ std::clamp(r * INV_255, 0.0f, 1.0f), std::clamp(g * INV_255, 0.0f, 1.0f), std::clamp(b * INV_255, 0.0f, 1.0f), std::clamp(a * INV_255, 0.0f, 1.0f) }) +{ +} + +bool ColorRGBA::operator < (const ColorRGBA& other) const +{ + for (size_t i = 0; i < 3; ++i) { + if (m_data[i] < other.m_data[i]) + return true; + else if (m_data[i] > other.m_data[i]) + return false; + } + + return false; +} + +bool ColorRGBA::operator > (const ColorRGBA& other) const +{ + for (size_t i = 0; i < 3; ++i) { + if (m_data[i] > other.m_data[i]) + return true; + else if (m_data[i] < other.m_data[i]) + return false; + } + + return false; +} + +ColorRGBA ColorRGBA::operator + (const ColorRGBA& other) const +{ + ColorRGBA ret; + for (size_t i = 0; i < 3; ++i) { + ret.m_data[i] = std::clamp(m_data[i] + other.m_data[i], 0.0f, 1.0f); + } + return ret; +} + +ColorRGBA ColorRGBA::operator * (float value) const +{ + assert(value >= 0.0f); + ColorRGBA ret; + for (size_t i = 0; i < 3; ++i) { + ret.m_data[i] = std::clamp(value * m_data[i], 0.0f, 1.0f); + } + ret.m_data[3] = this->m_data[3]; + return ret; +} + +ColorRGB operator * (float value, const ColorRGB& other) { return other * value; } +ColorRGBA operator * (float value, const ColorRGBA& other) { return other * value; } + +ColorRGB lerp(const ColorRGB& a, const ColorRGB& b, float t) +{ + assert(0.0f <= t && t <= 1.0f); + return (1.0f - t) * a + t * b; +} + +ColorRGBA lerp(const ColorRGBA& a, const ColorRGBA& b, float t) +{ + assert(0.0f <= t && t <= 1.0f); + return (1.0f - t) * a + t * b; +} + +ColorRGB complementary(const ColorRGB& color) +{ + return { 1.0f - color.r(), 1.0f - color.g(), 1.0f - color.b() }; +} + +ColorRGBA complementary(const ColorRGBA& color) +{ + return { 1.0f - color.r(), 1.0f - color.g(), 1.0f - color.b(), color.a() }; +} + +ColorRGB saturate(const ColorRGB& color, float factor) +{ + float h, s, v; + RGBtoHSV(color.r(), color.g(), color.b(), h, s, v); + s = std::clamp(s * factor, 0.0f, 1.0f); + float r, g, b; + HSVtoRGB(h, s, v, r, g, b); + return { r, g, b }; +} + +ColorRGBA saturate(const ColorRGBA& color, float factor) +{ + return to_rgba(saturate(to_rgb(color), factor), color.a()); +} + +ColorRGB opposite(const ColorRGB& color) +{ + float h, s, v; + RGBtoHSV(color.r(), color.g(), color.b(), h, s, v); + + h += 65.0f; // 65 instead 60 to avoid circle values + if (h > 360.0f) + h -= 360.0f; + + Randomizer rnd; + s = rnd.random_float(0.65f, 1.0f); + v = rnd.random_float(0.65f, 1.0f); + + float r, g, b; + HSVtoRGB(h, s, v, r, g, b); + return { r, g, b }; +} + +ColorRGB opposite(const ColorRGB& a, const ColorRGB& b) +{ + float ha, sa, va; + RGBtoHSV(a.r(), a.g(), a.b(), ha, sa, va); + float hb, sb, vb; + RGBtoHSV(b.r(), b.g(), b.b(), hb, sb, vb); + + float delta_h = std::abs(ha - hb); + float start_h = (delta_h > 180.0f) ? std::min(ha, hb) : std::max(ha, hb); + + start_h += 5.0f; // to avoid circle change of colors for 120 deg + if (delta_h < 180.0f) + delta_h = 360.0f - delta_h; + + Randomizer rnd; + float out_h = start_h + 0.5f * delta_h; + if (out_h > 360.0f) + out_h -= 360.0f; + float out_s = rnd.random_float(0.65f, 1.0f); + float out_v = rnd.random_float(0.65f, 1.0f); + + float out_r, out_g, out_b; + HSVtoRGB(out_h, out_s, out_v, out_r, out_g, out_b); + return { out_r, out_g, out_b }; +} + +bool can_decode_color(const std::string &color) +{ + return (color.size() == 7 && color.front() == '#') || (color.size() == 9 && color.front() == '#'); +} + +bool decode_color(const std::string& color_in, ColorRGB& color_out) +{ + ColorRGBA rgba; + if (!decode_color(color_in, rgba)) + return false; + + color_out = to_rgb(rgba); + return true; +} + +bool decode_color(const std::string& color_in, ColorRGBA& color_out) +{ + auto hex_digit_to_int = [](const char c) { + return + (c >= '0' && c <= '9') ? int(c - '0') : + (c >= 'A' && c <= 'F') ? int(c - 'A') + 10 : + (c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1; + }; + + color_out = ColorRGBA::BLACK(); + if (can_decode_color(color_in)) { + const char *c = color_in.data() + 1; + if (color_in.size() == 7) { + for (unsigned int i = 0; i < 3; ++i) { + const int digit1 = hex_digit_to_int(*c++); + const int digit2 = hex_digit_to_int(*c++); + if (digit1 != -1 && digit2 != -1) + color_out.set(i, float(digit1 * 16 + digit2) * INV_255); + } + } else { + for (unsigned int i = 0; i < 4; ++i) { + const int digit1 = hex_digit_to_int(*c++); + const int digit2 = hex_digit_to_int(*c++); + if (digit1 != -1 && digit2 != -1) + color_out.set(i, float(digit1 * 16 + digit2) * INV_255); + } + } + } else + return false; + + assert(0.0f <= color_out.r() && color_out.r() <= 1.0f); + assert(0.0f <= color_out.g() && color_out.g() <= 1.0f); + assert(0.0f <= color_out.b() && color_out.b() <= 1.0f); + assert(0.0f <= color_out.a() && color_out.a() <= 1.0f); + return true; +} + +bool decode_colors(const std::vector& colors_in, std::vector& colors_out) +{ + colors_out = std::vector(colors_in.size(), ColorRGB::BLACK()); + for (size_t i = 0; i < colors_in.size(); ++i) { + if (!decode_color(colors_in[i], colors_out[i])) + return false; + } + return true; +} + +bool decode_colors(const std::vector& colors_in, std::vector& colors_out) +{ + colors_out = std::vector(colors_in.size(), ColorRGBA::BLACK()); + for (size_t i = 0; i < colors_in.size(); ++i) { + if (!decode_color(colors_in[i], colors_out[i])) + return false; + } + return true; +} + +std::string encode_color(const ColorRGB& color) +{ + char buffer[64]; + ::sprintf(buffer, "#%02X%02X%02X", color.r_uchar(), color.g_uchar(), color.b_uchar()); + return std::string(buffer); +} + +std::string encode_color(const ColorRGBA& color) { return encode_color(to_rgb(color)); } + +ColorRGB to_rgb(const ColorRGBA& other_rgba) { return { other_rgba.r(), other_rgba.g(), other_rgba.b() }; } +ColorRGBA to_rgba(const ColorRGB& other_rgb) { return { other_rgb.r(), other_rgb.g(), other_rgb.b(), 1.0f }; } +ColorRGBA to_rgba(const ColorRGB& other_rgb, float alpha) { return { other_rgb.r(), other_rgb.g(), other_rgb.b(), alpha }; } + +ColorRGBA picking_decode(unsigned int id) +{ + return { + float((id >> 0) & 0xff) * INV_255, // red + float((id >> 8) & 0xff) * INV_255, // green + float((id >> 16) & 0xff) * INV_255, // blue + float(picking_checksum_alpha_channel(id & 0xff, (id >> 8) & 0xff, (id >> 16) & 0xff)) * INV_255 // checksum for validating against unwanted alpha blending and multi sampling + }; +} + +unsigned int picking_encode(unsigned char r, unsigned char g, unsigned char b) { return r + (g << 8) + (b << 16); } + +unsigned char picking_checksum_alpha_channel(unsigned char red, unsigned char green, unsigned char blue) +{ + // 8 bit hash for the color + unsigned char b = ((((37 * red) + green) & 0x0ff) * 37 + blue) & 0x0ff; + // Increase enthropy by a bit reversal + b = (b & 0xF0) >> 4 | (b & 0x0F) << 4; + b = (b & 0xCC) >> 2 | (b & 0x33) << 2; + b = (b & 0xAA) >> 1 | (b & 0x55) << 1; + // Flip every second bit to increase the enthropy even more. + b ^= 0x55; + return b; +} + +} // namespace Slic3r + diff --git a/src/libslic3r/Color.hpp b/src/libslic3r/Color.hpp new file mode 100644 index 000000000..5719d0eb9 --- /dev/null +++ b/src/libslic3r/Color.hpp @@ -0,0 +1,178 @@ +#ifndef slic3r_Color_hpp_ +#define slic3r_Color_hpp_ + +#include +#include + +namespace Slic3r { + +class ColorRGB +{ + std::array m_data{1.0f, 1.0f, 1.0f}; + +public: + ColorRGB() = default; + ColorRGB(float r, float g, float b); + ColorRGB(unsigned char r, unsigned char g, unsigned char b); + ColorRGB(const ColorRGB& other) = default; + + ColorRGB& operator = (const ColorRGB& other) { m_data = other.m_data; return *this; } + + bool operator == (const ColorRGB& other) const { return m_data == other.m_data; } + bool operator != (const ColorRGB& other) const { return !operator==(other); } + bool operator < (const ColorRGB& other) const; + bool operator > (const ColorRGB& other) const; + + ColorRGB operator + (const ColorRGB& other) const; + ColorRGB operator * (float value) const; + + const float* const data() const { return m_data.data(); } + + float r() const { return m_data[0]; } + float g() const { return m_data[1]; } + float b() const { return m_data[2]; } + + void r(float r) { m_data[0] = std::clamp(r, 0.0f, 1.0f); } + void g(float g) { m_data[1] = std::clamp(g, 0.0f, 1.0f); } + void b(float b) { m_data[2] = std::clamp(b, 0.0f, 1.0f); } + + void set(unsigned int comp, float value) { + assert(0 <= comp && comp <= 2); + m_data[comp] = std::clamp(value, 0.0f, 1.0f); + } + + unsigned char r_uchar() const { return static_cast(m_data[0] * 255.0f); } + unsigned char g_uchar() const { return static_cast(m_data[1] * 255.0f); } + unsigned char b_uchar() const { return static_cast(m_data[2] * 255.0f); } + + static const ColorRGB BLACK() { return { 0.0f, 0.0f, 0.0f }; } + static const ColorRGB BLUE() { return { 0.0f, 0.0f, 1.0f }; } + static const ColorRGB BLUEISH() { return { 0.5f, 0.5f, 1.0f }; } + static const ColorRGB CYAN() { return { 0.0f, 1.0f, 1.0f }; } + static const ColorRGB DARK_GRAY() { return { 0.25f, 0.25f, 0.25f }; } + static const ColorRGB DARK_YELLOW() { return { 0.5f, 0.5f, 0.0f }; } + static const ColorRGB GRAY() { return { 0.5f, 0.5f, 0.5f }; } + static const ColorRGB GREEN() { return { 0.0f, 1.0f, 0.0f }; } + static const ColorRGB GREENISH() { return { 0.5f, 1.0f, 0.5f }; } + static const ColorRGB LIGHT_GRAY() { return { 0.75f, 0.75f, 0.75f }; } + static const ColorRGB MAGENTA() { return { 1.0f, 0.0f, 1.0f }; } + static const ColorRGB ORANGE() { return { 0.92f, 0.50f, 0.26f }; } + static const ColorRGB RED() { return { 1.0f, 0.0f, 0.0f }; } + static const ColorRGB REDISH() { return { 1.0f, 0.5f, 0.5f }; } + static const ColorRGB YELLOW() { return { 1.0f, 1.0f, 0.0f }; } + static const ColorRGB WHITE() { return { 1.0f, 1.0f, 1.0f }; } + static const ColorRGB ORCA() { return {0.0f, 150.f / 255.0f, 136.0f / 255}; } + + static const ColorRGB X() { return { 0.75f, 0.0f, 0.0f }; } + static const ColorRGB Y() { return { 0.0f, 0.75f, 0.0f }; } + static const ColorRGB Z() { return { 0.0f, 0.0f, 0.75f }; } +}; + +class ColorRGBA +{ + std::array m_data{ 1.0f, 1.0f, 1.0f, 1.0f }; + +public: + ColorRGBA() = default; + ColorRGBA(float r, float g, float b, float a); + ColorRGBA(std::array color); + ColorRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a); + ColorRGBA(const ColorRGBA& other) = default; + + ColorRGBA& operator = (const ColorRGBA& other) { m_data = other.m_data; return *this; } + + bool operator == (const ColorRGBA& other) const { return m_data == other.m_data; } + bool operator != (const ColorRGBA& other) const { return !operator==(other); } + bool operator < (const ColorRGBA& other) const; + bool operator > (const ColorRGBA& other) const; + + ColorRGBA operator + (const ColorRGBA& other) const; + ColorRGBA operator * (float value) const; + + const float* const data() const { return m_data.data(); } + const std::array &get_data() const { return m_data; } + + float r() const { return m_data[0]; } + float g() const { return m_data[1]; } + float b() const { return m_data[2]; } + float a() const { return m_data[3]; } + + void r(float r) { m_data[0] = std::clamp(r, 0.0f, 1.0f); } + void g(float g) { m_data[1] = std::clamp(g, 0.0f, 1.0f); } + void b(float b) { m_data[2] = std::clamp(b, 0.0f, 1.0f); } + void a(float a) { m_data[3] = std::clamp(a, 0.0f, 1.0f); } + + void set(unsigned int comp, float value) { + assert(0 <= comp && comp <= 3); + m_data[comp] = std::clamp(value, 0.0f, 1.0f); + } + + unsigned char r_uchar() const { return static_cast(m_data[0] * 255.0f); } + unsigned char g_uchar() const { return static_cast(m_data[1] * 255.0f); } + unsigned char b_uchar() const { return static_cast(m_data[2] * 255.0f); } + unsigned char a_uchar() const { return static_cast(m_data[3] * 255.0f); } + + bool is_transparent() const { return m_data[3] < 1.0f; } + + static const ColorRGBA BLACK() { return { 0.0f, 0.0f, 0.0f, 1.0f }; } + static const ColorRGBA BLUE() { return { 0.0f, 0.0f, 1.0f, 1.0f }; } + static const ColorRGBA BLUEISH() { return { 0.5f, 0.5f, 1.0f, 1.0f }; } + static const ColorRGBA CYAN() { return { 0.0f, 1.0f, 1.0f, 1.0f }; } + static const ColorRGBA DARK_GRAY() { return { 0.25f, 0.25f, 0.25f, 1.0f }; } + static const ColorRGBA DARK_YELLOW() { return { 0.5f, 0.5f, 0.0f, 1.0f }; } + static const ColorRGBA GRAY() { return { 0.5f, 0.5f, 0.5f, 1.0f }; } + static const ColorRGBA GREEN() { return { 0.0f, 1.0f, 0.0f, 1.0f }; } + static const ColorRGBA GREENISH() { return { 0.5f, 1.0f, 0.5f, 1.0f }; } + static const ColorRGBA LIGHT_GRAY() { return { 0.75f, 0.75f, 0.75f, 1.0f }; } + static const ColorRGBA MAGENTA() { return { 1.0f, 0.0f, 1.0f, 1.0f }; } + static const ColorRGBA ORANGE() { return { 0.923f, 0.504f, 0.264f, 1.0f }; } + static const ColorRGBA RED() { return { 1.0f, 0.0f, 0.0f, 1.0f }; } + static const ColorRGBA REDISH() { return { 1.0f, 0.5f, 0.5f, 1.0f }; } + static const ColorRGBA YELLOW() { return { 1.0f, 1.0f, 0.0f, 1.0f }; } + static const ColorRGBA WHITE() { return { 1.0f, 1.0f, 1.0f, 1.0f }; } + static const ColorRGBA ORCA() { return {0.0f, 150.f / 255.0f, 136.0f / 255, 1.0f}; } + + static const ColorRGBA X() { return { 0.75f, 0.0f, 0.0f, 1.0f }; } + static const ColorRGBA Y() { return { 0.0f, 0.75f, 0.0f, 1.0f }; } + static const ColorRGBA Z() { return { 0.0f, 0.0f, 0.75f, 1.0f }; } +}; + +ColorRGB operator * (float value, const ColorRGB& other); +ColorRGBA operator * (float value, const ColorRGBA& other); + +ColorRGB lerp(const ColorRGB& a, const ColorRGB& b, float t); +ColorRGBA lerp(const ColorRGBA& a, const ColorRGBA& b, float t); + +ColorRGB complementary(const ColorRGB& color); +ColorRGBA complementary(const ColorRGBA& color); + +ColorRGB