From 0b0e03df1fcda148ef065f6dbdcf8f12a130a869 Mon Sep 17 00:00:00 2001 From: "zhimin.zeng" Date: Thu, 30 May 2024 20:23:23 +0800 Subject: [PATCH] FIX: Multicolor slicing error when contours self-intersect github: 4138 Change-Id: I08375e2cf66d4fa4c7322f5aa1b8e86a7c49bf2d (cherry picked from commit b2a1f816605615cbd2e47c62a00d3b87998e3213) --- src/libslic3r/MultiMaterialSegmentation.cpp | 808 +++++++++++++++++++- 1 file changed, 807 insertions(+), 1 deletion(-) diff --git a/src/libslic3r/MultiMaterialSegmentation.cpp b/src/libslic3r/MultiMaterialSegmentation.cpp index 10564e988..cd2bc0061 100644 --- a/src/libslic3r/MultiMaterialSegmentation.cpp +++ b/src/libslic3r/MultiMaterialSegmentation.cpp @@ -31,6 +31,454 @@ //#define MM_SEGMENTATION_DEBUG_TOP_BOTTOM namespace Slic3r { +using boost::polygon::voronoi_diagram; + +static inline Point mk_point(const Voronoi::VD::vertex_type *point) { return {coord_t(point->x()), coord_t(point->y())}; } + +static inline Point mk_point(const Voronoi::Internal::point_type &point) { return {coord_t(point.x()), coord_t(point.y())}; } + +static inline Point mk_point(const voronoi_diagram::vertex_type &point) { return {coord_t(point.x()), coord_t(point.y())}; } + +static inline Point mk_point(const Vec2d &point) { return {coord_t(std::round(point.x())), coord_t(std::round(point.y()))}; } + +static inline Vec2d mk_vec2(const voronoi_diagram::vertex_type *point) { return {point->x(), point->y()}; } + +static bool vertex_equal_to_point(const Voronoi::VD::vertex_type &vertex, const Vec2d &ipt) +{ + // Convert ipt to doubles, force the 80bit FPU temporary to 64bit and then compare. + // This should work with any settings of math compiler switches and the C++ compiler + // shall understand the memcpies as type punning and it shall optimize them out. + using ulp_cmp_type = boost::polygon::detail::ulp_comparison; + ulp_cmp_type ulp_cmp; + static constexpr int ULPS = boost::polygon::voronoi_diagram_traits::vertex_equality_predicate_type::ULPS; + return ulp_cmp(vertex.x(), ipt.x(), ULPS) == ulp_cmp_type::EQUAL && ulp_cmp(vertex.y(), ipt.y(), ULPS) == ulp_cmp_type::EQUAL; +} + +static inline bool vertex_equal_to_point(const Voronoi::VD::vertex_type *vertex, const Vec2d &ipt) { return vertex_equal_to_point(*vertex, ipt); } + +struct MMU_Graph +{ + enum class ARC_TYPE { BORDER, NON_BORDER }; + + struct Arc + { + size_t from_idx; + size_t to_idx; + int color; + ARC_TYPE type; + + bool operator==(const Arc &rhs) const { return (from_idx == rhs.from_idx) && (to_idx == rhs.to_idx) && (color == rhs.color) && (type == rhs.type); } + bool operator!=(const Arc &rhs) const { return !operator==(rhs); } + }; + + struct Node + { + Vec2d point; + std::list arc_idxs; + + void remove_edge(const size_t to_idx, MMU_Graph &graph) + { + for (auto arc_it = this->arc_idxs.begin(); arc_it != this->arc_idxs.end(); ++arc_it) { + MMU_Graph::Arc &arc = graph.arcs[*arc_it]; + if (arc.to_idx == to_idx) { + assert(arc.type != ARC_TYPE::BORDER); + this->arc_idxs.erase(arc_it); + break; + } + } + } + }; + + std::vector nodes; + std::vector arcs; + size_t all_border_points{}; + + std::vector polygon_idx_offset; + std::vector polygon_sizes; + + void remove_edge(const size_t from_idx, const size_t to_idx) + { + nodes[from_idx].remove_edge(to_idx, *this); + nodes[to_idx].remove_edge(from_idx, *this); + } + + [[nodiscard]] size_t get_global_index(const size_t poly_idx, const size_t point_idx) const { return polygon_idx_offset[poly_idx] + point_idx; } + + void append_edge(const size_t &from_idx, const size_t &to_idx, int color = -1, ARC_TYPE type = ARC_TYPE::NON_BORDER) + { + // Don't append duplicate edges between the same nodes. + for (const size_t &arc_idx : this->nodes[from_idx].arc_idxs) + if (arcs[arc_idx].to_idx == to_idx) return; + for (const size_t &arc_idx : this->nodes[to_idx].arc_idxs) + if (arcs[arc_idx].to_idx == from_idx) return; + + this->nodes[from_idx].arc_idxs.push_back(this->arcs.size()); + this->arcs.push_back({from_idx, to_idx, color, type}); + + // Always insert only one directed arc for the input polygons. + // Two directed arcs in both directions are inserted if arcs aren't between points of the input polygons. + if (type == ARC_TYPE::NON_BORDER) { + this->nodes[to_idx].arc_idxs.push_back(this->arcs.size()); + this->arcs.push_back({to_idx, from_idx, color, type}); + } + } + + // It assumes that between points of the input polygons is always only one directed arc, + // with the same direction as lines of the input polygon. + [[nodiscard]] MMU_Graph::Arc get_border_arc(size_t idx) const + { + assert(idx < this->all_border_points); + return