ENH: auto-arranging allows more filaments together

Auto-arranging allows more filaments to be printed on the same plate

Only HighTemp and LowTemp filaments are not allowed on the same plate.

Jira: https://jira.bambooolab.com/browse/STUDIO-4682
Change-Id: I1bd4966e6aaa55a6dd9dff05f0bd94f2795a62b0
(cherry picked from commit 965040912af0555ca190702e7c7ac92e177a2922)
This commit is contained in:
Arthur 2023-10-08 21:06:25 +08:00 committed by Lane.Wei
parent 2bd8a0806b
commit 3d5aa9479c
7 changed files with 159 additions and 91 deletions

View File

@ -69,13 +69,14 @@ class _Item {
Box bb; bool valid;
BBCache(): valid(false) {}
} bb_cache_;
int binid_{BIN_ID_UNSET}, priority_{0};
bool fixed_{false};
public:
int itemid_{ 0 };
std::vector<int> extrude_ids;
int filament_temp_type = -1; // -1 means unset. otherwise should be {0,1,2}
double height{ 0 };
double print_temp{ 0 };
double bed_temp{ 0 };
@ -140,7 +141,7 @@ public:
inline _Item(TContour<RawShape>&& contour,
THolesContainer<RawShape>&& holes):
sh_(sl::create<RawShape>(std::move(contour), std::move(holes))) {}
inline bool isFixed() const noexcept { return fixed_; }
inline void markAsFixedInBin(int binid)
{
@ -150,7 +151,7 @@ public:
inline void binId(int idx) { binid_ = idx; }
inline int binId() const noexcept { return binid_; }
inline void priority(int p) { priority_ = p; }
inline int priority() const noexcept { return priority_; }
@ -303,18 +304,18 @@ public:
{
rotation(rotation() + rads);
}
inline void inflation(Coord distance) BP2D_NOEXCEPT
{
inflation_ = distance;
has_inflation_ = true;
invalidateCache();
}
inline Coord inflation() const BP2D_NOEXCEPT {
return inflation_;
}
inline void inflate(Coord distance) BP2D_NOEXCEPT
{
inflation(inflation() + distance);
@ -780,7 +781,7 @@ template<class PlacementStrategy, class SelectionStrategy >
class _Nester {
using TSel = SelectionStrategyLike<SelectionStrategy>;
TSel selector_;
public:
using Item = typename PlacementStrategy::Item;
using ShapeType = typename Item::ShapeType;
@ -805,7 +806,7 @@ private:
StopCondition stopfn_;
template<class It> using TVal = remove_ref_t<typename It::value_type>;
template<class It, class Out>
using ItemIteratorOnly =
enable_if_t<std::is_convertible<TVal<It>&, TPItem&>::value, Out>;
@ -863,14 +864,14 @@ public:
if(infl > 0) std::for_each(from, to, [infl](Item& item) {
item.inflate(infl);
});
selector_.template packItems<PlacementStrategy>(
from, to, bin_, pconfig_);
if(min_obj_distance_ > 0) std::for_each(from, to, [infl](Item& item) {
item.inflate(-infl);
});
return selector_.getResult().size();
}