saturate(const ColorRGB& color, float factor); +ColorRGBA saturate(const ColorRGBA& color, float factor); + +ColorRGB opposite(const ColorRGB& color); +ColorRGB opposite(const ColorRGB& a, const ColorRGB& b); + +bool can_decode_color(const std::string& color); + +bool decode_color(const std::string& color_in, ColorRGB& color_out); +bool decode_color(const std::string& color_in, ColorRGBA& color_out); + +bool decode_colors(const std::vector& colors_in, std::vector& colors_out); +bool decode_colors(const std::vector& colors_in, std::vector& colors_out); + +std::string encode_color(const ColorRGB& color); +std::string encode_color(const ColorRGBA& color); + +ColorRGB to_rgb(const ColorRGBA& other_rgba); +ColorRGBA to_rgba(const ColorRGB& other_rgb); +ColorRGBA to_rgba(const ColorRGB& other_rgb, float alpha); + +ColorRGBA picking_decode(unsigned int id); +unsigned int picking_encode(unsigned char r, unsigned char g, unsigned char b); +// Produce an alpha channel checksum for the red green blue components. The alpha channel may then be used to verify, whether the rgb components +// were not interpolated by alpha blending or multi sampling. +unsigned char picking_checksum_alpha_channel(unsigned char red, unsigned char green, unsigned char blue); + +} // namespace Slic3r + +#endif /* slic3r_Color_hpp_ */ diff --git a/src/libslic3r/Geometry/Circle.cpp b/src/libslic3r/Geometry/Circle.cpp index 4d7c38ccc..a780a20bc 100644 --- a/src/libslic3r/Geometry/Circle.cpp +++ b/src/libslic3r/Geometry/Circle.cpp @@ -108,30 +108,32 @@ Circled circle_taubin_newton(const Vec2ds& input, size_t cycles) return out; } -Circled circle_ransac(const Vec2ds& input, size_t iterations) +Circled circle_ransac(const Vec2ds &input, size_t iterations, double *min_error) { if (input.size() < 3) return Circled::make_invalid(); - std::mt19937 rng; + std::mt19937 rng; std::vector samples; - Circled circle_best = Circled::make_invalid(); - double err_min = std::numeric_limits::max(); - for (size_t iter = 0; iter < iterations; ++ iter) { + Circled circle_best = Circled::make_invalid(); + double err_min = std::numeric_limits::max(); + for (size_t iter = 0; iter < iterations; ++iter) { samples.clear(); std::sample(input.begin(), input.end(), std::back_inserter(samples), 3, rng); Circled c; c.center = Geometry::circle_center(samples[0], samples[1], samples[2], EPSILON); - c.radius = std::accumulate(input.begin(), input.end(), 0., [&c](double acc, const Vec2d& pt) { return (pt - c.center).norm() + acc; }); + c.radius = std::accumulate(input.begin(), input.end(), 0., [&c](double acc, const Vec2d &pt) { return (pt - c.center).norm() + acc; }); c.radius /= double(input.size()); double err = 0; for (const Vec2d &pt : input) err = std::max(err, std::abs((pt - c.center).norm() - c.radius)); if (err < err_min) { - err_min = err; + err_min = err; circle_best = c; } } + if (min_error) + *min_error = err_min; return circle_best; } diff --git a/src/libslic3r/Geometry/Circle.hpp b/src/libslic3r/Geometry/Circle.hpp index 39973d916..62518718d 100644 --- a/src/libslic3r/Geometry/Circle.hpp +++ b/src/libslic3r/Geometry/Circle.hpp @@ -102,7 +102,7 @@ inline Vec2d circle_center_taubin_newton(const Vec2ds& input, size_t cycles = 20 Circled circle_taubin_newton(const Vec2ds& input, size_t cycles = 20); // Find circle using RANSAC randomized algorithm. -Circled circle_ransac(const Vec2ds& input, size_t iterations = 20); +Circled circle_ransac(const Vec2ds &input, size_t iterations = 20, double *min_error = nullptr); // Randomized algorithm by Emo Welzl, working with squared radii for efficiency. The returned circle radius is inflated by epsilon. template diff --git a/src/libslic3r/Measure.cpp b/src/libslic3r/Measure.cpp new file mode 100644 index 000000000..8a4a5ce72 --- /dev/null +++ b/src/libslic3r/Measure.cpp @@ -0,0 +1,1247 @@ +///|/ Copyright (c) Prusa Research 2022 - 2023 Lukáš Matěna @lukasmatena, Enrico Turri @enricoturri1966, Vojtěch Bubník @bubnikv, Pavel Mikuš @Godrak +///|/ +///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher +///|/ +#include "libslic3r/libslic3r.h" +#include "Measure.hpp" +#include "MeasureUtils.hpp" + +#include "libslic3r/Geometry/Circle.hpp" +#include "libslic3r/SurfaceMesh.hpp" + + +#include +#include + +#define DEBUG_EXTRACT_ALL_FEATURES_AT_ONCE 0 + +namespace Slic3r { +namespace Measure { + + +constexpr double feature_hover_limit = 0.5; // how close to a feature the mouse must be to highlight it + +static std::tuple get_center_and_radius(const std::vector& points, const Transform3d& trafo, const Transform3d& trafo_inv) +{ + Vec2ds out; + double z = 0.; + for (const Vec3d& pt : points) { + Vec3d pt_transformed = trafo * pt; + z = pt_transformed.z(); + out.emplace_back(pt_transformed.x(), pt_transformed.y()); + } + + const int iter = points.size() < 10 ? 2 : + points.size() < 100 ? 4 : + 6; + + double error = std::numeric_limits::max(); + auto circle = Geometry::circle_ransac(out, iter, &error); + + return std::make_tuple(trafo.inverse() * Vec3d(circle.center.x(), circle.center.y(), z), circle.radius, error); +} + + + +static std::array orthonormal_basis(const Vec3d& v) +{ + std::array ret; + ret[2] = v.normalized(); + int index; + ret[2].cwiseAbs().maxCoeff(&index); + switch (index) + { + case 0: { ret[0] = Vec3d(ret[2].y(), -ret[2].x(), 0.0).normalized(); break; } + case 1: { ret[0] = Vec3d(0.0, ret[2].z(), -ret[2].y()).normalized(); break; } + case 2: { ret[0] = Vec3d(-ret[2].z(), 0.0, ret[2].x()).normalized(); break; } + } + ret[1] = ret[2].cross(ret[0]).normalized(); + return ret; +} + + + +class MeasuringImpl { +public: + explicit MeasuringImpl(const indexed_triangle_set& its); + struct PlaneData { + std::vector facets; + std::vector> borders; // FIXME: should be in fact local in update_planes() + std::vector surface_features; + Vec3d normal; + float area; + bool features_extracted = false; + }; + + std::optional get_feature(size_t face_idx, const Vec3d& point); + int get_num_of_planes() const; + const std::vector& get_plane_triangle_indices(int idx) const; + const std::vector& get_plane_features(unsigned int plane_id); + const indexed_triangle_set& get_its() const; + +private: + void update_planes(); + void extract_features(int plane_idx); + + std::vector m_planes; + std::vector m_face_to_plane; + indexed_triangle_set m_its; +}; + + + + + + +MeasuringImpl::MeasuringImpl(const indexed_triangle_set& its) +: m_its(its) +{ + update_planes(); + + // Extracting features will be done as needed. + // To extract all planes at once, run the following: +#if DEBUG_EXTRACT_ALL_FEATURES_AT_ONCE + for (int i=0; i face_normals = its_face_normals(m_its); + const std::vector face_neighbors = its_face_neighbors(m_its); + std::vector facet_queue(num_of_facets, 0); + int facet_queue_cnt = 0; + const stl_normal* normal_ptr = nullptr; + size_t seed_facet_idx = 0; + + auto is_same_normal = [](const stl_normal& a, const stl_normal& b) -> bool { + return (std::abs(a(0) - b(0)) < 0.001 && std::abs(a(1) - b(1)) < 0.001 && std::abs(a(2) - b(2)) < 0.001); + }; + + m_planes.clear(); + m_planes.reserve(num_of_facets / 5); // empty plane data object is quite lightweight, let's save the initial reallocations + + + // First go through all the triangles and fill in m_planes vector. For each "plane" + // detected on the model, it will contain list of facets that are part of it. + // We will also fill in m_face_to_plane, which contains index into m_planes + // for each of the source facets. + while (1) { + // Find next unvisited triangle: + for (; seed_facet_idx < num_of_facets; ++ seed_facet_idx) + if (m_face_to_plane[seed_facet_idx] == size_t(-1)) { + facet_queue[facet_queue_cnt ++] = seed_facet_idx; + normal_ptr = &face_normals[seed_facet_idx]; + m_face_to_plane[seed_facet_idx] = m_planes.size(); + m_planes.emplace_back(); + break; + } + if (seed_facet_idx == num_of_facets) + break; // Everything was visited already + + while (facet_queue_cnt > 0) { + int facet_idx = facet_queue[-- facet_queue_cnt]; + const stl_normal& this_normal = face_normals[facet_idx]; + if (is_same_normal(this_normal, *normal_ptr)) { +// const Vec3i& face = m_its.indices[facet_idx]; + + m_face_to_plane[facet_idx] = m_planes.size() - 1; + m_planes.back().facets.emplace_back(facet_idx); + for (int j = 0; j < 3; ++ j) + if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && m_face_to_plane[neighbor_idx] == size_t(-1)) + facet_queue[facet_queue_cnt ++] = neighbor_idx; + } + } + + m_planes.back().normal = normal_ptr->cast(); + std::sort(m_planes.back().facets.begin(), m_planes.back().facets.end()); + } + + // Check that each facet is part of one of the planes. + assert(std::none_of(m_face_to_plane.begin(), m_face_to_plane.end(), [](size_t val) { return val == size_t(-1); })); + + // Now we will walk around each of the planes and save vertices which form the border. + const SurfaceMesh sm(m_its); + + const auto& face_to_plane = m_face_to_plane; + auto& planes = m_planes; + + tbb::parallel_for(tbb::blocked_range(0, m_planes.size()), + [&planes, &face_to_plane, &face_neighbors, &sm](const tbb::blocked_range& range) { + for (size_t plane_id = range.begin(); plane_id != range.end(); ++plane_id) { + + const auto& facets = planes[plane_id].facets; + planes[plane_id].borders.clear(); + std::vector> visited(facets.size(), {false, false, false}); + + for (int face_id=0; face_id& last_border = planes[plane_id].borders.back(); + last_border.reserve(4); + last_border.emplace_back(sm.point(sm.source(he)).cast()); + //Vertex_index target = sm.target(he); + const Halfedge_index he_start = he; + + Face_index fi = he.face(); + auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi)); + assert(face_it != facets.end()); + assert(*face_it == int(fi)); + visited[face_it - facets.begin()][he.side()] = true; + + do { + const Halfedge_index he_orig = he; + he = sm.next_around_target(he); + if (he.is_invalid()) + goto PLANE_FAILURE; + + // For broken meshes, the iteration might never get back to he_orig. + // Remember all halfedges we saw to break out of such infinite loops. + boost::container::small_vector he_seen; + + while ( face_to_plane[sm.face(he)] == plane_id && he != he_orig) { + he_seen.emplace_back(he); + he = sm.next_around_target(he); + if (he.is_invalid() || std::find(he_seen.begin(), he_seen.end(), he) != he_seen.end()) + goto PLANE_FAILURE; + } + he = sm.opposite(he); + if (he.is_invalid()) + goto PLANE_FAILURE; + + Face_index fi = he.face(); + auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi)); + if (face_it == facets.end() || *face_it != int(fi)) // This indicates a broken mesh. + goto PLANE_FAILURE; + + if (visited[face_it - facets.begin()][he.side()] && he != he_start) { + last_border.resize(1); + break; + } + visited[face_it - facets.begin()][he.side()] = true; + + last_border.emplace_back(sm.point(sm.source(he)).cast()); + + // In case of broken meshes, this loop might be infinite. Break + // out in case it is clearly going bad. + if (last_border.size() > 3*facets.size()+1) + goto PLANE_FAILURE; + + } while (he != he_start); + + if (last_border.size() == 1) + planes[plane_id].borders.pop_back(); + else { + assert(last_border.front() == last_border.back()); + last_border.pop_back(); + } + } + } + continue; // There was no failure. + + PLANE_FAILURE: + planes[plane_id].borders.clear(); + }}); + m_planes.shrink_to_fit(); +} + +void MeasuringImpl::extract_features(int plane_idx) +{ + assert(! m_planes[plane_idx].features_extracted); + + PlaneData& plane = m_planes[plane_idx]; + plane.surface_features.clear(); + const Vec3d& normal = plane.normal; + + Eigen::Quaterniond q; + q.setFromTwoVectors(plane.normal, Vec3d::UnitZ()); + Transform3d trafo = Transform3d::Identity(); + trafo.rotate(q); + const Transform3d trafo_inv = trafo.inverse(); + + std::vector angles; // placed in outer scope to prevent reallocations + std::vector lengths; + + for (const std::vector& border : plane.borders) { + if (border.size() <= 1) + continue; + + bool done = false; + + if (border.size() > 4) { + const auto& [center, radius, err] = get_center_and_radius(border, trafo, trafo_inv); + + if (err < 0.05) { + // The whole border is one circle. Just add it into the list of features + // and we are done. + + bool is_polygon = border.size()>4 && border.size()<=8; + bool lengths_match = std::all_of(border.begin()+2, border.end(), [is_polygon](const Vec3d& pt) { + return Slic3r::is_approx((pt - *((&pt)-1)).squaredNorm(), (*((&pt)-1) - *((&pt)-2)).squaredNorm(), is_polygon ? 