this->arcs[idx]; + } + + [[nodiscard]] size_t nodes_count() const { return this->nodes.size(); } + + void remove_nodes_with_one_arc() + { + std::queue update_queue; + for (const MMU_Graph::Node &node : this->nodes) { + size_t node_idx = &node - &this->nodes.front(); + // Skip nodes that represent points of input polygons. + if (node.arc_idxs.size() == 1 && node_idx >= this->all_border_points) update_queue.emplace(&node - &this->nodes.front()); + } + + while (!update_queue.empty()) { + size_t node_from_idx = update_queue.front(); + MMU_Graph::Node &node_from = this->nodes[update_queue.front()]; + update_queue.pop(); + if (node_from.arc_idxs.empty()) continue; + + assert(node_from.arc_idxs.size() == 1); + size_t node_to_idx = arcs[node_from.arc_idxs.front()].to_idx; + MMU_Graph::Node &node_to = this->nodes[node_to_idx]; + this->remove_edge(node_from_idx, node_to_idx); + if (node_to.arc_idxs.size() == 1 && node_to_idx >= this->all_border_points) update_queue.emplace(node_to_idx); + } + } + + void add_contours(const std::vector> &color_poly) + { + this->all_border_points = nodes.size(); + this->polygon_sizes = std::vector(color_poly.size()); + for (size_t polygon_idx = 0; polygon_idx < color_poly.size(); ++polygon_idx) this->polygon_sizes[polygon_idx] = color_poly[polygon_idx].size(); + this->polygon_idx_offset = std::vector(color_poly.size()); + this->polygon_idx_offset[0] = 0; + for (size_t polygon_idx = 1; polygon_idx < color_poly.size(); ++polygon_idx) { + this->polygon_idx_offset[polygon_idx] = this->polygon_idx_offset[polygon_idx - 1] + color_poly[polygon_idx - 1].size(); + } + + size_t poly_idx = 0; + for (const std::vector &color_lines : color_poly) { + size_t line_idx = 0; + for (const ColoredLine &color_line : color_lines) { + size_t from_idx = this->get_global_index(poly_idx, line_idx); + size_t to_idx = this->get_global_index(poly_idx, (line_idx + 1) % color_lines.size()); + this->append_edge(from_idx, to_idx, color_line.color, ARC_TYPE::BORDER); + ++line_idx; + } + ++poly_idx; + } + } + + // Nodes 0..all_border_points are only one with are on countour. Other vertexis are consider as not on coouter. So we check if base on attach index + inline bool is_vertex_on_contour(const Voronoi::VD::vertex_type *vertex) const + { + assert(vertex != nullptr); + return vertex->color() < this->all_border_points; + } + + [[nodiscard]] inline bool is_edge_attach_to_contour(const voronoi_diagram::const_edge_iterator &edge_iterator) const + { + return this->is_vertex_on_contour(edge_iterator->vertex0()) || this->is_vertex_on_contour(edge_iterator->vertex1()); + } + + [[nodiscard]] inline bool is_edge_connecting_two_contour_vertices(const voronoi_diagram::const_edge_iterator &edge_iterator) const + { + return this->is_vertex_on_contour(edge_iterator->vertex0()) && this->is_vertex_on_contour(edge_iterator->vertex1()); + } + + // All Voronoi vertices are post-processes to merge very close vertices to single. Witch eliminates issues with intersection edges. + // Also, Voronoi vertices outside of the bounding of input polygons are throw away by marking them. + void append_voronoi_vertices(const Geometry::VoronoiDiagram &vd, const Polygons &color_poly_tmp, BoundingBox bbox) + { + bbox.offset(SCALED_EPSILON); + + struct CPoint + { + CPoint() = delete; + CPoint(const Vec2d &point, size_t contour_idx, size_t point_idx) : m_point_double(point), m_point(mk_point(point)), m_point_idx(point_idx), m_contour_idx(contour_idx) + {} + CPoint(const Vec2d &point, size_t point_idx) : m_point_double(point), m_point(mk_point(point)), m_point_idx(point_idx), m_contour_idx(0) {} + const Vec2d m_point_double; + const Point m_point; + size_t m_point_idx; + size_t m_contour_idx; + + [[nodiscard]] const Vec2d &point_double() const { return m_point_double; } + [[nodiscard]] const Point &point() const { return m_point; } + bool operator==(const CPoint &rhs) const + { + return this->m_point_double == rhs.m_point_double && this->m_contour_idx == rhs.m_contour_idx && this->m_point_idx == rhs.m_point_idx; + } + }; + struct CPointAccessor + { + const Point *operator()(const CPoint &pt) const { return &pt.point(); } + }; + typedef ClosestPointInRadiusLookup CPointLookupType; + + CPointLookupType closest_voronoi_point(coord_t(SCALED_EPSILON)); + CPointLookupType closest_contour_point(3 * coord_t(SCALED_EPSILON)); + for (const Polygon &polygon : color_poly_tmp) + for (const Point &pt : polygon.points) closest_contour_point.insert(CPoint(Vec2d(pt.x(), pt.y()), &polygon - &color_poly_tmp.front(), &pt - &polygon.points.front())); + + for (const voronoi_diagram::vertex_type &vertex : vd.vertices()) { + vertex.color(-1); + Vec2d vertex_point_double = Vec2d(vertex.x(), vertex.y()); + Point vertex_point = mk_point(vertex); + + const Vec2d &first_point_double = this->nodes[this->get_border_arc(vertex.incident_edge()->cell()->source_index()).from_idx].point; + const Vec2d &second_point_double = this->nodes[this->get_border_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx].point; + + if (vertex_equal_to_point(&vertex, first_point_double)) { + assert(vertex.color() != vertex.incident_edge()->cell()->source_index()); + assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index()); + vertex.color(this->get_border_arc(vertex.incident_edge()->cell()->source_index()).from_idx); + } else if (vertex_equal_to_point(&vertex, second_point_double)) { + assert(vertex.color() != vertex.incident_edge()->cell()->source_index()); + assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index()); + vertex.color(this->get_border_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx); + } else if (bbox.contains(vertex_point)) { + if (auto [contour_pt, c_dist_sqr] = closest_contour_point.find(vertex_point); contour_pt != nullptr && c_dist_sqr < Slic3r::sqr(3 * SCALED_EPSILON)) { + vertex.color(this->get_global_index(contour_pt->m_contour_idx, contour_pt->m_point_idx)); + } else if (auto [voronoi_pt, v_dist_sqr] = closest_voronoi_point.find(vertex_point); voronoi_pt == nullptr || v_dist_sqr >= Slic3r::sqr(SCALED_EPSILON / 10.0)) { + closest_voronoi_point.insert(CPoint(vertex_point_double, this->nodes_count())); + vertex.color(this->nodes_count()); + this->nodes.push_back({vertex_point_double}); + } else { + // Boost Voronoi diagram generator sometimes creates two very closed points instead of one point. + // For the example points (146872.99999999997, -146872.99999999997) and (146873, -146873), this example also included in Voronoi generator test cases. + std::vector> all_closes_c_points = closest_voronoi_point.find_all(vertex_point); + int merge_to_point = -1; + for (const std::pair &c_point : all_closes_c_points) + if ((vertex_point_double - c_point.first->point_double()).squaredNorm() <= Slic3r::sqr(EPSILON)) { + merge_to_point = int(c_point.first->m_point_idx); + break; + } + + if (merge_to_point != -1) { + vertex.color(merge_to_point); + } else { + closest_voronoi_point.insert(CPoint(vertex_point_double, this->nodes_count())); + vertex.color(this->nodes_count()); + this->nodes.push_back({vertex_point_double}); + } + } + } + } + } + + void garbage_collect() + { + std::vector nodes_map(this->nodes.size(), -1); + int nodes_count = 0; + size_t arcs_count = 0; + for (const MMU_Graph::Node &node : this->nodes) + if (size_t node_idx = &node - &this->nodes.front(); !node.arc_idxs.empty()) { + nodes_map[node_idx] = nodes_count++; + arcs_count += node.arc_idxs.size(); + } + + std::vector new_nodes; + std::vector new_arcs; + new_nodes.reserve(nodes_count); + new_arcs.reserve(arcs_count); + for (const MMU_Graph::Node &node : this->nodes) + if (size_t node_idx = &node - &this->nodes.front(); nodes_map[node_idx] >= 0) { + new_nodes.push_back({node.point}); + for (const size_t &arc_idx : node.arc_idxs) { + const Arc &arc = this->arcs[arc_idx]; + new_nodes.back().arc_idxs.emplace_back(new_arcs.size()); + new_arcs.push_back({size_t(nodes_map[arc.from_idx]), size_t(nodes_map[arc.to_idx]), arc.color, arc.type}); + } + } + + this->nodes = std::move(new_nodes); + this->arcs = std::move(new_arcs); + } +}; + +static Polygon colored_points_to_polygon(const std::vector &lines) +{ + Polygon out; + out.points.reserve(lines.size()); + for (const ColoredLine &l : lines) out.points.emplace_back(l.line.a); + return out; +} + +static Polygons colored_points_to_polygon(const std::vector> &lines) +{ + Polygons out; + out.reserve(lines.size()); + for (const std::vector &l : lines) out.emplace_back(colored_points_to_polygon(l)); + return out; +} + +static std::vector> get_all_next_arcs( + const MMU_Graph &graph, std::vector &used_arcs, const Linef &process_line, const MMU_Graph::Arc &original_arc, const int color) +{ + std::vector> all_next_arcs; + for (const size_t &arc_idx : graph.nodes[original_arc.to_idx].arc_idxs) { + std::vector next_continue_arc; + + const MMU_Graph::Arc &arc = graph.arcs[arc_idx]; + if (graph.nodes[arc.to_idx].point == process_line.a || used_arcs[arc_idx]) continue; + + if (original_arc.type == MMU_Graph::ARC_TYPE::BORDER && original_arc.color != color) continue; + + if (arc.type == MMU_Graph::ARC_TYPE::BORDER && arc.color != color) continue; + + Vec2d arc_line = graph.nodes[arc.to_idx].point - graph.nodes[arc.from_idx].point; + next_continue_arc.emplace_back(&arc); + all_next_arcs.emplace_back(next_continue_arc); + } + return