0.01 : 0.01); + }); + + if (lengths_match && (is_polygon || border.size() > 8)) { + if (is_polygon) { + // This is a polygon, add the separate edges with the center. + for (int j=0; j int { + assert(std::abs(offset) < border_size); + int out = idx+offset; + if (out >= border_size) + out = out - border_size; + else if (out < 0) + out = border_size + out; + + return out; + }; + + // First calculate angles at all the vertices. + angles.clear(); + lengths.clear(); + int first_different_angle_idx = 0; + for (int i=0; i M_PI) + angle = 2*M_PI - angle; + + angles.push_back(angle); + lengths.push_back(v2.norm()); + if (first_different_angle_idx == 0 && angles.size() > 1) { + if (! are_angles_same(angles.back(), angles[angles.size()-2])) + first_different_angle_idx = angles.size()-1; + } + } + assert(border.size() == angles.size()); + assert(border.size() == lengths.size()); + + // First go around the border and pick what might be circular segments. + // Save pair of indices to where such potential segments start and end. + // Also remember the length of these segments. + int start_idx = -1; + bool circle = false; + bool first_iter = true; + std::vector circles; + std::vector edges; + std::vector> circles_idxs; + //std::vector circles_lengths; + std::vector single_circle; // could be in loop-scope, but reallocations + double single_circle_length = 0.; + int first_pt_idx = offset_to_index(first_different_angle_idx, 1); + int i = first_pt_idx; + while (i != first_pt_idx || first_iter) { + if (are_angles_same(angles[i], angles[offset_to_index(i,-1)]) + && i != offset_to_index(first_pt_idx, -1) // not the last point + && i != start_idx ) { + // circle + if (! circle) { + circle = true; + single_circle.clear(); + single_circle_length = 0.; + start_idx = offset_to_index(i, -2); + single_circle = { border[start_idx], border[offset_to_index(start_idx,1)] }; + single_circle_length += lengths[offset_to_index(i, -1)]; + } + single_circle.emplace_back(border[i]); + single_circle_length += lengths[i]; + } else { + if (circle && single_circle.size() >= 5) { // Less than 5 vertices? Not a circle. + single_circle.emplace_back(border[i]); + single_circle_length += lengths[i]; + + bool accept_circle = true; + { + // Check that lengths of internal (!!!) edges match. + int j = offset_to_index(start_idx, 3); + while (j != i) { + if (! are_lengths_same(lengths[offset_to_index(j,-1)], lengths[j])) { + accept_circle = false; + break; + } + j = offset_to_index(j, 1); + } + } + + if (accept_circle) { + const auto& [center, radius, err] = get_center_and_radius(single_circle, trafo, trafo_inv); + + // Check that the fit went well. The tolerance is high, only to + // reject complete failures. + accept_circle &= err < 0.05; + + // If the segment subtends less than 90 degrees, throw it away. + accept_circle &= single_circle_length / radius > 0.9*M_PI/2.; + + if (accept_circle) { + // Add the circle and remember indices into borders. + circles_idxs.emplace_back(start_idx, i); + circles.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius)); + } + } + } + circle = false; + } + // Take care of the wrap around. + first_iter = false; + i = offset_to_index(i, 1); + } + + // We have the circles. Now go around again and pick edges, while jumping over circles. + if (circles_idxs.empty()) { + // Just add all edges. + for (int i=1; i 1 || circles_idxs.front().first != circles_idxs.front().second) { + // There is at least one circular segment. Start at its end and add edges until the start of the next one. + int i = circles_idxs.front().second; + int circle_idx = 1; + while (true) { + i = offset_to_index(i, 1); + edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[offset_to_index(i,-1)], border[i])); + if (circle_idx < int(circles_idxs.size()) && i == circles_idxs[circle_idx].first) { + i = circles_idxs[circle_idx].second; + ++circle_idx; + } + if (i == circles_idxs.front().first) + break; + } + } + + // Merge adjacent edges where needed. + assert(std::all_of(edges.begin(), edges.end(), + [](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Edge; })); + for (int i=edges.size()-1; i>=0; --i) { + const auto& [first_start, first_end] = edges[i==0 ? edges.size()-1 : i-1].get_edge(); + const auto& [second_start, second_end] = edges[i].get_edge(); + + if (Slic3r::is_approx(first_end, second_start) + && Slic3r::is_approx((first_end-first_start).normalized().dot((second_end-second_start).normalized()), 1.)) { + // The edges have the same direction and share a point. Merge them. + edges[i==0 ? edges.size()-1 : i-1] = SurfaceFeature(SurfaceFeatureType::Edge, first_start, second_end); + edges.erase(edges.begin() + i); + } + } + + // Now move the circles and edges into the feature list for the plane. + assert(std::all_of(circles.begin(), circles.end(), [](const SurfaceFeature& f) { + return f.get_type() == SurfaceFeatureType::Circle; + })); + assert(std::all_of(edges.begin(), edges.end(), [](const SurfaceFeature& f) { + return f.get_type() == SurfaceFeatureType::Edge; + })); + plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(circles.begin()), + std::make_move_iterator(circles.end())); + plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(edges.begin()), + std::make_move_iterator(edges.end())); + } + } + + // The last surface feature is the plane itself. + Vec3d cog = Vec3d::Zero(); + size_t counter = 0; + for (const std::vector& b : plane.borders) { + for (size_t i = 1; i < b.size(); ++i) { + cog += b[i]; + ++counter; + } + } + cog /= double(counter); + plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Plane, + plane.normal, cog, std::optional(), plane_idx + 0.0001)); + + plane.borders.clear(); + plane.borders.shrink_to_fit(); + + plane.features_extracted = true; +} + +std::optional MeasuringImpl::get_feature(size_t face_idx, const Vec3d& point) +{ + if (face_idx >= m_face_to_plane.size()) + return std::optional(); + + const PlaneData& plane = m_planes[m_face_to_plane[face_idx]]; + + if (! plane.features_extracted) + extract_features(m_face_to_plane[face_idx]); + + size_t closest_feature_idx = size_t(-1); + double min_dist = std::numeric_limits::max(); + + MeasurementResult res; + SurfaceFeature point_sf(point); + + assert(plane.surface_features.empty() || plane.surface_features.back().get_type() == SurfaceFeatureType::Plane); + + for (size_t i=0; idist; + if (dist < feature_hover_limit && dist < min_dist) { + min_dist = std::min(dist, min_dist); + closest_feature_idx = i; + } + } + } + + if (closest_feature_idx != size_t(-1)) { + const SurfaceFeature& f = plane.surface_features[closest_feature_idx]; + if (f.get_type() == SurfaceFeatureType::Edge) { + // If this is an edge, check if we are not close to the endpoint. If so, + // we will include the endpoint as well. Close = 10% of the lenghth of + // the edge, clamped between 0.025 and 0.5 mm. + const auto& [sp, ep] = f.get_edge(); + double len_sq = (ep-sp).squaredNorm(); + double limit_sq = std::max(0.025*0.025, std::min(0.5*0.5, 0.1 * 0.1 * len_sq)); + + if ((point-sp).squaredNorm() < limit_sq) + return std::make_optional(SurfaceFeature(sp)); + if ((point-ep).squaredNorm() < limit_sq) + return std::make_optional(SurfaceFeature(ep)); + } + return std::make_optional(f); + } + + // Nothing detected, return the plane as a whole. + assert(plane.surface_features.back().get_type() == SurfaceFeatureType::Plane); + return std::make_optional(plane.surface_features.back()); +} + + + + + +int MeasuringImpl::get_num_of_planes() const +{ + return (m_planes.size()); +} + + + +const std::vector& MeasuringImpl::get_plane_triangle_indices(int idx) const +{ + assert(idx >= 0 && idx < int(m_planes.size())); + return m_planes[idx].facets; +} + +const std::vector& MeasuringImpl::get_plane_features(unsigned int plane_id) +{ + assert(plane_id < m_planes.size()); + if (! m_planes[plane_id].features_extracted) + extract_features(plane_id); + return m_planes[plane_id].surface_features; +} + +const indexed_triangle_set& MeasuringImpl::get_its() const +{ + return this->m_its; +} + +Measuring::Measuring(const indexed_triangle_set& its) +: priv{std::make_unique(its)} +{} + +Measuring::~Measuring() {} + + + +std::optional Measuring::get_feature(size_t face_idx, const Vec3d& point) const +{ + return priv->get_feature(face_idx, point); +} + + +int Measuring::get_num_of_planes() const +{ + return priv->get_num_of_planes(); +} + + +const std::vector& Measuring::get_plane_triangle_indices(int idx) const +{ + return priv->get_plane_triangle_indices(idx); +} + +const std::vector& Measuring::get_plane_features(unsigned int plane_id) const +{ + return priv->get_plane_features(plane_id); +} + +const indexed_triangle_set& Measuring::get_its() const +{ + return priv->get_its(); +} + +const AngleAndEdges AngleAndEdges::Dummy = { 0.0, Vec3d::Zero(), { Vec3d::Zero(), Vec3d::Zero() }, { Vec3d::Zero(), Vec3d::Zero() }, 0.0, true }; + +static AngleAndEdges angle_edge_edge(const std::pair& e1, const std::pair& e2) +{ + if (are_parallel(e1, e2)) + return AngleAndEdges::Dummy; + + Vec3d e1_unit = edge_direction(e1.first, e1.second); + Vec3d e2_unit = edge_direction(e2.first, e2.second); + + // project edges on the plane defined by them + Vec3d normal = e1_unit.cross(e2_unit).normalized(); + const Eigen::Hyperplane plane(normal, e1.first); + Vec3d e11_proj = plane.projection(e1.first); + Vec3d e12_proj = plane.projection(e1.second); + Vec3d e21_proj = plane.projection(e2.first); + Vec3d e22_proj = plane.projection(e2.second); + + const bool coplanar = (e2.first - e21_proj).norm() < EPSILON && (e2.second - e22_proj).norm() < EPSILON; + + // rotate the plane to become the XY plane + auto qp = Eigen::Quaternion::FromTwoVectors(normal, Vec3d::UnitZ()); + auto qp_inverse = qp.inverse(); + const Vec3d e11_rot = qp * e11_proj; + const Vec3d e12_rot = qp * e12_proj; + const Vec3d e21_rot = qp * e21_proj; + const Vec3d e22_rot = qp * e22_proj; + + // discard Z + const Vec2d e11_rot_2d = Vec2d(e11_rot.x(), e11_rot.y()); + const Vec2d e12_rot_2d = Vec2d(e12_rot.x(), e12_rot.y()); + const Vec2d e21_rot_2d = Vec2d(e21_rot.x(), e21_rot.y()); + const Vec2d e22_rot_2d = Vec2d(e22_rot.x(), e22_rot.y()); + + // find intersection (arc center) of edges in XY plane + const Eigen::Hyperplane e1_rot_2d_line = Eigen::Hyperplane::Through(e11_rot_2d, e12_rot_2d); + const Eigen::Hyperplane e2_rot_2d_line = Eigen::Hyperplane::Through(e21_rot_2d, e22_rot_2d); + const Vec2d center_rot_2d = e1_rot_2d_line.intersection(e2_rot_2d_line); + + // arc center in original coordinate + const Vec3d center = qp_inverse * Vec3d(center_rot_2d.x(), center_rot_2d.y(), e11_rot.z()); + + // ensure the edges are pointing away from the center + std::pair out_e1 = e1; + std::pair out_e2 = e2; + if ((center_rot_2d - e11_rot_2d).squaredNorm() > (center_rot_2d - e12_rot_2d).squaredNorm()) { + std::swap(e11_proj, e12_proj); + std::swap(out_e1.first, out_e1.second); + e1_unit = -e1_unit; + } + if ((center_rot_2d - e21_rot_2d).squaredNorm() > (center_rot_2d - e22_rot_2d).squaredNorm()) { + std::swap(e21_proj, e22_proj); + std::swap(out_e2.first, out_e2.second); + e2_unit = -e2_unit; + } + + // arc angle + const double angle = std::acos(std::clamp(e1_unit.dot(e2_unit), -1.0, 1.0)); + // arc radius + const Vec3d e1_proj_mid = 0.5 * (e11_proj + e12_proj); + const Vec3d e2_proj_mid = 0.5 * (e21_proj + e22_proj); + const double radius = std::min((center - e1_proj_mid).norm(), (center - e2_proj_mid).norm()); + + return { angle, center, out_e1, out_e2, radius, coplanar }; +} + +static AngleAndEdges angle_edge_plane(const std::pair& e, const std::tuple& p) +{ + const auto& [idx, normal, origin] = p; + Vec3d e1e2_unit = edge_direction(e); + if (are_perpendicular(e1e2_unit, normal)) + return AngleAndEdges::Dummy; + + // ensure the edge is pointing away from the intersection + // 1st calculate instersection between edge and plane + const Eigen::Hyperplane plane(normal, origin); + const Eigen::ParametrizedLine line = Eigen::ParametrizedLine::Through(e.first, e.second); + const Vec3d inters = line.intersectionPoint(plane); + + // then verify edge direction and revert it, if needed + Vec3d e1 = e.first; + Vec3d e2 = e.second; + if ((e1 - inters).squaredNorm() > (e2 - inters).squaredNorm()) { + std::swap(e1, e2); + e1e2_unit = -e1e2_unit; + } + + if (are_parallel(e1e2_unit, normal)) { + const std::array basis = orthonormal_basis(e1e2_unit); + const double radius = (0.5 * (e1 + e2) - inters).norm(); + const Vec3d edge_on_plane_dir = (basis[1].dot(origin - inters) >= 0.0) ? basis[1] : -basis[1]; + std::pair edge_on_plane = std::make_pair(inters, inters + radius * edge_on_plane_dir); + if (!inters.isApprox(e1)) { + edge_on_plane.first += radius * edge_on_plane_dir; + edge_on_plane.second += radius * edge_on_plane_dir; + } + return AngleAndEdges(0.5 * double(PI), inters, std::make_pair(e1, e2), edge_on_plane, radius, inters.isApprox(e1)); + } + + const Vec3d e1e2 = e2 - e1; + const double e1e2_len = e1e2.norm(); + + // calculate 2nd edge (on the plane) + const Vec3d temp = normal.cross(e1e2); + const Vec3d edge_on_plane_unit = normal.cross(temp).normalized(); + std::pair edge_on_plane = { origin, origin + e1e2_len * edge_on_plane_unit }; + + // ensure the 2nd edge is pointing in the correct direction + const Vec3d test_edge = (edge_on_plane.second - edge_on_plane.first).cross(e1e2); + if (test_edge.dot(temp) < 0.0) + edge_on_plane = { origin, origin - e1e2_len * edge_on_plane_unit }; + + AngleAndEdges ret = angle_edge_edge({ e1, e2 }, edge_on_plane); + ret.radius = (inters - 0.5 * (e1 + e2)).norm(); + return ret; +} + +static AngleAndEdges angle_plane_plane(const std::tuple& p1, const std::tuple& p2) +{ + const auto& [idx1, normal1, origin1] = p1; + const auto& [idx2, normal2, origin2] = p2; + + // are planes parallel ? + if (are_parallel(normal1, normal2)) + return AngleAndEdges::Dummy; + + auto intersection_plane_plane = [](const Vec3d& n1, const Vec3d& o1, const Vec3d& n2, const Vec3d& o2) { + Eigen::MatrixXd m(2, 3); + m << n1.x(), n1.y(), n1.z(), n2.x(), n2.y(), n2.z(); + Eigen::VectorXd b(2); + b << o1.dot(n1), o2.dot(n2); + Eigen::VectorXd x = m.colPivHouseholderQr().solve(b); + return std::make_pair(n1.cross(n2).normalized(), Vec3d(x(0), x(1), x(2))); + }; + + // Calculate intersection line between planes + const auto [intersection_line_direction, intersection_line_origin] = intersection_plane_plane(normal1, origin1, normal2, origin2); + + // Project planes' origin on intersection line + const Eigen::ParametrizedLine intersection_line = Eigen::ParametrizedLine(intersection_line_origin, intersection_line_direction); + const Vec3d origin1_proj = intersection_line.projection(origin1); + const Vec3d origin2_proj = intersection_line.projection(origin2); + + // Calculate edges on planes + const Vec3d edge_on_plane1_unit = (origin1 - origin1_proj).normalized(); + const Vec3d edge_on_plane2_unit = (origin2 - origin2_proj).normalized(); + const double radius = std::max(10.0, std::max((origin1 - origin1_proj).norm(), (origin2 - origin2_proj).norm())); + const std::pair edge_on_plane1 = { origin1_proj + radius * edge_on_plane1_unit, origin1_proj + 2.0 * radius * edge_on_plane1_unit }; + const std::pair edge_on_plane2 = { origin2_proj + radius * edge_on_plane2_unit, origin2_proj + 2.0 * radius * edge_on_plane2_unit }; + + AngleAndEdges ret = angle_edge_edge(edge_on_plane1, edge_on_plane2); + ret.radius = radius; + return ret; +} + +MeasurementResult get_measurement(const SurfaceFeature& a, const SurfaceFeature& b, const Measuring* measuring) +{ + assert(a.get_type() != SurfaceFeatureType::Undef && b.get_type() != SurfaceFeatureType::Undef); + + const bool swap = int(a.get_type()) > int(b.get_type()); + const SurfaceFeature& f1 = swap ? b : a; + const SurfaceFeature& f2 = swap ? a : b; + + MeasurementResult result; + + /////////////////////////////////////////////////////////////////////////// + /////////////////////////////////////////////////////////////////////////// + /////////////////////////////////////////////////////////////////////////// + if (f1.get_type() == SurfaceFeatureType::Point) { + if (f2.get_type() == SurfaceFeatureType::Point) { + Vec3d diff = (f2.get_point() - f1.get_point()); + result.distance_strict = std::make_optional(DistAndPoints{diff.norm(), f1.get_point(), f2.get_point()}); + result.distance_xyz = diff.cwiseAbs(); + + /////////////////////////////////////////////////////////////////////////// + } else if (f2.get_type() == SurfaceFeatureType::Edge) { + const auto [s,e] = f2.get_edge(); + const Eigen::ParametrizedLine line(s, (e-s).normalized()); + const double dist_inf = line.distance(f1.get_point()); + const Vec3d proj = line.projection(f1.get_point()); + const double len_sq = (e-s).squaredNorm(); + const double dist_start_sq = (proj-s).squaredNorm(); + const double dist_end_sq = (proj-e).squaredNorm(); + if (dist_start_sq < len_sq && dist_end_sq < len_sq) { + // projection falls on the line - the strict distance is the same as infinite + result.distance_strict = std::make_optional(DistAndPoints{dist_inf, f1.get_point(), proj}); + } else { // the result is the closer of the endpoints + const bool s_is_closer = dist_start_sq < dist_end_sq; + result.distance_strict = std::make_optional(DistAndPoints{std::sqrt(std::min(dist_start_sq, dist_end_sq) + sqr(dist_inf)), f1.get_point(), s_is_closer ? s : e}); + } + result.distance_infinite = std::make_optional(DistAndPoints{dist_inf, f1.get_point(), proj}); + /////////////////////////////////////////////////////////////////////////// + } else if (f2.get_type() == SurfaceFeatureType::Circle) { + // Find a plane containing normal, center and the point. + const auto [c, radius, n] = f2.get_circle(); + const Eigen::Hyperplane circle_plane(n, c); + const Vec3d proj = circle_plane.projection(f1.get_point()); + if (proj.isApprox(c)) { + const Vec3d p_on_circle = c + radius * get_orthogonal(n, true); + result.distance_strict = std::make_optional(DistAndPoints{ radius, c, p_on_circle }); + } + else { + const Eigen::Hyperplane circle_plane(n, c); + const Vec3d proj = circle_plane.projection(f1.get_point()); + const double dist = std::sqrt(std::pow((proj - c).norm() - radius, 2.) + + (f1.get_point() - proj).squaredNorm()); + + const Vec3d p_on_circle = c + radius * (proj - c).normalized(); + result.distance_strict = std::make_optional(DistAndPoints{ dist, f1.get_point(), p_on_circle }); // TODO + } + /////////////////////////////////////////////////////////////////////////// + } else if (f2.get_type() == SurfaceFeatureType::Plane) { + const auto [idx, normal, pt] = f2.get_plane(); + Eigen::Hyperplane plane(normal, pt); + result.distance_infinite = std::make_optional(DistAndPoints{plane.absDistance(f1.get_point()), f1.get_point(), plane.projection(f1.get_point())}); // TODO + // TODO: result.distance_strict = + } + /////////////////////////////////////////////////////////////////////////// + /////////////////////////////////////////////////////////////////////////// + /////////////////////////////////////////////////////////////////////////// + } + else if (f1.get_type() == SurfaceFeatureType::Edge) { + if (f2.get_type() == SurfaceFeatureType::Edge) { + std::vector distances; + + auto add_point_edge_distance = [&distances](const Vec3d& v, const std::pair& e) { + const MeasurementResult res = get_measurement(SurfaceFeature(v), SurfaceFeature(SurfaceFeatureType::Edge, e.first, e.second)); + double distance = res.distance_strict->dist; + Vec3d v2 = res.distance_strict->to; + + const Vec3d e1e2 = e.second - e.first; + const Vec3d e1v2 = v2 - e.first; + if (e1v2.dot(e1e2) >= 0.0 && e1v2.norm() < e1e2.norm()) + distances.emplace_back(distance, v, v2); + }; + + std::pair e1 = f1.get_edge(); + std::pair e2 = f2.get_edge(); + + distances.emplace_back((e2.first - e1.first).norm(), e1.first, e2.first); + distances.emplace_back((e2.second - e1.first).norm(), e1.first, e2.second); + distances.emplace_back((e2.first - e1.second).norm(), e1.second, e2.first); + distances.emplace_back((e2.second - e1.second).norm(), e1.second, e2.second); + add_point_edge_distance(e1.first, e2); + add_point_edge_distance(e1.second, e2); + add_point_edge_distance(e2.first, e1); + add_point_edge_distance(e2.second, e1); + auto it = std::min_element(distances.begin(), distances.end(), + [](const DistAndPoints& item1, const DistAndPoints& item2) { + return item1.dist < item2.dist; + }); + result.distance_infinite = std::make_optional(*it); + + result.angle = angle_edge_edge(f1.get_edge(), f2.get_edge()); + /////////////////////////////////////////////////////////////////////////// + } else if (f2.get_type() == SurfaceFeatureType::Circle) { + const std::pair e = f1.get_edge(); + const auto& [center, radius, normal] = f2.get_circle(); + const Vec3d e1e2 = (e.second - e.first); + const Vec3d e1e2_unit = e1e2.normalized(); + + std::vector distances; + distances.emplace_back(*get_measurement(SurfaceFeature(e.first), f2).distance_strict); + distances.emplace_back(*get_measurement(SurfaceFeature(e.second), f2).distance_strict); + + const Eigen::Hyperplane plane(e1e2_unit, center); + const Eigen::ParametrizedLine line = Eigen::ParametrizedLine::Through(e.first, e.second); + const Vec3d inter = line.intersectionPoint(plane); + const Vec3d e1inter = inter - e.first; + if (e1inter.dot(e1e2) >= 0.0 && e1inter.norm() < e1e2.norm()) + distances.emplace_back(*get_measurement(SurfaceFeature(inter), f2).distance_strict); + + auto it = std::min_element(distances.begin(), distances.end(), + [](const DistAndPoints& item1, const DistAndPoints& item2) { + return item1.dist < item2.dist; + }); + result.distance_infinite = std::make_optional(DistAndPoints{it->dist, it->from, it->to}); + /////////////////////////////////////////////////////////////////////////// + } else if (f2.get_type() == SurfaceFeatureType::Plane) { + assert(measuring != nullptr); + + const auto [from, to] = f1.get_edge(); + const auto [idx, normal, origin] = f2.get_plane(); + + const Vec3d edge_unit = (to - from).normalized(); + if (are_perpendicular(edge_unit, normal)) { + std::vector distances; + const Eigen::Hyperplane plane(normal, origin); + distances.push_back(DistAndPoints{ plane.absDistance(from), from, plane.projection(from) }); + distances.push_back(DistAndPoints{ plane.absDistance(to), to, plane.projection(to) }); + auto it = std::min_element(distances.begin(), distances.end(), + [](const DistAndPoints& item1, const DistAndPoints& item2) { + return item1.dist < item2.dist; + }); + result.distance_infinite = std::make_optional(DistAndPoints{ it->dist, it->from, it->to }); + } + else { + const std::vector& plane_features = measuring->get_plane_features(idx); + std::vector distances; + for (const SurfaceFeature& sf : plane_features) { + if (sf.get_type() == SurfaceFeatureType::Edge) { + const auto m = get_measurement(sf, f1); + if (!m.distance_infinite.has_value()) { + distances.clear(); + break; + } + else + distances.push_back(*m.distance_infinite); + } + } + if (!distances.empty()) { + auto it = std::min_element(distances.begin(), distances.end(), + [](const DistAndPoints& item1, const DistAndPoints& item2) { + return item1.dist < item2.dist; + }); + result.distance_infinite = std::make_optional(DistAndPoints{ it->dist, it->from, it->to }); + } + } + result.angle = angle_edge_plane(f1.get_edge(), f2.get_plane()); + } + /////////////////////////////////////////////////////////////////////////// + /////////////////////////////////////////////////////////////////////////// + /////////////////////////////////////////////////////////////////////////// + } else if (f1.get_type() == SurfaceFeatureType::Circle) { + if (f2.get_type() == SurfaceFeatureType::Circle) { + const auto [c0, r0, n0] = f1.get_circle(); + const auto [c1, r1, n1] = f2.get_circle(); + + // The following code is an adaptation of the algorithm found in: + // https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/DistCircle3Circle3.h + // and described in: + // https://www.geometrictools.com/Documentation/DistanceToCircle3.pdf + + struct ClosestInfo + { + double sqrDistance{ 0.0 }; + Vec3d circle0Closest{ Vec3d::Zero() }; + Vec3d circle1Closest{ Vec3d::Zero() }; + + inline bool operator < (const ClosestInfo& other) const { return sqrDistance < other.sqrDistance; } + }; + std::array candidates{}; + + const double zero = 0.0; + + const Vec3d D = c1 - c0; + + if (!are_parallel(n0, n1)) { + // Get parameters for constructing the degree-8 polynomial phi. + const double one = 1.0; + const double two = 2.0; + const double r0sqr = sqr(r0); + const double r1sqr = sqr(r1); + + // Compute U1 and V1 for the plane of circle1. + const std::array basis = orthonormal_basis(n1); + const Vec3d U1 = basis[0]; + const Vec3d V1 = basis[1]; + + // Construct the polynomial phi(cos(theta)). + const Vec3d N0xD = n0.cross(D); + const Vec3d N0xU1 = n0.cross(U1); + const Vec3d N0xV1 = n0.cross(V1); + const double a0 = r1 * D.dot(U1); + const double a1 = r1 * D.dot(V1); + const double a2 = N0xD.dot(N0xD); + const double a3 = r1 * N0xD.dot(N0xU1); + const double a4 = r1 * N0xD.dot(N0xV1); + const double a5 = r1sqr * N0xU1.dot(N0xU1); + const double a6 = r1sqr * N0xU1.dot(N0xV1); + const double a7 = r1sqr * N0xV1.dot(N0xV1); + Polynomial1 p0{ a2 + a7, two * a3, a5 - a7 }; + Polynomial1 p1{ two * a4, two * a6 }; + Polynomial1 p2{ zero, a1 }; + Polynomial1 p3{ -a0 }; + Polynomial1 p4{ -a6, a4, two * a6 }; + Polynomial1 p5{ -a3, a7 - a5 }; + Polynomial1 tmp0{ one, zero, -one }; + Polynomial1 tmp1 = p2 * p2 + tmp0 * p3 * p3; + Polynomial1 tmp2 = two * p2 * p3; + Polynomial1 tmp3 = p4 * p4 + tmp0 * p5 * p5; + Polynomial1 tmp4 = two * p4 * p5; + Polynomial1 p6 = p0 * tmp1 + tmp0 * p1 * tmp2 - r0sqr * tmp3; + Polynomial1 p7 = p0 * tmp2 + p1 * tmp1 - r0sqr * tmp4; + + // Parameters for polynomial root finding. The roots[] array + // stores the roots. We need only the unique ones, which is + // the responsibility of the set uniqueRoots. The pairs[] + // array stores the (cosine,sine) information mentioned in the + // PDF. TODO: Choose the maximum number of iterations for root + // finding based on specific polynomial data? + const uint32_t maxIterations = 128; + int32_t degree = 0; + size_t numRoots = 0; + std::array roots{}; + std::set uniqueRoots{}; + size_t numPairs = 0; + std::array, 16> pairs{}; + double temp = zero; + double sn = zero; + + if (p7.GetDegree() > 0 || p7[0] != zero) { + // H(cs,sn) = p6(cs) + sn * p7(cs) + Polynomial1 phi = p6 * p6 - tmp0 * p7 * p7; + degree = static_cast(phi.GetDegree()); + assert(degree > 0); + numRoots = RootsPolynomial::Find(degree, &phi[0], maxIterations, roots.data()); + for (size_t i = 0; i < numRoots; ++i) { + uniqueRoots.insert(roots[i]); + } + + for (auto const& cs : uniqueRoots) { + if (std::fabs(cs) <= one) { + temp = p7(cs); + if (temp != zero) { + sn = -p6(cs) / temp; + pairs[numPairs++] = std::make_pair(cs, sn); + } + else { + temp = std::max(one - sqr(cs), zero); + sn = std::sqrt(temp); + pairs[numPairs++] = std::make_pair(cs, sn); + if (sn != zero) + pairs[numPairs++] = std::make_pair(cs, -sn); + } + } + } + } + else { + // H(cs,sn) = p6(cs) + degree = static_cast(p6.GetDegree()); + assert(degree > 0); + numRoots = RootsPolynomial::Find(degree, &p6[0], maxIterations, roots.data()); + for (size_t i = 0; i < numRoots; ++i) { + uniqueRoots.insert(roots[i]); + } + + for (auto const& cs : uniqueRoots) { + if (std::fabs(cs) <= one) { + temp = std::max(one - sqr(cs), zero); + sn = std::sqrt(temp); + pairs[numPairs++] = std::make_pair(cs, sn); + if (sn != zero) + pairs[numPairs++] = std::make_pair(cs, -sn); + } + } + } + + for (size_t i = 0; i < numPairs; ++i) { + ClosestInfo& info = candidates[i]; + Vec3d delta = D + r1 * (pairs[i].first * U1 + pairs[i].second * V1); + info.circle1Closest = c0 + delta; + const double N0dDelta = n0.dot(delta); + const double lenN0xDelta = n0.cross(delta).norm(); + if (lenN0xDelta > 0.0) { + const double diff = lenN0xDelta - r0; + info.sqrDistance = sqr(N0dDelta) + sqr(diff); + delta -= N0dDelta * n0; + delta.normalize(); + info.circle0Closest = c0 + r0 * delta; + } + else { + const Vec3d r0U0 = r0 * get_orthogonal(n0, true); + const Vec3d diff = delta - r0U0; + info.sqrDistance = diff.dot(diff); + info.circle0Closest = c0 + r0U0; + } + } + + std::sort(candidates.begin(), candidates.begin() + numPairs); + } + else { + ClosestInfo& info = candidates[0]; + + const double N0dD = n0.dot(D); + const Vec3d normProj = N0dD * n0; + const Vec3d compProj = D - normProj; + Vec3d U = compProj; + const double d = U.norm(); + U.normalize(); + + // The