all_next_arcs; +} + +static std::vector get_next_arc( + const MMU_Graph &graph, std::vector &used_arcs, const Linef &process_line, const MMU_Graph::Arc &original_arc, const int color) +{ + std::vector res; + + std::vector> all_next_arcs = get_all_next_arcs(graph, used_arcs, process_line, original_arc, color); + if (all_next_arcs.empty()) { + res.emplace_back(&original_arc); + return res; + } + + std::vector, double>> sorted_arcs; + for (auto next_arc : all_next_arcs) { + if (next_arc.empty()) continue; + + Vec2d process_line_vec_n = (process_line.a - process_line.b).normalized(); + Vec2d neighbour_line_vec_n = (graph.nodes[next_arc.back()->to_idx].point - graph.nodes[next_arc.back()->from_idx].point).normalized(); + + double angle = ::acos(std::clamp(neighbour_line_vec_n.dot(process_line_vec_n), -1.0, 1.0)); + if (Slic3r::cross2(neighbour_line_vec_n, process_line_vec_n) < 0.0) angle = 2.0 * (double) PI - angle; + + sorted_arcs.emplace_back(next_arc, angle); + } + + std::sort(sorted_arcs.begin(), sorted_arcs.end(), + [](std::pair, double> &l, std::pair, double> &r) -> bool { return l.second < r.second; }); + + // Try to return left most edge witch is unused + for (auto &sorted_arc : sorted_arcs) { + if (size_t arc_idx = sorted_arc.first.back() - &graph.arcs.front(); !used_arcs[arc_idx]) return sorted_arc.first; + } + + if (sorted_arcs.empty()) { + res.emplace_back(&original_arc); + return res; + } + + return sorted_arcs.front().first; +} + +static bool is_profile_self_interaction(Polygon poly) +{ + auto lines = poly.lines(); + Point intersection; + for (int i = 0; i < lines.size(); ++i) { + for (int j = i + 2; j < std::min(lines.size(), lines.size() + i - 1); ++j) { + if (lines[i].intersection(lines[j], &intersection)) return true; + } + } + return false; +} + +static inline Polygon to_polygon(const std::vector> &id_to_lines) +{ + std::vector lines; + for (auto id_to_line : id_to_lines) lines.emplace_back(id_to_line.second); + + Polygon poly_out; + poly_out.points.reserve(lines.size()); + for (const Linef &line : lines) poly_out.points.emplace_back(mk_point(line.a)); + return poly_out; +} + +static std::vector extract_colored_segments(const MMU_Graph &graph, const size_t num_extruders) +{ + std::vector used_arcs(graph.arcs.size(), false); + + auto all_arc_used = [&used_arcs](const MMU_Graph::Node &node) -> bool { + return std::all_of(node.arc_idxs.cbegin(), node.arc_idxs.cend(), [&used_arcs](const size_t &arc_idx) -> bool { return used_arcs[arc_idx]; }); + }; + + std::vector expolygons_segments(num_extruders + 1); + for (size_t node_idx = 0; node_idx < graph.all_border_points; ++node_idx) { + const MMU_Graph::Node &node = graph.nodes[node_idx]; + + for (const size_t &arc_idx : node.arc_idxs) { + const MMU_Graph::Arc &arc = graph.arcs[arc_idx]; + if (arc.type == MMU_Graph::ARC_TYPE::NON_BORDER || used_arcs[arc_idx]) continue; + + Linef process_line(graph.nodes[arc.from_idx].point, graph.nodes[arc.to_idx].point); + used_arcs[arc_idx] = true; + + std::vector> arc_id_to_face_lines; + arc_id_to_face_lines.emplace_back(std::make_pair(arc_idx, process_line)); + Vec2d start_p = process_line.a; + + Linef p_vec = process_line; + const MMU_Graph::Arc *p_arc = &arc; + bool flag = false; + do { + std::vector nexts = get_next_arc(graph, used_arcs, p_vec, *p_arc, arc.color); + for (auto next : nexts) { + size_t next_arc_idx = next - &graph.arcs.front(); + if (used_arcs[next_arc_idx]) { + flag = true; + break; + } + } + + if (flag) break; + + for (auto next : nexts) { + size_t next_arc_idx = next - &graph.arcs.front(); + arc_id_to_face_lines.emplace_back(std::make_pair(next_arc_idx, Linef(graph.nodes[next->from_idx].point, graph.nodes[next->to_idx].point))); + used_arcs[next_arc_idx] = true; + } + + p_vec = Linef(graph.nodes[nexts.back()->from_idx].point, graph.nodes[nexts.back()->to_idx].point); + p_arc = nexts.back(); + + } while (graph.nodes[p_arc->to_idx].point != start_p || !all_arc_used(graph.nodes[p_arc->to_idx])); + + if (Polygon poly = to_polygon(arc_id_to_face_lines); poly.is_counter_clockwise() && poly.is_valid()) { + expolygons_segments[arc.color].emplace_back(std::move(poly)); + } else { + while (arc_id_to_face_lines.size() > 1) { + auto id_to_line = arc_id_to_face_lines.back(); + used_arcs[id_to_line.first] = false; + arc_id_to_face_lines.pop_back(); + Linef add_line(arc_id_to_face_lines.back().second.b, arc_id_to_face_lines.front().second.a); + arc_id_to_face_lines.emplace_back(std::make_pair(-1, add_line)); + Polygon poly = to_polygon(arc_id_to_face_lines); + if (!is_profile_self_interaction(poly) && poly.is_counter_clockwise() && poly.is_valid()) { + expolygons_segments[arc.color].emplace_back(std::move(poly)); + break; + } + arc_id_to_face_lines.pop_back(); + } + } + } + } + return expolygons_segments; +} + bool is_equal(float left, float right, float eps = 1e-3) { return abs(left - right) <= eps; } @@ -693,6 +1141,7 @@ static void remove_multiple_edges_in_vertex(const VD::vertex_type &vertex) { } } +#if (0) // Returns list of ExPolygons for each extruder + 1 for default unpainted regions. // It iterates through all nodes on the border between two different colors, and from this point, // start selection always left most edges for every node to construct CCW polygons. @@ -828,6 +1277,7 @@ static std::vector extract_colored_segments(const std::vector &input_expolygons, std::vector> &segmented_regions, @@ -1158,6 +1608,358 @@ static inline std::vector> mmu_segmentation_top_and_bott return triangles_by_color_merged; } +// For every ColoredLine in lines_colored_out, assign the index of the polygon to which belongs and also the index of this line inside of the polygon. +static inline void init_polygon_indices(const MMU_Graph &graph, const std::vector> &color_poly, std::vector &lines_colored_out) +{ + size_t poly_idx = 0; + for (const std::vector &color_lines : color_poly) { + size_t line_idx = 0; + for (size_t color_line_idx = 0; color_line_idx < color_lines.size(); ++color_line_idx) { + size_t from_idx = graph.get_global_index(poly_idx, line_idx); + lines_colored_out[from_idx].poly_idx = int(poly_idx); + lines_colored_out[from_idx].local_line_idx = int(line_idx); + ++line_idx; + } + ++poly_idx; + } +} + +static inline bool line_intersection_with_epsilon(const Line &line_to_extend, const Line &other, Point *intersection) +{ + Line extended_line = line_to_extend; + extended_line.extend(15 * SCALED_EPSILON); + return extended_line.intersection(other, intersection); +} + +static inline void mark_processed(const voronoi_diagram::const_edge_iterator &edge_iterator) +{ + edge_iterator->color(true); + edge_iterator->twin()->color(true); +} + +static inline bool is_point_closer_to_beginning_of_line(const Line &line, const Point &p) +{ + return (p - line.a).cast().squaredNorm() < (p - line.b).cast().squaredNorm(); +} + +static inline Line clip_finite_voronoi_edge(const Voronoi::VD::edge_type &edge, const BoundingBoxf &bbox) +{ + assert(edge.is_finite()); + Vec2d v0 = mk_vec2(edge.vertex0()); + Vec2d v1 = mk_vec2(edge.vertex1()); + bool contains_v0 = bbox.contains(v0); + bool contains_v1 = bbox.contains(v1); + if ((contains_v0 && contains_v1) || (!contains_v0 && !contains_v1)) return {mk_point(edge.vertex0()), mk_point(edge.vertex1())}; + + Vec2d vector = (v1 - v0).normalized() * bbox.size().norm(); + if (!contains_v0) + v0 = (v1 - vector); + else + v1 = (v0 + vector); + + return {v0.cast(), v1.cast()}; +} + +static inline bool has_same_color(const ColoredLine &cl1, const ColoredLine &cl2) { return cl1.color == cl2.color; } + +static MMU_Graph build_graph(size_t layer_idx, const std::vector> &color_poly) +{ + const Polygons color_poly_tmp = colored_points_to_polygon(color_poly); + const Points points = to_points(color_poly_tmp); + const Lines lines = to_lines(color_poly_tmp); + + // The algorithm adds edges to the graph that are between two different colors. + // If a polygon is colored entirely with one color, we need to add at least one edge from that polygon artificially. + // Adding this edge is necessary for cases where the expolygon has an outer contour colored whole with one color + // and a hole colored with a different color. If an edge wasn't added to the graph, + // the entire expolygon would be colored with single random color instead of two different. + std::vector force_edge_adding(color_poly.size()); + + // For each polygon, check if it is all colored with the same color. If it is, we need to force adding one edge to it. + for (const std::vector &c_poly : color_poly) { + bool force_edge = true; + for (const ColoredLine &c_line : c_poly) + if (c_line.color != c_poly.front().color) { + force_edge = false; + break; + } + force_edge_adding[&c_poly - &color_poly.front()] = force_edge; + } + + ColoredLines lines_colored = to_lines(color_poly); + const ColoredLines colored_lines = lines_colored; + + Voronoi::VD vd; + vd.construct_voronoi(colored_lines.begin(), colored_lines.end()); + // boost::polygon::construct_voronoi(lines_colored.begin(), lines_colored.end(), &vd); + MMU_Graph graph; + graph.nodes.reserve(points.size() + vd.vertices().size()); + for (const Point &point : points) graph.nodes.push_back({Vec2d(double(point.x()), double(point.y()))}); + + graph.add_contours(color_poly); + init_polygon_indices(graph, color_poly, lines_colored); + + assert(graph.nodes.size() == lines_colored.size()); + BoundingBox bbox = get_extents(color_poly_tmp); + graph.append_voronoi_vertices(vd, color_poly_tmp, bbox); + + auto get_prev_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram::const_edge_iterator &edge_it) -> ColoredLine { + size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx; + size_t contour_line_size = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size(); + size_t contour_prev_idx = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx, + (contour_line_local_idx > 0) ? contour_line_local_idx - 1 : contour_line_size - 1); + return lines_colored[contour_prev_idx]; + }; + + auto get_next_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram::const_edge_iterator &edge_it) -> ColoredLine { + size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx; + size_t contour_line_size = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size(); + size_t contour_next_idx = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx, (contour_line_local_idx + 1) % contour_line_size); + return lines_colored[contour_next_idx]; + }; + + bbox.offset(scale_(10.)); + const BoundingBoxf bbox_clip(bbox.min.cast(), bbox.max.cast()); + const double bbox_dim_max = double(std::max(bbox.size().x(), bbox.size().y())); + + // Make a copy of the input segments with the double type. + std::vector segments; + for (const Line &line : lines) + segments.emplace_back(Voronoi::Internal::point_type(double(line.a(0)), double(line.a(1))), Voronoi::Internal::point_type(double(line.b(0)), double(line.b(1)))); + + for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) { + // Skip second half-edge + if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color()) continue; + + if (edge_it->is_infinite() && (edge_it->vertex0() != nullptr || edge_it->vertex1() != nullptr)) { + // Infinite edge is leading through a point on the counter, but there are no Voronoi vertices. + // So we could fix this case by computing the intersection between the contour line and infinity edge. + std::vector samples; + Voronoi::Internal::clip_infinite_edge(points, segments, *edge_it, bbox_dim_max, &samples); + if (samples.empty()) continue; + + const Line edge_line(mk_point(samples[0]), mk_point(samples[1])); + const ColoredLine &contour_line = lines_colored[edge_it->cell()->source_index()]; + Point contour_intersection; + + if (line_intersection_with_epsilon(contour_line.line, edge_line, &contour_intersection)) { + const MMU_Graph::Arc &graph_arc = graph.get_border_arc(edge_it->cell()->source_index()); + const size_t from_idx = (edge_it->vertex1() != nullptr) ? edge_it->vertex1()->color() : edge_it->vertex0()->color(); + size_t to_idx = ((contour_line.line.a - contour_intersection).cast().squaredNorm() < + (contour_line.line.b - contour_intersection).cast().squaredNorm()) ? + graph_arc.from_idx : + graph_arc.to_idx; + if (from_idx != to_idx && from_idx < graph.nodes_count() && to_idx < graph.nodes_count()) { + graph.append_edge(from_idx, to_idx); + mark_processed(edge_it); + } + } + } else if (edge_it->is_finite()) { + // Both points are on contour, so skip them. In cases of duplicate Voronoi vertices, skip edges between the same two points. + if (graph.is_edge_connecting_two_contour_vertices(edge_it) || (edge_it->vertex0()->color() == edge_it->vertex1()->color())) continue; + + const Line edge_line = clip_finite_voronoi_edge(*edge_it, bbox_clip); + const Line contour_line = lines_colored[edge_it->cell()->source_index()].line; + const ColoredLine colored_line = lines_colored[edge_it->cell()->source_index()]; + const ColoredLine contour_line_prev = get_prev_contour_line(edge_it); + const ColoredLine contour_line_next = get_next_contour_line(edge_it); + + if (edge_it->vertex0()->color() >= graph.nodes_count() || edge_it->vertex1()->color() >= graph.nodes_count()) { + enum class Vertex { VERTEX0, VERTEX1 }; + auto append_edge_if_intersects_with_contour = [&graph, &lines_colored, &edge_line, + &contour_line](const voronoi_diagram::const_edge_iterator &edge_iterator, const Vertex vertex) { + Point intersection; + Line contour_line_twin = lines_colored[edge_iterator->twin()->cell()->source_index()].line; + if (line_intersection_with_epsilon(contour_line_twin, edge_line, &intersection)) { + const MMU_Graph::Arc &graph_arc = graph.get_border_arc(edge_iterator->twin()->cell()->source_index()); + const size_t to_idx_l = is_point_closer_to_beginning_of_line(contour_line_twin, intersection) ? graph_arc.from_idx : graph_arc.to_idx; + graph.append_edge(vertex == Vertex::VERTEX0 ? edge_iterator->vertex0()->color() : edge_iterator->vertex1()->color(), to_idx_l); + } else if (line_intersection_with_epsilon(contour_line, edge_line, &intersection)) { + const MMU_Graph::Arc &graph_arc = graph.get_border_arc(edge_iterator->cell()->source_index()); + const size_t to_idx_l = is_point_closer_to_beginning_of_line(contour_line, intersection) ? graph_arc.from_idx : graph_arc.to_idx; + graph.append_edge(vertex == Vertex::VERTEX0 ? edge_iterator->vertex0()->color() : edge_iterator->vertex1()->color(), to_idx_l); + } + mark_processed(edge_iterator); + }; + + if (edge_it->vertex0()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex0())) + append_edge_if_intersects_with_contour(edge_it, Vertex::VERTEX0); + + if (edge_it->vertex1()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex1())) + append_edge_if_intersects_with_contour(edge_it, Vertex::VERTEX1); + } else if (graph.is_edge_attach_to_contour(edge_it)) { + mark_processed(edge_it); + // Skip edges witch connection two points on a contour + if (graph.is_edge_connecting_two_contour_vertices(edge_it)) continue; + + const size_t from_idx = edge_it->vertex0()->color(); + const size_t to_idx = edge_it->vertex1()->color(); + if (graph.is_vertex_on_contour(edge_it->vertex0())) { + if (is_point_closer_to_beginning_of_line(contour_line, edge_line.a)) { + if ((!has_same_color(contour_line_prev, colored_line) || force_edge_adding[colored_line.poly_idx]) && + points_inside(contour_line_prev.line, contour_line, edge_line.b)) { + graph.append_edge(from_idx, to_idx); + force_edge_adding[colored_line.poly_idx] = false; + } + } else { + if ((!has_same_color(contour_line_next, colored_line) || force_edge_adding[colored_line.poly_idx]) && + points_inside(contour_line, contour_line_next.line, edge_line.b)) { + graph.append_edge(from_idx, to_idx); + force_edge_adding[colored_line.poly_idx] = false; + } + } + } else { + assert(graph.is_vertex_on_contour(edge_it->vertex1())); + if (is_point_closer_to_beginning_of_line(contour_line, edge_line.b)) { + if ((!has_same_color(contour_line_prev, colored_line) || force_edge_adding[colored_line.poly_idx]) && + points_inside(contour_line_prev.line, contour_line, edge_line.a)) { + graph.append_edge(from_idx, to_idx); + force_edge_adding[colored_line.poly_idx] = false; + } + } else { + if ((!has_same_color(contour_line_next, colored_line) || force_edge_adding[colored_line.poly_idx]) && + points_inside(contour_line, contour_line_next.line, edge_line.a)) { + graph.append_edge(from_idx, to_idx); + force_edge_adding[colored_line.poly_idx] = false; + } + } + } + } else if (Point intersection; line_intersection_with_epsilon(contour_line, edge_line, &intersection)) { + mark_processed(edge_it); + Vec2d real_v0_double = graph.nodes[edge_it->vertex0()->color()].point; + Vec2d real_v1_double = graph.nodes[edge_it->vertex1()->color()].point; + Point real_v0 = Point(coord_t(real_v0_double.x()), coord_t(real_v0_double.y())); + Point real_v1 = Point(coord_t(real_v1_double.x()), coord_t(real_v1_double.y())); + + if (is_point_closer_to_beginning_of_line(contour_line, intersection)) { + Line first_part(intersection, real_v0); + Line second_part(intersection, real_v1); + + if (!has_same_color(contour_line_prev, colored_line)) { + if (points_inside(contour_line_prev.line, contour_line, first_part.b)) + graph.append_edge(edge_it->vertex0()->color(), graph.get_border_arc(edge_it->cell()->source_index()).from_idx); + + if (points_inside(contour_line_prev.line, contour_line, second_part.b)) + graph.append_edge(edge_it->vertex1()->color(), graph.get_border_arc(edge_it->cell()->source_index()).from_idx); + } + } else { + const size_t int_point_idx = graph.get_border_arc(edge_it->cell()->source_index()).to_idx; + const Vec2d int_point_double = graph.nodes[int_point_idx].point; + const Point int_point = Point(coord_t(int_point_double.x()), coord_t(int_point_double.y())); + + const Line first_part(int_point, real_v0); + const Line second_part(int_point, real_v1); + + if (!has_same_color(contour_line_next, colored_line)) { + if (points_inside(contour_line, contour_line_next.line, first_part.b)) graph.append_edge(edge_it->vertex0()->color(), int_point_idx); + + if (points_inside(contour_line, contour_line_next.line, second_part.b)) graph.append_edge(edge_it->vertex1()->color(), int_point_idx); + } + } + } + } + } + + for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) { + // Skip second half-edge and processed edges + if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color()) continue; + + if (edge_it->is_finite() && !bool(edge_it->color()) && edge_it->vertex0()->color() < graph.nodes_count() && edge_it->vertex1()->color() < graph.nodes_count()) { + // Skip