configuration is determined by the relative location of the + // intervals of projection of the circles on to the D-line. + // Circle0 projects to [-r0,r0] and circle1 projects to + // [d-r1,d+r1]. + const double dmr1 = d - r1; + double distance; + if (dmr1 >= r0) { + // d >= r0 + r1 + // The circles are separated (d > r0 + r1) or tangent with one + // outside the other (d = r0 + r1). + distance = dmr1 - r0; + info.circle0Closest = c0 + r0 * U; + info.circle1Closest = c1 - r1 * U; + } + else { + // d < r0 + r1 + // The cases implicitly use the knowledge that d >= 0. + const double dpr1 = d + r1; + if (dpr1 <= r0) { + // Circle1 is inside circle0. + distance = r0 - dpr1; + if (d > 0.0) { + info.circle0Closest = c0 + r0 * U; + info.circle1Closest = c1 + r1 * U; + } + else { + // The circles are concentric, so U = (0,0,0). + // Construct a vector perpendicular to N0 to use for + // closest points. + U = get_orthogonal(n0, true); + info.circle0Closest = c0 + r0 * U; + info.circle1Closest = c1 + r1 * U; + } + } + else if (dmr1 <= -r0) { + // Circle0 is inside circle1. + distance = -r0 - dmr1; + if (d > 0.0) { + info.circle0Closest = c0 - r0 * U; + info.circle1Closest = c1 - r1 * U; + } + else { + // The circles are concentric, so U = (0,0,0). + // Construct a vector perpendicular to N0 to use for + // closest points. + U = get_orthogonal(n0, true); + info.circle0Closest = c0 + r0 * U; + info.circle1Closest = c1 + r1 * U; + } + } + else { + distance = (c1 - c0).norm(); + info.circle0Closest = c0; + info.circle1Closest = c1; + } + } + + info.sqrDistance = distance * distance + N0dD * N0dD; + } + + result.distance_infinite = std::make_optional(DistAndPoints{ std::sqrt(candidates[0].sqrDistance), candidates[0].circle0Closest, candidates[0].circle1Closest }); // TODO + /////////////////////////////////////////////////////////////////////////// + } else if (f2.get_type() == SurfaceFeatureType::Plane) { + assert(measuring != nullptr); + + const auto [center, radius, normal1] = f1.get_circle(); + const auto [idx2, normal2, origin2] = f2.get_plane(); + + const bool coplanar = are_parallel(normal1, normal2) && Eigen::Hyperplane(normal1, center).absDistance(origin2) < EPSILON; + if (!coplanar) { + const std::vector& plane_features = measuring->get_plane_features(idx2); + std::vector distances; + for (const SurfaceFeature& sf : plane_features) { + if (sf.get_type() == SurfaceFeatureType::Edge) { + const auto m = get_measurement(sf, f1); + if (!m.distance_infinite.has_value()) { + distances.clear(); + break; + } + else + distances.push_back(*m.distance_infinite); + } + } + if (!distances.empty()) { + auto it = std::min_element(distances.begin(), distances.end(), + [](const DistAndPoints& item1, const DistAndPoints& item2) { + return item1.dist < item2.dist; + }); + result.distance_infinite = std::make_optional(DistAndPoints{ it->dist, it->from, it->to }); + } + } + } + /////////////////////////////////////////////////////////////////////////// + /////////////////////////////////////////////////////////////////////////// + /////////////////////////////////////////////////////////////////////////// + } else if (f1.get_type() == SurfaceFeatureType::Plane) { + const auto [idx1, normal1, pt1] = f1.get_plane(); + const auto [idx2, normal2, pt2] = f2.get_plane(); + + if (are_parallel(normal1, normal2)) { + // The planes are parallel, calculate distance. + const Eigen::Hyperplane plane(normal1, pt1); + result.distance_infinite = std::make_optional(DistAndPoints{ plane.absDistance(pt2), pt2, plane.projection(pt2) }); // TODO + } + else + result.angle = angle_plane_plane(f1.get_plane(), f2.get_plane()); + } + + return result; +} + +void SurfaceFeature::translate(const Vec3d& displacement) { + switch (get_type()) { + case Measure::SurfaceFeatureType::Point: { + m_pt1 = m_pt1 + displacement; + break; + } + case Measure::SurfaceFeatureType::Edge: { + m_pt1 = m_pt1 + displacement; + m_pt2 = m_pt2 + displacement; + if (m_pt3.has_value()) { //extra_point() + m_pt3 = *m_pt3 + displacement; + } + break; + } + case Measure::SurfaceFeatureType::Plane: { + //m_pt1 is normal; + m_pt2 = m_pt2 + displacement; + break; + } + case Measure::SurfaceFeatureType::Circle: { + m_pt1 = m_pt1 + displacement; + // m_pt2 is normal; + break; + } + default: break; + } +} + +}} // namespace Slic3r + diff --git a/src/libslic3r/Measure.hpp b/src/libslic3r/Measure.hpp new file mode 100644 index 000000000..823d2c757 --- /dev/null +++ b/src/libslic3r/Measure.hpp @@ -0,0 +1,195 @@ +///|/ Copyright (c) Prusa Research 2022 - 2023 Lukáš Matěna @lukasmatena, Enrico Turri @enricoturri1966, Vojtěch Bubník @bubnikv +///|/ +///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher +///|/ +#ifndef Slic3r_Measure_hpp_ +#define Slic3r_Measure_hpp_ + +#include +#include + +#include "Point.hpp" + +struct indexed_triangle_set; + +namespace Slic3r { + +class TriangleMesh; + +namespace Measure { +enum class SurfaceFeatureType : int { + Undef = 0, + Point = 1 << 0, + Edge = 1 << 1, + Circle = 1 << 2, + Plane = 1 << 3 +}; + +class SurfaceFeature { +public: + SurfaceFeature(SurfaceFeatureType type, const Vec3d& pt1, const Vec3d& pt2, std::optional pt3 = std::nullopt, double value = 0.0) + : m_type(type), m_pt1(pt1), m_pt2(pt2), m_pt3(pt3), m_value(value) {} + + explicit SurfaceFeature(const Vec3d& pt) + : m_type{SurfaceFeatureType::Point}, m_pt1{pt} {} + + void translate(const Vec3d& displacement); + // Get type of this feature. + SurfaceFeatureType get_type() const { return m_type; } + + // For points, return the point. + Vec3d get_point() const { assert(m_type == SurfaceFeatureType::Point); return m_pt1; } + // For edges, return start and end. + std::pair get_edge() const { assert(m_type == SurfaceFeatureType::Edge); return std::make_pair(m_pt1, m_pt2); } + + // For circles, return center, radius and normal. + std::tuple get_circle() const { assert(m_type == SurfaceFeatureType::Circle); return std::make_tuple(m_pt1, m_value, m_pt2); } + + // For planes, return index into vector provided by Measuring::get_plane_triangle_indices, normal and point. + std::tuple get_plane() const { assert(m_type == SurfaceFeatureType::Plane); return std::make_tuple(int(m_value), m_pt1, m_pt2); } + + // For anything, return an extra point that should also be considered a part of this. + std::optional get_extra_point() const { assert(m_type != SurfaceFeatureType::Undef); return m_pt3; } + + bool operator == (const SurfaceFeature& other) const { + if (this->m_type != other.m_type) return false; + switch (this->m_type) + { + case SurfaceFeatureType::Undef: { break; } + case SurfaceFeatureType::Point: { return (this->m_pt1.isApprox(other.m_pt1)); } + case SurfaceFeatureType::Edge: { + return (this->m_pt1.isApprox(other.m_pt1) && this->m_pt2.isApprox(other.m_pt2)) || + (this->m_pt1.isApprox(other.m_pt2) && this->m_pt2.isApprox(other.m_pt1)); + } + case SurfaceFeatureType::Plane: + case SurfaceFeatureType::Circle: { + return (this->m_pt1.isApprox(other.m_pt1) && this->m_pt2.isApprox(other.m_pt2) && std::abs(this->m_value - other.m_value) < EPSILON); + } + } + + return false; + } + + bool operator != (const SurfaceFeature& other) const { + return !operator == (other); + } + +private: + SurfaceFeatureType m_type{ SurfaceFeatureType::Undef }; + Vec3d m_pt1{ Vec3d::Zero() }; + Vec3d m_pt2{ Vec3d::Zero() }; + std::optional m_pt3; + double m_value{ 0.0 }; +}; + + + +class MeasuringImpl; + + +class Measuring { +public: + // Construct the measurement object on a given its. + explicit Measuring(const indexed_triangle_set& its); + ~Measuring(); + + + // Given a face_idx where the mouse cursor points, return a feature that + // should be highlighted (if any). + std::optional get_feature(size_t face_idx, const Vec3d& point) const; + + // Return total number of planes. + int get_num_of_planes() const; + + // Returns a list of triangle indices for given plane. + const std::vector& get_plane_triangle_indices(int idx) const; + + // Returns the surface features of the plane with the given index + const std::vector& get_plane_features(unsigned int plane_id) const; + + // Returns the mesh used for measuring + const indexed_triangle_set& get_its() const; + +private: + std::unique_ptr priv; +}; + + +struct DistAndPoints { + DistAndPoints(double dist_, Vec3d from_, Vec3d to_) : dist(dist_), from(from_), to(to_) {} + double dist; + Vec3d from; + Vec3d to; +}; + +struct AngleAndEdges { + AngleAndEdges(double angle_, const Vec3d& center_, const std::pair& e1_, const std::pair& e2_, double radius_, bool coplanar_) + : angle(angle_), center(center_), e1(e1_), e2(e2_), radius(radius_), coplanar(coplanar_) {} + double angle; + Vec3d center; + std::pair e1; + std::pair e2; + double radius; + bool coplanar; + + static const AngleAndEdges Dummy; +}; + +struct MeasurementResult { + std::optional angle; + std::optional distance_infinite; + std::optional distance_strict; + std::optional distance_xyz; + + bool has_distance_data() const { + return distance_infinite.has_value() || distance_strict.has_value(); + } + + bool has_any_data() const { + return angle.has_value() || distance_infinite.has_value() || distance_strict.has_value() || distance_xyz.has_value(); + } +}; + +// Returns distance/angle between two SurfaceFeatures. +MeasurementResult get_measurement(const SurfaceFeature& a, const SurfaceFeature& b, const Measuring* measuring = nullptr); + +inline Vec3d edge_direction(const Vec3d& from, const Vec3d& to) { return (to - from).normalized(); } +inline Vec3d edge_direction(const std::pair& e) { return edge_direction(e.first, e.second); } +inline Vec3d edge_direction(const SurfaceFeature& edge) { + assert(edge.get_type() == SurfaceFeatureType::Edge); + return edge_direction(edge.get_edge()); +} + +inline Vec3d plane_normal(const SurfaceFeature& plane) { + assert(plane.get_type() == SurfaceFeatureType::Plane); + return std::get<1>(plane.get_plane()); +} + +inline bool are_parallel(const Vec3d& v1, const Vec3d& v2) { return std::abs(std::abs(v1.dot(v2)) - 1.0) < EPSILON; } +inline bool are_perpendicular(const Vec3d& v1, const Vec3d& v2) { return std::abs(v1.dot(v2)) < EPSILON; } + +inline bool are_parallel(const std::pair& e1, const std::pair& e2) { + return are_parallel(e1.second - e1.first, e2.second - e2.first); +} +inline bool are_parallel(const SurfaceFeature& f1, const SurfaceFeature& f2) { + if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Edge) + return are_parallel(edge_direction(f1), edge_direction(f2)); + else if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Plane) + return are_perpendicular(edge_direction(f1), plane_normal(f2)); + else + return false; +} + +inline bool are_perpendicular(const SurfaceFeature& f1, const SurfaceFeature& f2) { + if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Edge) + return are_perpendicular(edge_direction(f1), edge_direction(f2)); + else if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Plane) + return are_parallel(edge_direction(f1), plane_normal(f2)); + else + return false; +} + +} // namespace Measure +} // namespace Slic3r + +#endif // Slic3r_Measure_hpp_ diff --git a/src/libslic3r/MeasureUtils.hpp b/src/libslic3r/MeasureUtils.hpp new file mode 100644 index 000000000..177d60789 --- /dev/null +++ b/src/libslic3r/MeasureUtils.hpp @@ -0,0 +1,390 @@ +///|/ Copyright (c) Prusa Research 2022 Enrico Turri @enricoturri1966 +///|/ +///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher +///|/ +#ifndef Slic3r_MeasureUtils_hpp_ +#define Slic3r_MeasureUtils_hpp_ + +#include + +namespace Slic3r { +namespace Measure { + +// Utility class used to calculate distance circle-circle +// Adaptation of code found in: +// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/Polynomial1.h + +class Polynomial1 +{ +public: + Polynomial1(std::initializer_list values) + { + // C++ 11 will call the default constructor for + // Polynomial1 p{}, so it is guaranteed that + // values.size() > 0. + m_coefficient.resize(values.size()); + std::copy(values.begin(), values.end(), m_coefficient.begin()); + EliminateLeadingZeros(); + } + + // Construction and destruction. The first constructor creates a + // polynomial of the specified degree but sets all coefficients to + // zero (to ensure initialization). You are responsible for setting + // the coefficients, presumably with the degree-term set to a nonzero + // number. In the second constructor, the degree is the number of + // initializers plus 1, but then adjusted so that coefficient[degree] + // is not zero (unless all initializer values are zero). + explicit Polynomial1(uint32_t degree) + : m_coefficient(static_cast(degree) + 1, 0.0) + {} + + // Eliminate any leading zeros in the polynomial, except in the case + // the degree is 0 and the coefficient is 0. The elimination is + // necessary when arithmetic operations cause a decrease in the degree + // of the result. For example, (1 + x + x^2) + (1 + 2*x - x^2) = + // (2 + 3*x). The inputs both have degree 2, so the result is created + // with degree 2. After the addition we find that the degree is in + // fact 1 and resize the array of coefficients. This function is + // called internally by the arithmetic operators, but it is exposed in + // the public interface in case you need it for your own purposes. + void EliminateLeadingZeros() + { + const size_t size = m_coefficient.size(); + if (size > 1) { + const double zero = 0.0; + int32_t leading; + for (leading = static_cast(size) - 1; leading > 0; --leading) { + if (m_coefficient[leading] != zero) + break; + } + + m_coefficient.resize(++leading); + } + } + + // Set all coefficients to the specified value. + void SetCoefficients(double value) + { + std::fill(m_coefficient.begin(), m_coefficient.end(), value); + } + + inline uint32_t GetDegree() const + { + // By design, m_coefficient.size() > 0. + return static_cast(m_coefficient.size() - 1); + } + + inline const double& operator[](uint32_t i) const { return m_coefficient[i]; } + inline double& operator[](uint32_t i) { return m_coefficient[i]; } + + // Evaluate the polynomial. If the polynomial is invalid, the + // function returns zero. + double operator()(double t) const + { + int32_t i = static_cast(m_coefficient.size()); + double result = m_coefficient[--i]; + for (--i; i >= 0; --i) { + result *= t; + result += m_coefficient[i]; + } + return result; + } + +protected: + // The class is designed so that m_coefficient.size() >= 1. + std::vector m_coefficient; +}; + +inline Polynomial1 operator * (const Polynomial1& p0, const Polynomial1& p1) +{ + const uint32_t p0Degree = p0.GetDegree(); + const uint32_t p1Degree = p1.GetDegree(); + Polynomial1 result(p0Degree + p1Degree); + result.SetCoefficients(0.0); + for (uint32_t i0 = 0; i0 <= p0Degree; ++i0) { + for (uint32_t i1 = 0; i1 <= p1Degree; ++i1) { + result[i0 + i1] += p0[i0] * p1[i1]; + } + } + return result; +} + +inline Polynomial1 operator + (const Polynomial1& p0, const Polynomial1& p1) +{ + const uint32_t p0Degree = p0.GetDegree(); + const uint32_t p1Degree = p1.GetDegree(); + uint32_t i; + if (p0Degree >= p1Degree) { + Polynomial1 result(p0Degree); + for (i = 0; i <= p1Degree; ++i) { + result[i] = p0[i] + p1[i]; + } + for (/**/; i <= p0Degree; ++i) { + result[i] = p0[i]; + } + result.EliminateLeadingZeros(); + return result; + } + else { + Polynomial1 result(p1Degree); + for (i = 0; i <= p0Degree; ++i) { + result[i] = p0[i] + p1[i]; + } + for (/**/; i <= p1Degree; ++i) { + result[i] = p1[i]; + } + result.EliminateLeadingZeros(); + return result; + } +} + +inline Polynomial1 operator - (const Polynomial1& p0, const Polynomial1& p1) +{ + const uint32_t p0Degree = p0.GetDegree(); + const uint32_t p1Degree = p1.GetDegree(); + uint32_t i; + if (p0Degree >= p1Degree) { + Polynomial1 result(p0Degree); + for (i = 0; i <= p1Degree; ++i) { + result[i] = p0[i] - p1[i]; + } + for (/**/; i <= p0Degree; ++i) { + result[i] = p0[i]; + } + result.EliminateLeadingZeros(); + return result; + } + else { + Polynomial1 result(p1Degree); + for (i = 0; i <= p0Degree; ++i) { + result[i] = p0[i] - p1[i]; + } + for (/**/; i <= p1Degree; ++i) { + result[i] = -p1[i]; + } + result.EliminateLeadingZeros(); + return result; + } +} + +inline Polynomial1 operator * (double scalar, const Polynomial1& p) +{ + const uint32_t degree = p.GetDegree(); + Polynomial1 result(degree); + for (uint32_t i = 0; i <= degree; ++i) { + result[i] = scalar * p[i]; + } + return result; +} + +// Utility class used to calculate distance circle-circle +// Adaptation of code found in: +// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/RootsPolynomial.h + +class RootsPolynomial +{ +public: + // General equations: sum_{i=0}^{d} c(i)*t^i = 0. The input array 'c' + // must have at least d+1 elements and the output array 'root' must + // have at least d elements. + + // Find the roots on (-infinity,+infinity). + static int32_t Find(int32_t degree, const double* c, uint32_t maxIterations, double* roots) + { + if (degree >= 0 && c != nullptr) { + const double zero = 0.0; + while (degree >= 0 && c[degree] == zero) { + --degree; + } + + if (degree > 0) { + // Compute the Cauchy bound. + const double one = 1.0; + const double invLeading = one / c[degree]; + double maxValue = zero; + for (int32_t i = 0; i < degree; ++i) { + const double value = std::fabs(c[i] * invLeading); + if (value > maxValue) + maxValue = value; + } + const double bound = one + maxValue; + + return FindRecursive(degree, c, -bound, bound, maxIterations, roots); + } + else if (degree == 0) + // The polynomial is a nonzero constant. + return 0; + else { + // The polynomial is identically zero. + roots[0] = zero; + return 1; + } + } + else + // Invalid degree or c. + return 0; + } + + // If you know that p(tmin) * p(tmax) <= 0, then there must be at + // least one root in [tmin, tmax]. Compute it using bisection. + static bool Find(int32_t degree, const double* c, double tmin, double tmax, uint32_t maxIterations, double& root) + { + const double zero = 0.0; + double pmin = Evaluate(degree, c, tmin); + if (pmin == zero) { + root = tmin; + return true; + } + double pmax = Evaluate(degree, c, tmax); + if (pmax == zero) { + root = tmax; + return true; + } + + if (pmin * pmax > zero) + // It is not known whether the interval bounds a root. + return false; + + if (tmin >= tmax) + // Invalid ordering of interval endpoitns. + return false; + + for (uint32_t i = 1; i <= maxIterations; ++i) { + root = 0.5 * (tmin + tmax); + + // This test is designed for 'float' or 'double' when tmin + // and tmax are consecutive floating-point numbers. + if (root == tmin || root == tmax) + break; + + const double p = Evaluate(degree, c, root); + const double product = p * pmin; + if (product < zero) { + tmax = root; + pmax = p; + } + else if (product > zero) { + tmin = root; + pmin = p; + } + else + break; + } + + return true; + } + + // Support for the Find functions. + static int32_t FindRecursive(int32_t degree, double const* c, double tmin, double tmax, uint32_t maxIterations, double* roots) + { + // The base of the recursion. + const double zero = 0.0; + double root = zero; + if (degree == 1) { + int32_t numRoots; + if (c[1] != zero) { + root = -c[0] / c[1]; + numRoots = 1; + } + else if (c[0] == zero) { + root = zero; + numRoots = 1; + } + else + numRoots = 0; + + if (numRoots > 0 && tmin <= root && root <= tmax) { + roots[0] = root; + return 1; + } + return 0; + } + + // Find the roots of the derivative polynomial scaled by 1/degree. + // The scaling avoids the factorial growth in the coefficients; + // for example, without the scaling, the high-order term x^d + // becomes (d!)*x through multiple differentiations. With the + // scaling we instead get x. This leads to better numerical + // behavior of the root finder. + const int32_t derivDegree = degree - 1; + std::vector derivCoeff(static_cast(derivDegree) + 1); + std::vector derivRoots(derivDegree); + for (int32_t i = 0, ip1 = 1; i <= derivDegree; ++i, ++ip1) { + derivCoeff[i] = c[ip1] * (double)(ip1) / (double)degree; + } + const int32_t numDerivRoots = FindRecursive(degree - 1, &derivCoeff[0], tmin, tmax, maxIterations, &derivRoots[0]); + + int32_t numRoots = 0; + if (numDerivRoots > 0) { + // Find root on [tmin,derivRoots[0]]. + if (Find(degree, c, tmin, derivRoots[0], maxIterations, root)) + roots[numRoots++] = root; + + // Find root on [derivRoots[i],derivRoots[i+1]]. + for (int32_t i = 0, ip1 = 1; i <= numDerivRoots - 2; ++i, ++ip1) { + if (Find(degree, c, derivRoots[i], derivRoots[ip1], maxIterations, root)) + roots[numRoots++] = root; + } + + // Find root on [derivRoots[numDerivRoots-1],tmax]. + if (Find(degree, c, derivRoots[static_cast(numDerivRoots) - 1], tmax, maxIterations, root)) + roots[numRoots++] = root; + } + else { + // The polynomial is monotone on [tmin,tmax], so has at most one root. + if (Find(degree, c, tmin, tmax, maxIterations, root)) + roots[numRoots++] = root; + } + return numRoots; + } + + static double Evaluate(int32_t degree, const double* c, double t) + { + int32_t i = degree; + double result = c[i]; + while (--i >= 0) { + result = t * result + c[i]; + } + return result; + } +}; + +// Adaptation of code found in: +// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/Vector.h + +// Construct a single vector orthogonal to the nonzero input vector. If +// the maximum absolute component occurs at index i, then the orthogonal +// vector U has u[i] = v[i+1], u[i+1] = -v[i], and all other components +// zero. The index addition i+1 is computed modulo N. +inline Vec3d get_orthogonal(const Vec3d& v, bool unitLength) +{ + double cmax = std::fabs(v[0]); + int32_t imax = 0; + for (int32_t i = 1; i < 3; ++i) { + double c = std::fabs(v[i]); + if (c > cmax) { + cmax = c; + imax = i; + } + } + + Vec3d result = Vec3d::Zero(); + int32_t inext = imax + 1; + if (inext == 3) + inext = 0; + + result[imax] = v[inext]; + result[inext] = -v[imax]; + if (unitLength) { + const double sqrDistance = result[imax] * result[imax] + result[inext] * result[inext]; + const double invLength = 1.0 / std::sqrt(sqrDistance); + result[imax] *= invLength; + result[inext] *= invLength; + } + return result; +} + +} // namespace Slic3r +} // namespace Measure + +#endif // Slic3r_MeasureUtils_hpp_ diff --git a/src/libslic3r/Point.hpp b/src/libslic3r/Point.hpp index 82040fea6..4a3e5deb9 100644 --- a/src/libslic3r/Point.hpp +++ b/src/libslic3r/Point.hpp @@ -45,6 +45,7 @@ using Vec3f = Eigen::Matrix; using Vec2d = Eigen::Matrix; using Vec3d = Eigen::Matrix; // BBS +using Vec4f = Eigen::Matrix; using Vec4d = Eigen::Matrix; using Points = std::vector; @@ -70,7 +71,6 @@ using Transform2d = Eigen::Transform; using Transform3d = Eigen::Transform; -using ColorRGBA = std::array; // I don't know why Eigen::Transform::Identity() return a const object... template Transform identity() { return Transform::Identity(); } inline const auto &identity3f = identity<3, float>; diff --git a/src/libslic3r/SurfaceMesh.hpp b/src/libslic3r/SurfaceMesh.hpp new file mode 100644 index 000000000..c2a46d631 --- /dev/null +++ b/src/libslic3r/SurfaceMesh.hpp @@ -0,0 +1,167 @@ +///|/ Copyright (c) Prusa Research 2022 Lukáš Matěna @lukasmatena +///|/ +///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher +///|/ +#ifndef slic3r_SurfaceMesh_hpp_ +#define slic3r_SurfaceMesh_hpp_ + +#include +#include + +#include "boost/container/small_vector.hpp" + +namespace Slic3r { + +class TriangleMesh; + + + +enum Face_index : int; + +class Halfedge_index { + friend class SurfaceMesh; + +public: + Halfedge_index() : m_face(Face_index(-1)), m_side(0) {} + Face_index face() const { return m_face; } + unsigned char side() const { return m_side; } + bool is_invalid() const { return int(m_face) < 0; } + bool operator!=(const Halfedge_index& rhs) const { return ! ((*this) == rhs); } + bool operator==(const Halfedge_index& rhs) const { return m_face == rhs.m_face && m_side == rhs.m_side; } + +private: + Halfedge_index(int face_idx, unsigned char side_idx) : m_face(Face_index(face_idx)), m_side(side_idx) {} + + Face_index m_face; + unsigned char m_side; +}; + + + +class Vertex_index { + friend class SurfaceMesh; + +public: + Vertex_index() : m_face(Face_index(-1)), m_vertex_idx(0) {} + bool is_invalid() const { return int(m_face) < 0; } + bool operator==(const Vertex_index& rhs) const = delete; // Use SurfaceMesh::is_same_vertex. + +private: + Vertex_index(int face_idx, unsigned char vertex_idx) : m_face(Face_index(face_idx)), m_vertex_idx(vertex_idx) {} + + Face_index m_face; + unsigned char m_vertex_idx; +}; + + + +class SurfaceMesh { +public: + explicit SurfaceMesh(const indexed_triangle_set& its) + : m_its(its), + m_face_neighbors(its_face_neighbors_par(its)) + {} + SurfaceMesh(const SurfaceMesh&) = delete; + SurfaceMesh& operator=(const SurfaceMesh&) = delete; + + Vertex_index source(Halfedge_index h) const { assert(! h.is_invalid()); return Vertex_index(h.m_face, h.m_side); } + Vertex_index target(Halfedge_index h) const { assert(! h.is_invalid()); return Vertex_index(h.m_face, h.m_side == 2 ? 0 : h.m_side + 1); } + Face_index face(Halfedge_index h) const { assert(! h.is_invalid()); return h.m_face; } + + Halfedge_index next(Halfedge_index h) const { assert(! h.is_invalid()); h.m_side = (h.m_side + 1) % 3; return h; } + Halfedge_index prev(Halfedge_index h) const { assert(! h.is_invalid()); h.m_side = (h.m_side == 0 ? 2 : h.m_side - 1); return h; } + Halfedge_index halfedge(Vertex_index v) const { return Halfedge_index(v.m_face, (v.m_vertex_idx == 0 ? 2 : v.m_vertex_idx - 1)); } + Halfedge_index halfedge(Face_index f) const { return Halfedge_index(f, 0); } + Halfedge_index opposite(Halfedge_index h) const { + if (h.is_invalid()) + return h; + + int face_idx = m_face_neighbors[h.m_face][h.m_side]; + Halfedge_index h_candidate = halfedge(Face_index(face_idx)); + + if (h_candidate.is_invalid()) + return Halfedge_index(); // invalid + + for (int i=0; i<3; ++i) { + if (is_same_vertex(source(h_candidate), target(h))) { + // Meshes in PrusaSlicer should be fixed enough for the following not to happen. + assert(is_same_vertex(target(h_candidate), source(h))); + return h_candidate; + } + h_candidate = next(h_candidate); + } + return Halfedge_index(); // invalid + } + + Halfedge_index next_around_target(Halfedge_index h) const { return opposite(next(h)); } + Halfedge_index prev_around_target(Halfedge_index h) const { Halfedge_index op = opposite(h); return (op.is_invalid() ? Halfedge_index() : prev(op)); } + Halfedge_index next_around_source(Halfedge_index h) const { Halfedge_index op = opposite(h); return (op.is_invalid() ? Halfedge_index() : next(op)); } + Halfedge_index prev_around_source(Halfedge_index h) const { return opposite(prev(h)); } + Halfedge_index halfedge(Vertex_index source, Vertex_index target) const + { + Halfedge_index hi(source.m_face, source.m_vertex_idx); + assert(! hi.is_invalid()); + + const Vertex_index orig_target = this->target(hi); + Vertex_index current_target = orig_target; + + while (! is_same_vertex(current_target, target)) { + hi = next_around_source(hi); + if (hi.is_invalid()) + break; + current_target = this->target(hi); + if (is_same_vertex(current_target, orig_target)) + return Halfedge_index(); // invalid + } + + return hi; + } + + const stl_vertex& point(Vertex_index v) const { return m_its.vertices[m_its.indices[v.m_face][v.m_vertex_idx]]; } + + size_t degree(Vertex_index v) const + { + // In case the mesh is broken badly, the loop might end up to be infinite, + // never getting back to the first halfedge. Remember list of all half-edges + // and trip if any is encountered for the second time. + Halfedge_index h_first = halfedge(v); + boost::container::small_vector he_visited; + Halfedge_index h = next_around_target(h_first); + size_t degree = 2; + while (! h.is_invalid() && h != h_first) { + he_visited.emplace_back(h); + h = next_around_target(h); + if (std::find(he_visited.begin(), he_visited.end(), h) == he_visited.end()) + return 0; + ++degree; + } + return h.is_invalid() ? 