cases, when the edge is between two same vertices, which is in cases two near vertices were merged together. + if (edge_it->vertex0()->color() == edge_it->vertex1()->color()) continue; + + size_t from_idx = edge_it->vertex0()->color(); + size_t to_idx = edge_it->vertex1()->color(); + graph.append_edge(from_idx, to_idx); + } + mark_processed(edge_it); + } + + graph.remove_nodes_with_one_arc(); + return graph; +} + +static std::vector>> get_all_segments(const std::vector> &color_poly) +{ + std::vector>> all_segments(color_poly.size()); + for (size_t poly_idx = 0; poly_idx < color_poly.size(); ++poly_idx) { + const std::vector &c_polygon = color_poly[poly_idx]; + all_segments[poly_idx] = get_segments(c_polygon); + } + return all_segments; +} + +static inline double compute_edge_length(const MMU_Graph &graph, const size_t start_idx, const size_t &start_arc_idx) +{ + assert(start_arc_idx < graph.arcs.size()); + std::vector used_arcs(graph.arcs.size(), false); + + used_arcs[start_arc_idx] = true; + const MMU_Graph::Arc *arc = &graph.arcs[start_arc_idx]; + size_t idx = start_idx; + double line_total_length = (graph.nodes[arc->to_idx].point - graph.nodes[idx].point).norm(); + while (graph.nodes[arc->to_idx].arc_idxs.size() == 2) { + bool found = false; + for (const size_t &arc_idx : graph.nodes[arc->to_idx].arc_idxs) { + if (const MMU_Graph::Arc &arc_n = graph.arcs[arc_idx]; arc_n.type == MMU_Graph::ARC_TYPE::NON_BORDER && !used_arcs[arc_idx] && arc_n.to_idx != idx) { + Linef first_line(graph.nodes[idx].point, graph.nodes[arc->to_idx].point); + Linef second_line(graph.nodes[arc->to_idx].point, graph.nodes[arc_n.to_idx].point); + + Vec2d first_line_vec = (first_line.a - first_line.b); + Vec2d second_line_vec = (second_line.b - second_line.a); + Vec2d first_line_vec_n = first_line_vec.normalized(); + Vec2d second_line_vec_n = second_line_vec.normalized(); + double angle = ::acos(std::clamp(first_line_vec_n.dot(second_line_vec_n), -1.0, 1.0)); + if (Slic3r::cross2(first_line_vec_n, second_line_vec_n) < 0.0) angle = 2.0 * (double) PI - angle; + + if (std::abs(angle - PI) >= (PI / 12)) continue; + + idx = arc->to_idx; + arc = &arc_n; + + line_total_length += (graph.nodes[arc->to_idx].point - graph.nodes[idx].point).norm(); + used_arcs[arc_idx] = true; + found = true; + break; + } + } + if (!found) break; + } + + return line_total_length; +} + +static void remove_multiple_edges_in_vertices(MMU_Graph &graph, const std::vector> &color_poly) +{ + std::vector>> colored_segments = get_all_segments(color_poly); + for (const std::vector> &colored_segment_p : colored_segments) { + size_t poly_idx = &colored_segment_p - &colored_segments.front(); + for (const std::pair &colored_segment : colored_segment_p) { + size_t first_idx = graph.get_global_index(poly_idx, colored_segment.first); + size_t second_idx = graph.get_global_index(poly_idx, (colored_segment.second + 1) % graph.polygon_sizes[poly_idx]); + Linef seg_line(graph.nodes[first_idx].point, graph.nodes[second_idx].point); + + if (graph.nodes[first_idx].arc_idxs.size() >= 3) { + std::vector> arc_to_check; + for (const size_t &arc_idx : graph.nodes[first_idx].arc_idxs) { + MMU_Graph::Arc &n_arc = graph.arcs[arc_idx]; + if (n_arc.type == MMU_Graph::ARC_TYPE::NON_BORDER) { + double total_len = compute_edge_length(graph, first_idx, arc_idx); + arc_to_check.emplace_back(&n_arc, total_len); + } + } + std::sort(arc_to_check.begin(), arc_to_check.end(), + [](std::pair &l, std::pair &r) -> bool { return l.second > r.second; }); + + while (arc_to_check.size() > 1) { + graph.remove_edge(first_idx, arc_to_check.back().first->to_idx); + arc_to_check.pop_back(); + } + } + } + } +} + static std::vector> merge_segmented_layers( const std::vector> &segmented_regions, std::vector> &&top_and_bottom_layers, @@ -1476,7 +2278,11 @@ std::vector> multi_material_segmentation_by_painting(con // If the whole layer is painted using the same color, it is not needed to construct a Voronoi diagram for the segmentation of this layer. segmented_regions[layer_idx][size_t(color_poly.front().front().color)] = input_expolygons[layer_idx]; } else { - segmented_regions[layer_idx] = extract_colored_segments(color_poly, num_extruders, layer_idx); + MMU_Graph graph = build_graph(layer_idx, color_poly); + remove_multiple_edges_in_vertices(graph, color_poly); + graph.remove_nodes_with_one_arc(); + segmented_regions[layer_idx] = extract_colored_segments(graph, num_extruders); + //segmented_regions[layer_idx] = extract_colored_segments(color_poly, num_extruders, layer_idx); } #ifdef MM_SEGMENTATION_DEBUG_REGIONS