0 : degree - 1; + } + + size_t degree(Face_index f) const { + size_t total = 0; + for (unsigned char i=0; i<3; ++i) { + size_t d = degree(Vertex_index(f, i)); + if (d == 0) + return 0; + total += d; + } + assert(total - 6 >= 0); + return total - 6; // we counted 3 halfedges from f, and one more for each neighbor + } + + bool is_border(Halfedge_index h) const { return m_face_neighbors[h.m_face][h.m_side] == -1; } + + bool is_same_vertex(const Vertex_index& a, const Vertex_index& b) const { return m_its.indices[a.m_face][a.m_vertex_idx] == m_its.indices[b.m_face][b.m_vertex_idx]; } + Vec3i get_face_neighbors(Face_index face_id) const { assert(int(face_id) < int(m_face_neighbors.size())); return m_face_neighbors[face_id]; } + + + +private: + const std::vector m_face_neighbors; + const indexed_triangle_set& m_its; +}; + +} //namespace Slic3r + +#endif // slic3r_SurfaceMesh_hpp_ diff --git a/src/slic3r/GUI/GLModel.hpp b/src/slic3r/GUI/GLModel.hpp index d47c56fd9..5112b1558 100644 --- a/src/slic3r/GUI/GLModel.hpp +++ b/src/slic3r/GUI/GLModel.hpp @@ -2,6 +2,7 @@ #define slic3r_GLModel_hpp_ #include "libslic3r/Point.hpp" +#include "libslic3r/Color.hpp" #include "libslic3r/BoundingBox.hpp" #include #include diff --git a/src/slic3r/GUI/GUI_Utils.hpp b/src/slic3r/GUI/GUI_Utils.hpp index 10e2a6f94..305848803 100644 --- a/src/slic3r/GUI/GUI_Utils.hpp +++ b/src/slic3r/GUI/GUI_Utils.hpp @@ -488,6 +488,15 @@ public: ~TaskTimer(); }; +class KeyAutoRepeatFilter +{ + size_t m_count{0}; + +public: + void increase_count() { ++m_count; } + void reset_count() { m_count = 0; } + bool is_first() const { return m_count == 0; } +}; /* Image Generator */ #define _3MF_COVER_SIZE wxSize(240, 240) diff --git a/src/slic3r/GUI/Gizmos/GLGizmoAdvancedCut.cpp b/src/slic3r/GUI/Gizmos/GLGizmoAdvancedCut.cpp index 52e3da422..1c3cf707d 100644 --- a/src/slic3r/GUI/Gizmos/GLGizmoAdvancedCut.cpp +++ b/src/slic3r/GUI/Gizmos/GLGizmoAdvancedCut.cpp @@ -32,29 +32,12 @@ const int c_connectors_start_id = c_connectors_group_id - c_cube_z_move_id; const float UndefFloat = -999.f; // connector colors -static const ColorRGBA BLACK() { return {0.0f, 0.0f, 0.0f, 1.0f}; } -static const ColorRGBA BLUE() { return {0.0f, 0.0f, 1.0f, 1.0f}; } -static const ColorRGBA BLUEISH() { return {0.5f, 0.5f, 1.0f, 1.0f}; } -static const ColorRGBA CYAN() { return {0.0f, 1.0f, 1.0f, 1.0f}; } -static const ColorRGBA DARK_GRAY() { return {0.25f, 0.25f, 0.25f, 1.0f}; } -static const ColorRGBA DARK_YELLOW() { return {0.5f, 0.5f, 0.0f, 1.0f}; } -static const ColorRGBA GRAY() { return {0.5f, 0.5f, 0.5f, 1.0f}; } -static const ColorRGBA GREEN() { return {0.0f, 1.0f, 0.0f, 1.0f}; } -static const ColorRGBA GREENISH() { return {0.5f, 1.0f, 0.5f, 1.0f}; } -static const ColorRGBA LIGHT_GRAY() { return {0.75f, 0.75f, 0.75f, 1.0f}; } -static const ColorRGBA MAGENTA() { return {1.0f, 0.0f, 1.0f, 1.0f}; } -static const ColorRGBA ORANGE() { return {0.923f, 0.504f, 0.264f, 1.0f}; } -static const ColorRGBA RED() { return {1.0f, 0.0f, 0.0f, 1.0f}; } -static const ColorRGBA REDISH() { return {1.0f, 0.5f, 0.5f, 1.0f}; } -static const ColorRGBA YELLOW() { return {1.0f, 1.0f, 0.0f, 1.0f}; } -static const ColorRGBA WHITE() { return {1.0f, 1.0f, 1.0f, 1.0f}; } - -static const ColorRGBA PLAG_COLOR = YELLOW(); -static const ColorRGBA DOWEL_COLOR = DARK_YELLOW(); -static const ColorRGBA HOVERED_PLAG_COLOR = CYAN(); +static const ColorRGBA PLAG_COLOR = ColorRGBA::YELLOW(); +static const ColorRGBA DOWEL_COLOR = ColorRGBA::DARK_YELLOW(); +static const ColorRGBA HOVERED_PLAG_COLOR = ColorRGBA::CYAN(); static const ColorRGBA HOVERED_DOWEL_COLOR = {0.0f, 0.5f, 0.5f, 1.0f}; -static const ColorRGBA SELECTED_PLAG_COLOR = GRAY(); -static const ColorRGBA SELECTED_DOWEL_COLOR = GRAY(); // DARK_GRAY(); +static const ColorRGBA SELECTED_PLAG_COLOR = ColorRGBA::GRAY(); +static const ColorRGBA SELECTED_DOWEL_COLOR = ColorRGBA::GRAY(); // DARK_GRAY(); static const ColorRGBA CONNECTOR_DEF_COLOR = {1.0f, 1.0f, 1.0f, 0.5f}; static const ColorRGBA CONNECTOR_ERR_COLOR = {1.0f, 0.3f, 0.3f, 0.5f}; static const ColorRGBA HOVERED_ERR_COLOR = {1.0f, 0.3f, 0.3f, 1.0f}; @@ -62,8 +45,8 @@ static const ColorRGBA HOVERED_ERR_COLOR = {1.0f, 0.3f, 0.3f, 1.0f}; static const ColorRGBA CUT_PLANE_DEF_COLOR = {0.9f, 0.9f, 0.9f, 0.5f}; static const ColorRGBA CUT_PLANE_ERR_COLOR = {1.0f, 0.8f, 0.8f, 0.5f}; -static const ColorRGBA UPPER_PART_COLOR = CYAN(); -static const ColorRGBA LOWER_PART_COLOR = MAGENTA(); +static const ColorRGBA UPPER_PART_COLOR = ColorRGBA::CYAN(); +static const ColorRGBA LOWER_PART_COLOR = ColorRGBA::MAGENTA(); static const ColorRGBA MODIFIER_COLOR = {0.75f, 0.75f, 0.75f, 0.5f}; static Vec3d rotate_vec3d_around_vec3d_with_rotate_matrix( @@ -351,27 +334,6 @@ bool GLGizmoAdvancedCut::unproject_on_cut_plane(const Vec2d &mouse_pos, Vec3d &p return true; } -void GLGizmoAdvancedCut::render_glmodel(GLModel &model, const std::array &color, Transform3d view_model_matrix, bool for_picking) -{ - glPushMatrix(); - GLShaderProgram *shader = nullptr; - if (for_picking) - shader = wxGetApp().get_shader("cali"); - else - shader = wxGetApp().get_shader("gouraud_light"); - if (shader) { - shader->start_using(); - - glsafe(::glMultMatrixd(view_model_matrix.data())); - - model.set_color(-1, color); - model.render(); - - shader->stop_using(); - } - glPopMatrix(); -} - void GLGizmoAdvancedCut::reset_cut_plane() { m_transformed_bounding_box = transformed_bounding_box(m_bb_center); @@ -1143,9 +1105,9 @@ void GLGizmoAdvancedCut::render_cut_plane_and_grabbers() bool is_valid = can_perform_cut() && has_valid_groove(); ColorRGBA cp_clr = is_valid ? CUT_PLANE_DEF_COLOR : CUT_PLANE_ERR_COLOR; if (m_cut_mode == CutMode::cutTongueAndGroove) { - cp_clr[3] = cp_clr[3] - 0.1f; // cp_clr.a(cp_clr.a() - 0.1f); + cp_clr.a(cp_clr.a() - 0.1f); } - render_glmodel(m_plane, cp_clr, Geometry::translation_transform(m_plane_center) * m_rotate_matrix); + render_glmodel(m_plane, cp_clr.get_data(), Geometry::translation_transform(m_plane_center) * m_rotate_matrix); glsafe(::glClear(GL_DEPTH_BUFFER_BIT)); glsafe(::glEnable(GL_CULL_FACE)); @@ -1277,7 +1239,7 @@ void GLGizmoAdvancedCut::render_connectors() const Transform3d view_model_matrix = translate_tf * m_rotate_matrix * scale_tf; - render_glmodel(m_shapes[connector.attribs], render_color, view_model_matrix); + render_glmodel(m_shapes[connector.attribs], render_color.get_data(), view_model_matrix); } } @@ -1878,13 +1840,12 @@ bool GLGizmoAdvancedCut::render_cut_mode_combo(double label_width, float item_wi void GLGizmoAdvancedCut::render_color_marker(float size, const ColorRGBA &color) { - auto to_ImU32 = [](const ColorRGBA &color) -> ImU32 { return ImGui::GetColorU32({color[0], color[1], color[2], color[3]}); }; ImGui::SameLine(); const float radius = 0.5f * size; ImVec2 pos = ImGui::GetCurrentWindow()->DC.CursorPos; pos.x += 3 * m_imgui->scaled(1 / 15.0f); pos.y += 1.25f * radius; - ImGui::GetCurrentWindow()->DrawList->AddNgonFilled(pos, radius, to_ImU32(color), 6); + ImGui::GetCurrentWindow()->DrawList->AddNgonFilled(pos, radius, ImGuiWrapper::to_ImU32(color), 6); } void GLGizmoAdvancedCut::render_cut_plane_input_window(float x, float y, float bottom_limit) @@ -2699,7 +2660,7 @@ void PartSelection::part_render(const Vec3d *normal) for (size_t id = 0; id < m_cut_parts.size(); ++id) { // m_parts.size() test if (normal && ((is_looking_forward && m_cut_parts[id].is_up_part) || (!is_looking_forward && !m_cut_parts[id].is_up_part))) continue; - GLGizmoAdvancedCut::render_glmodel(m_cut_parts[id].glmodel, m_cut_parts[id].is_up_part ? UPPER_PART_COLOR : LOWER_PART_COLOR, m_cut_parts[id].trans); + GLGizmoBase::render_glmodel(m_cut_parts[id].glmodel, m_cut_parts[id].is_up_part ? UPPER_PART_COLOR.get_data() : LOWER_PART_COLOR.get_data(), m_cut_parts[id].trans); } } diff --git a/src/slic3r/GUI/Gizmos/GLGizmoAdvancedCut.hpp b/src/slic3r/GUI/Gizmos/GLGizmoAdvancedCut.hpp index bc3648a38..5c2cb5010 100644 --- a/src/slic3r/GUI/Gizmos/GLGizmoAdvancedCut.hpp +++ b/src/slic3r/GUI/Gizmos/GLGizmoAdvancedCut.hpp @@ -218,7 +218,7 @@ public: bool unproject_on_cut_plane(const Vec2d &mouse_pos, Vec3d &pos, Vec3d &pos_world, bool respect_contours = true); virtual bool apply_clipping_plane() { return m_connectors_editing; } - static void render_glmodel(GLModel &model, const std::array &color, Transform3d view_model_matrix, bool for_picking = false); + protected: virtual bool on_init(); virtual void on_load(cereal::BinaryInputArchive &ar) override; diff --git a/src/slic3r/GUI/Gizmos/GLGizmoBase.cpp b/src/slic3r/GUI/Gizmos/GLGizmoBase.cpp index f0b7dfe73..fb47b6ee6 100644 --- a/src/slic3r/GUI/Gizmos/GLGizmoBase.cpp +++ b/src/slic3r/GUI/Gizmos/GLGizmoBase.cpp @@ -424,7 +424,26 @@ void GLGizmoBase::render_input_window(float x, float y, float bottom_limit) } } +void GLGizmoBase::render_glmodel(GLModel &model, const std::array &color, Transform3d view_model_matrix, bool for_picking, float emission_factor) +{ + glPushMatrix(); + GLShaderProgram *shader = nullptr; + if (for_picking) + shader = wxGetApp().get_shader("cali"); + else + shader = wxGetApp().get_shader("gouraud_light"); + if (shader) { + shader->start_using(); + shader->set_uniform("emission_factor", emission_factor); + glsafe(::glMultMatrixd(view_model_matrix.data())); + model.set_color(-1, color); + model.render(); + + shader->stop_using(); + } + glPopMatrix(); +} std::string GLGizmoBase::get_name(bool include_shortcut) const { diff --git a/src/slic3r/GUI/Gizmos/GLGizmoBase.hpp b/src/slic3r/GUI/Gizmos/GLGizmoBase.hpp index 786580059..442eedb44 100644 --- a/src/slic3r/GUI/Gizmos/GLGizmoBase.hpp +++ b/src/slic3r/GUI/Gizmos/GLGizmoBase.hpp @@ -2,6 +2,7 @@ #define slic3r_GLGizmoBase_hpp_ #include "libslic3r/Point.hpp" +#include "libslic3r/Color.hpp" #include "slic3r/GUI/I18N.hpp" #include "slic3r/GUI/GLModel.hpp" @@ -215,7 +216,7 @@ public: /// virtual void data_changed(bool is_serializing){}; int get_count() { return ++count; } - + static void render_glmodel(GLModel &model, const std::array &color, Transform3d view_model_matrix, bool for_picking = false, float emission_factor = 0.0f); protected: float last_input_window_width = 0; virtual bool on_init() = 0; diff --git a/src/slic3r/GUI/ImGuiWrapper.cpp b/src/slic3r/GUI/ImGuiWrapper.cpp index f05c335b2..2e892d654 100644 --- a/src/slic3r/GUI/ImGuiWrapper.cpp +++ b/src/slic3r/GUI/ImGuiWrapper.cpp @@ -80,6 +80,8 @@ static const std::map font_icons = { {ImGui::AddFilamentDarkIcon , "add_filament_dark"}, {ImGui::DeleteFilamentIcon , "delete_filament"}, {ImGui::DeleteFilamentDarkIcon , "delete_filament_dark"}, + {ImGui::ClipboardBtnIcon , "copy_menu"}, + {ImGui::ClipboardBtnDarkIcon , "copy_menu_dark"}, {ImGui::CircleButtonDarkIcon , "circle_paint_dark" }, {ImGui::TriangleButtonDarkIcon , "triangle_paint_dark" }, @@ -148,7 +150,6 @@ const ImVec4 ImGuiWrapper::COL_BUTTON_HOVERED = COL_ORANGE_LIGHT; const ImVec4 ImGuiWrapper::COL_BUTTON_ACTIVE = ImGuiWrapper::COL_BUTTON_HOVERED; //BBS - const ImVec4 ImGuiWrapper::COL_BLUE_LIGHT = ImVec4(0.122f, 0.557f, 0.918f, 1.0f); const ImVec4 ImGuiWrapper::COL_GREEN_LIGHT = ImVec4(0.86f, 0.99f, 0.91f, 1.0f); const ImVec4 ImGuiWrapper::COL_HOVER = { 0.933f, 0.933f, 0.933f, 1.0f }; @@ -158,6 +159,7 @@ const ImVec4 ImGuiWrapper::COL_SEPARATOR_DARK = { 0.24f, 0.24f, 0.27f, 1.0f } const ImVec4 ImGuiWrapper::COL_TITLE_BG = { 0.745f, 0.745f, 0.745f, 1.0f }; const ImVec4 ImGuiWrapper::COL_WINDOW_BG = { 1.000f, 1.000f, 1.000f, 1.0f }; const ImVec4 ImGuiWrapper::COL_WINDOW_BG_DARK = { 45 / 255.f, 45 / 255.f, 49 / 255.f, 1.f }; +const ImVec4 ImGuiWrapper::COL_BAMBU = {0.0f, 150.f / 255.0f, 136.0f / 255, 1.0f}; int ImGuiWrapper::TOOLBAR_WINDOW_FLAGS = ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoMove @@ -800,11 +802,102 @@ bool ImGuiWrapper::radio_button(const wxString &label, bool active) return ImGui::RadioButton(label_utf8.c_str(), active); } -bool ImGuiWrapper::image_button() +ImFontAtlasCustomRect *ImGuiWrapper::GetTextureCustomRect(const wchar_t &tex_id) { - return false; + auto item = m_custom_glyph_rects_ids.find(tex_id); + return (item != m_custom_glyph_rects_ids.end()) ? ImGui::GetIO().Fonts->GetCustomRectByIndex(m_custom_glyph_rects_ids[tex_id]) : nullptr; } +ImU32 ImGuiWrapper::to_ImU32(const ColorRGBA &color) +{ + return ImGui::GetColorU32({color.r(), color.g(), color.b(), color.a()}); +} + +ImVec4 ImGuiWrapper::to_ImVec4(const ColorRGBA &color) { + return {color.r(), color.g(), color.b(), color.a()}; +} + +ColorRGBA ImGuiWrapper::from_ImU32(const ImU32 &color) +{ + return from_ImVec4(ImGui::ColorConvertU32ToFloat4(color)); +} + +ColorRGBA ImGuiWrapper::from_ImVec4(const ImVec4 &color) +{ + return {color.x, color.y, color.z, color.w}; +} + +static bool image_button_ex(ImGuiID id, + ImTextureID texture_id, + const ImVec2 & size, + const ImVec2 & uv0, + const ImVec2 & uv1, + const ImVec2 & padding, + const ImVec4 & bg_col, + const ImVec4 & tint_col, + ImGuiButtonFlags flags) +{ + ImGuiContext &g = *GImGui; + ImGuiWindow * window = ImGui::GetCurrentWindow(); + if (window->SkipItems) return false; + + const ImRect bb(window->DC.CursorPos, window->DC.CursorPos + size + padding * 2); + ImGui::ItemSize(bb); + if (!ImGui::ItemAdd(bb, id)) return false; + + bool hovered, held; + bool pressed = ImGui::ButtonBehavior(bb, id, &hovered, &held, flags); + + // Render + const ImU32 col = ImGui::GetColorU32((held && hovered) ? ImGuiCol_ButtonActive : hovered ? ImGuiCol_ButtonHovered : ImGuiCol_Button); + ImGui::RenderNavHighlight(bb, id); + ImGui::RenderFrame(bb.Min, bb.Max, col, true, ImClamp((float) ImMin(padding.x, padding.y), 0.0f, g.Style.FrameRounding)); + if (bg_col.w > 0.0f) window->DrawList->AddRectFilled(bb.Min + padding, bb.Max - padding, ImGui::GetColorU32(bg_col)); + window->DrawList->AddImage(texture_id, bb.Min + padding, bb.Max - padding, uv0, uv1, ImGui::GetColorU32(tint_col)); + + return pressed; +} + +bool ImGuiWrapper::image_button( + ImTextureID user_texture_id, const ImVec2 &size, const ImVec2 &uv0, const ImVec2 &uv1, int frame_padding, const ImVec4 &bg_col, const ImVec4 &tint_col, ImGuiButtonFlags flags) +{ + ImGuiContext &g = *GImGui; + ImGuiWindow * window = g.CurrentWindow; + if (window->SkipItems) + return false; + + // Default to using texture ID as ID. User can still push string/integer prefixes. + ImGui::PushID((void *) (intptr_t) user_texture_id); + const ImGuiID id = window->GetID("#image"); + ImGui::PopID(); + + const ImVec2 padding = (frame_padding >= 0) ? ImVec2((float) frame_padding, (float) frame_padding) : g.Style.FramePadding; + return image_button_ex(id, user_texture_id, size, uv0, uv1, padding, bg_col, tint_col, flags); +} + +bool ImGuiWrapper::image_button(const wchar_t icon, const wxString &tooltip) +{ + const ImGuiIO & io = ImGui::GetIO(); + const ImTextureID tex_id = io.Fonts->TexID; + assert(io.Fonts->TexWidth > 0 && io.Fonts->TexHeight > 0); + const float inv_tex_w = 1.0f / float(io.Fonts->TexWidth); + const float inv_tex_h = 1.0f / float(io.Fonts->TexHeight); + const ImFontAtlasCustomRect *const rect = GetTextureCustomRect(icon); + const ImVec2 size = {float(rect->Width), float(rect->Height)}; + const ImVec2 uv0 = ImVec2(float(rect->X) * inv_tex_w, float(rect->Y) * inv_tex_h); + const ImVec2 uv1 = ImVec2(float(rect->X + rect->Width) * inv_tex_w, float(rect->Y + rect->Height) * inv_tex_h); + ImGui::PushStyleColor(ImGuiCol_Button, {0.25f, 0.25f, 0.25f, 0.0f}); + ImGui::PushStyleColor(ImGuiCol_ButtonHovered, {0.4f, 0.4f, 0.4f, 1.0f}); + ImGui::PushStyleColor(ImGuiCol_ButtonActive, {0.25f, 0.25f, 0.25f, 1.0f}); + const bool res = image_button(tex_id, size, uv0, uv1); + ImGui::PopStyleColor(3); + + if (!tooltip.empty() && ImGui::IsItemHovered()) this->tooltip(tooltip, ImGui::GetFontSize() * 20.0f); + + return res; +} + + bool ImGuiWrapper::input_double(const std::string &label, const double &value, const std::string &format) { return ImGui::InputDouble(label.c_str(), const_cast(&value), 0.0f, 0.0f, format.c_str(), ImGuiInputTextFlags_CharsDecimal); @@ -1791,6 +1884,11 @@ bool ImGuiWrapper::want_any_input() const return io.WantCaptureMouse || io.WantCaptureKeyboard || io.WantTextInput; } +void ImGuiWrapper::disable_background_fadeout_animation() +{ + GImGui->DimBgRatio = 1.0f; +} + #ifdef __APPLE__ static const ImWchar ranges_keyboard_shortcuts[] = { @@ -2150,11 +2248,11 @@ void ImGuiWrapper::init_font(bool compress) int rect_id = io.Fonts->CustomRects.Size; // id of the rectangle added next // add rectangles for the icons to the font atlas for (auto& icon : font_icons) - io.Fonts->AddCustomRectFontGlyph(default_font, icon.first, icon_sz, icon_sz, 3.0 * font_scale + icon_sz); + m_custom_glyph_rects_ids[icon.first] = io.Fonts->AddCustomRectFontGlyph(default_font, icon.first, icon_sz, icon_sz, 3.0 * font_scale + icon_sz); for (auto& icon : font_icons_large) - io.Fonts->AddCustomRectFontGlyph(default_font, icon.first, icon_sz * 2, icon_sz * 2, 3.0 * font_scale + icon_sz * 2); + m_custom_glyph_rects_ids[icon.first] = io.Fonts->AddCustomRectFontGlyph(default_font, icon.first, icon_sz * 2, icon_sz * 2, 3.0 * font_scale + icon_sz * 2); for (auto& icon : font_icons_extra_large) - io.Fonts->AddCustomRectFontGlyph(default_font, icon.first, icon_sz * 4, icon_sz * 4, 3.0 * font_scale + icon_sz * 4); + m_custom_glyph_rects_ids[icon.first] = io.Fonts->AddCustomRectFontGlyph(default_font, icon.first, icon_sz * 4, icon_sz * 4, 3.0 * font_scale + icon_sz * 4); // Build texture atlas unsigned char* pixels; diff --git a/src/slic3r/GUI/ImGuiWrapper.hpp b/src/slic3r/GUI/ImGuiWrapper.hpp index b8840ffe0..1d6c7917f 100644 --- a/src/slic3r/GUI/ImGuiWrapper.hpp +++ b/src/slic3r/GUI/ImGuiWrapper.hpp @@ -9,6 +9,7 @@ #include #include "libslic3r/Point.hpp" +#include "libslic3r/Color.hpp" #include "libslic3r/GCode/ThumbnailData.hpp" namespace Slic3r {namespace Search { @@ -59,6 +60,7 @@ class ImGuiWrapper #if ENABLE_ENHANCED_IMGUI_SLIDER_FLOAT bool m_requires_extra_frame{ false }; #endif // ENABLE_ENHANCED_IMGUI_SLIDER_FLOAT + std::map m_custom_glyph_rects_ids; std::string m_clipboard_text; public: @@ -115,7 +117,21 @@ public: bool bbl_button(const wxString &label); bool button(const wxString& label, float width, float height); bool radio_button(const wxString &label, bool active); - bool image_button(); + + static ImU32 to_ImU32(const ColorRGBA &color); + static ImVec4 to_ImVec4(const ColorRGBA &color); + static ColorRGBA from_ImU32(const ImU32 &color); + static ColorRGBA from_ImVec4(const ImVec4 &color); + ImFontAtlasCustomRect *GetTextureCustomRect(const wchar_t &tex_id); + bool image_button(ImTextureID user_texture_id, + const ImVec2 & size, + const ImVec2 & uv0 = ImVec2(0.0, 0.0), + const ImVec2 & uv1 = ImVec2(1.0, 1.0), + int frame_padding = -1, + const ImVec4 & bg_col = ImVec4(0.0, 0.0, 0.0, 0.0), + const ImVec4 & tint_col = ImVec4(1.0, 1.0, 1.0, 1.0), + ImGuiButtonFlags flags = 0); + bool image_button(const wchar_t icon, const wxString &tooltip = L""); bool input_double(const std::string &label, const double &value, const std::string &format = "%.3f"); bool input_double(const wxString &label, const double &value, const std::string &format = "%.3f"); bool input_vec3(const std::string &label, const Vec3d &value, float width, const std::string &format = "%.3f"); @@ -181,6 +197,7 @@ public: void set_requires_extra_frame() { m_requires_extra_frame = true; } void reset_requires_extra_frame() { m_requires_extra_frame = false; } #endif // ENABLE_ENHANCED_IMGUI_SLIDER_FLOAT + void disable_background_fadeout_animation(); static const ImVec4 COL_GREY_DARK; static const ImVec4 COL_GREY_LIGHT; @@ -201,7 +218,7 @@ public: static const ImVec4 COL_WINDOW_BG_DARK; static const ImVec4 COL_SEPARATOR; static const ImVec4 COL_SEPARATOR_DARK; - + static const ImVec4 COL_BAMBU; //BBS static void on_change_color_mode(bool is_dark); static void push_toolbar_style(const float scale); diff --git a/src/slic3r/GUI/MeshUtils.cpp b/src/slic3r/GUI/MeshUtils.cpp index fab310322..7268be2d1 100644 --- a/src/slic3r/GUI/MeshUtils.cpp +++ b/src/slic3r/GUI/MeshUtils.cpp @@ -88,7 +88,7 @@ void MeshClipper::render_cut(const ColorRGBA &color, const std::vector * if (ignore_idxs && std::binary_search(ignore_idxs->begin(), ignore_idxs->end(), i)) continue; auto isl = m_result->cut_islands[i]; ColorRGBA gray{0.5f, 0.5f, 0.5f, 1.f}; - isl->model.set_color(-1, isl->disabled ? gray : color); + isl->model.set_color(-1, isl->disabled ? gray.get_data() : color.get_data()); isl->model.render(); } shader->stop_using(); @@ -114,7 +114,7 @@ void MeshClipper::render_contour(const ColorRGBA &color, const std::vectorbegin(), ignore_idxs->end(), i)) continue; auto isl = m_result->cut_islands[i]; ColorRGBA red{1.0f, 0.f, 0.f, 1.f}; - isl->model_expanded.set_color(-1, isl->disabled ? red : color); + isl->model_expanded.set_color(-1, isl->disabled ? red.get_data() : color.get_data()); isl->model_expanded.render(); } shader->stop_using(); @@ -420,6 +420,13 @@ Vec3f MeshRaycaster::get_triangle_normal(size_t facet_idx) const return m_normals[facet_idx]; } +MeshRaycaster::MeshRaycaster(const TriangleMesh &mesh) + : m_emesh(mesh, true) // calculate epsilon for triangle-ray intersection from an average edge length + , m_normals(its_face_normals(mesh.its)) +{ + ; +} + void MeshRaycaster::line_from_mouse_pos_static(const Vec2d &mouse_pos, const Transform3d &trafo, const Camera &camera, Vec3d &point, Vec3d &direction) { CameraUtils::ray_from_screen_pos(camera, mouse_pos, point, direction); @@ -447,7 +454,7 @@ void MeshRaycaster::line_from_mouse_pos(const Vec2d& mouse_pos, const Transform3 pt2 = inv * pt2; point = pt1; - direction = pt2-pt1; + direction = (pt2-pt1).normalized(); } @@ -555,6 +562,37 @@ std::vector MeshRaycaster::get_unobscured_idxs(const Geometry::Transfo return out; } +bool MeshRaycaster::closest_hit( + const Vec2d &mouse_pos, const Transform3d &trafo, const Camera &camera, Vec3f &position, Vec3f &normal, const ClippingPlane *clipping_plane, size_t *facet_idx) const +{ + Vec3d point; + Vec3d direction; + line_from_mouse_pos(mouse_pos, trafo, camera, point, direction); + + auto hits = m_emesh.query_ray_hits(point, direction.normalized()); + + if (hits.empty()) return false; // no intersection found + + size_t hit_id = 0; + if (clipping_plane != nullptr) { + while (hit_id < hits.size() && clipping_plane->is_point_clipped(trafo * hits[hit_id].position())) { + ++hit_id; + } + } + + if (hit_id == hits.size()) + return false; // all points are obscured or cut by the clipping plane. + + auto &hit = hits[hit_id]; + + position = hit.position().cast(); + normal = hit.normal().cast(); + + if (facet_idx != nullptr) + *facet_idx = hit.face(); + + return true; +} Vec3f MeshRaycaster::get_closest_point(const Vec3f& point, Vec3f* normal) const { diff --git a/src/slic3r/GUI/MeshUtils.hpp b/src/slic3r/GUI/MeshUtils.hpp index 8d9b84e7c..236abd067 100644 --- a/src/slic3r/GUI/MeshUtils.hpp +++ b/src/slic3r/GUI/MeshUtils.hpp @@ -2,6 +2,7 @@ #define slic3r_MeshUtils_hpp_ #include "libslic3r/Point.hpp" +#include "libslic3r/Color.hpp" #include "libslic3r/Geometry.hpp" #include "libslic3r/SLA/IndexedMesh.hpp" #include "admesh/stl.h" @@ -150,11 +151,7 @@ class MeshRaycaster { public: // The class references extern TriangleMesh, which must stay alive // during MeshRaycaster existence. - MeshRaycaster(const TriangleMesh& mesh) - : m_emesh(mesh, true) // calculate epsilon for triangle-ray intersection from an average edge length - , m_normals(its_face_normals(mesh.its)) - { - } + MeshRaycaster(const TriangleMesh &mesh); static void line_from_mouse_pos_static(const Vec2d &mouse_pos, const Transform3d &trafo, const Camera &camera, Vec3d &point, Vec3d &direction); @@ -188,6 +185,17 @@ public: const ClippingPlane* clipping_plane = nullptr // clipping plane (if active) ) const; + // Returns true if the ray, built from mouse position and camera direction, intersects the mesh. + // In this case, position and normal contain the position and normal, in model coordinates, of the intersection closest to the camera, + // depending on the position/orientation of the clipping_plane, if specified + bool closest_hit(const Vec2d & mouse_pos, + const Transform3d & trafo, // how to get the mesh into world coords + const Camera & camera, // current camera position + Vec3f & position, // where to save the positibon of the hit (mesh coords) + Vec3f & normal, // normal of the triangle that was hit + const ClippingPlane *clipping_plane = nullptr, // clipping plane (if active) + size_t * facet_idx = nullptr // index of the facet hit + ) const; // Given a point in world coords, the method returns closest point on the mesh. // The output is in mesh coords. // normal* can be used to also get normal of the respective triangle. @@ -204,7 +212,41 @@ private: std::vector m_normals; }; - +class PickRaycaster +{ +public: + //PickRaycaster(TriangleMesh *mesh) { + // mesh_raycaster = std::make_shared(*mesh); + //} + /*PickRaycaster(TriangleMesh *mesh, const Transform3d &tran) : PickRaycaster(mesh) { + set_transform(tran); + }*/ + PickRaycaster(TriangleMesh *mesh, int _id) + { + mesh_raycaster = std::make_shared(*mesh); + m_id = _id; + } + PickRaycaster(TriangleMesh *mesh, int _id, const Transform3d &tran) + { + mesh_raycaster = std::make_shared(*mesh); + set_transform(tran); + m_id = _id; + } + void set_transform(const Transform3d &tran) { + world_tran.set_from_transform(tran); + } + + std::shared_ptr mesh_raycaster{nullptr}; + Geometry::Transformation world_tran; + + bool is_active() const { return m_active; } + void set_active(bool active) { m_active = active; } + int get_id() { return m_id; } +private: + bool m_active{true}; + int m_id{-1}; +}; + } // namespace GUI } // namespace Slic3r diff --git a/src/slic3r/GUI/Selection.cpp b/src/slic3r/GUI/Selection.cpp index 1efd3b1b0..c86238e21 100644 --- a/src/slic3r/GUI/Selection.cpp +++ b/src/slic3r/GUI/Selection.cpp @@ -907,7 +907,14 @@ void Selection::move_to_center(const Vec3d& displacement, bool local) this->set_bounding_boxes_dirty(); } -void Selection::translate(const Vec3d& displacement, bool local) +void Selection::setup_cache() +{ + if (!m_valid) + return; + set_caches(); +} + +void Selection::translate(const Vec3d &displacement, bool local) { if (!m_valid) return; diff --git a/src/slic3r/GUI/Selection.hpp b/src/slic3r/GUI/Selection.hpp index 5455ac517..874e5b5eb 100644 --- a/src/slic3r/GUI/Selection.hpp +++ b/src/slic3r/GUI/Selection.hpp @@ -334,6 +334,7 @@ public: void stop_dragging() { m_dragging = false; } bool is_dragging() const { return m_dragging; } + void setup_cache(); void translate(const Vec3d& displacement, bool local = false); void move_to_center(const Vec3d& displacement, bool local = false); void rotate(const Vec3d& rotation, TransformationType transformation_type);