View File

@ -1,5 +1,5 @@
#include "Arrange.hpp"
#include "Print.hpp"
#include "BoundingBox.hpp"
#include <libnest2d/backends/libslic3r/geometries.hpp>
@ -260,7 +260,7 @@ Points get_shrink_bedpts(const DynamicPrintConfig* print_cfg, const ArrangeParam
// Slic3r.
template<class PConf>
void fill_config(PConf& pcfg, const ArrangeParams &params) {
if (params.is_seq_print) {
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::BOTTOM_LEFT;
@ -269,7 +269,7 @@ void fill_config(PConf& pcfg, const ArrangeParams &params) {
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::TOP_RIGHT;
}
if (params.do_final_align) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
@ -286,7 +286,7 @@ void fill_config(PConf& pcfg, const ArrangeParams &params) {
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = params.accuracy;
// Allow parallel execution.
pcfg.parallel = params.parallel;
@ -312,7 +312,7 @@ static double fixed_overfit(const std::tuple<double, Box>& result, const Box &bi
Box fullbb = sl::boundingBox(pilebb, binbb);
auto diff = double(fullbb.area()) - binbb.area();
if(diff > 0) score += diff;
return score;
}
@ -379,7 +379,7 @@ protected:
std::vector<Box> m_excluded_and_extruCali_regions; // excluded and extrusion calib regions
size_t m_item_count = 0; // Number of all items to be packed
ArrangeParams params;
template<class T> ArithmeticOnly<T, double> norm(T val)
{
return double(val) / m_norm;
@ -417,18 +417,18 @@ protected:
const double bin_area = m_bin_area;
const SpatIndex& spatindex = m_rtree;
const SpatIndex& smalls_spatindex = m_smallsrtree;
// We will treat big items (compared to the print bed) differently
auto isBig = [bin_area](double a) {
return a/bin_area > BIG_ITEM_TRESHOLD ;
};
// Candidate item bounding box
auto ibb = item.boundingBox();
// Calculate the full bounding box of the pile with the candidate item
auto fullbb = sl::boundingBox(m_pilebb, ibb);
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
@ -437,31 +437,31 @@ protected:
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// Will hold the resulting score
double score = 0;
// Density is the pack density: how big is the arranged pile
double density = 0;
// Distinction of cases for the arrangement scene
enum e_cases {
// This branch is for big items in a mixed (big and small) scene
// OR for all items in a small-only scene.
BIG_ITEM,
// This branch is for the last big item in a mixed scene
LAST_BIG_ITEM,
// For small items in a mixed scene.
SMALL_ITEM
} compute_case;
bool bigitems = isBig(item.area()) || spatindex.empty();
if(!params.is_seq_print && bigitems && !m_remaining.empty()) compute_case = BIG_ITEM; // do not use so complicated logic for sequential printing
else if (bigitems && m_remaining.empty()) compute_case = LAST_BIG_ITEM;
else compute_case = SMALL_ITEM;
switch (compute_case) {
case BIG_ITEM: {
const Point& minc = ibb.minCorner(); // bottom left corner
@ -566,7 +566,7 @@ protected:
}
break;
}
}
}
@ -603,9 +603,11 @@ protected:
for (int i = 0; i < m_items.size(); i++) {
Item& p = m_items[i];
if (p.is_virt_object) continue;
score += lambda3 * (item.bed_temp - p.vitrify_temp > VITRIFY_TEMP_DIFF_THRSH);
//score += lambda3 * (item.bed_temp - p.vitrify_temp > VITRIFY_TEMP_DIFF_THRSH);
if (!Print::is_filaments_compatible({item.filament_temp_type,p.filament_temp_type}))
score += lambda3;
}
score += lambda3 * (item.bed_temp - item.vitrify_temp > VITRIFY_TEMP_DIFF_THRSH);
//score += lambda3 * (item.bed_temp - item.vitrify_temp > VITRIFY_TEMP_DIFF_THRSH);
score += lambda4 * hasRowHeightConflict + lambda4 * hasLidHeightConflict;
}
else {
@ -625,7 +627,9 @@ protected:
// 高度接近的件尽量摆到一起
score += (1- std::abs(item.height - p.height) / params.printable_height)
* norm(pl::distance(ibb.center(), p.boundingBox().center()));
score += LARGE_COST_TO_REJECT * (item.bed_temp - p.bed_temp != 0);
//score += LARGE_COST_TO_REJECT * (item.bed_temp - p.bed_temp != 0);
if (!Print::is_filaments_compatible({ item.filament_temp_type,p.filament_temp_type }))
score += LARGE_COST_TO_REJECT;
}
}
}
@ -656,9 +660,9 @@ protected:
return std::make_tuple(score, fullbb);
}
std::function<double(const Item&, const ItemGroup&)> get_objfn();
public:
AutoArranger(const TBin & bin,
const ArrangeParams &params,
@ -708,7 +712,7 @@ public:
m_rtree.clear();
m_smallsrtree.clear();
// We will treat big items (compared to the print bed) differently
auto isBig = [this](double a) {
return a / m_bin_area > BIG_ITEM_TRESHOLD ;
@ -721,7 +725,7 @@ public:
m_smallsrtree.insert({itm.boundingBox(), idx});
}
};
m_pconf.object_function = get_objfn();
// preload fixed items (and excluded regions) on plate
@ -746,7 +750,7 @@ public:
};
auto on_packed = params.on_packed;
if (progressind || on_packed)
m_pck.progressIndicator(
[this, progressind, on_packed](unsigned num_finished) {
@ -760,7 +764,8 @@ public:
if (on_packed)
on_packed(ap);
BOOST_LOG_TRIVIAL(debug) << "arrange " + last_packed.name + " succeed!"
<< ", plate id=" << ap.bed_idx << ", pos=" << last_packed.translation();
<< ", plate id=" << ap.bed_idx << ", pos=" << last_packed.translation()
<< ", temp_type=" << last_packed.filament_temp_type;
}
});
@ -783,21 +788,21 @@ public:
(i1.extrude_ids != i2.extrude_ids ? (i1.extrude_ids.front() < i2.extrude_ids.front()) : (i1.area() > i2.area()));
}
};
m_pck.configure(m_pconf);
}
template<class It> inline void operator()(It from, It to) {
m_rtree.clear();
m_item_count += size_t(to - from);
m_pck.execute(from, to);
m_item_count = 0;
}
PConfig& config() { return m_pconf; }
const PConfig& config() const { return m_pconf; }
inline void preload(std::vector<Item>& fixeditems) {
inline void preload(std::vector<Item>& fixeditems) {
for(unsigned idx = 0; idx < fixeditems.size(); ++idx) {
Item& itm = fixeditems[idx];
itm.markAsFixedInBin(itm.binId());
@ -813,7 +818,7 @@ template<> std::function<double(const Item&, const ItemGroup&)> AutoArranger<Box
return [this, origin_pack](const Item &itm, const ItemGroup&) {
auto result = objfunc(itm, origin_pack);
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
@ -840,15 +845,15 @@ template<> std::function<double(const Item&, const ItemGroup&)> AutoArranger<Cir
auto bb = sl::boundingBox(m_bin);
auto origin_pack = m_pconf.starting_point == PConfig::Alignment::CENTER ? bb.center() : bb.minCorner();
return [this, origin_pack](const Item &item, const ItemGroup&) {
auto result = objfunc(item, origin_pack);
double score = std::get<0>(result);
auto isBig = [this](const Item& itm) {
return itm.area() / m_bin_area > BIG_ITEM_TRESHOLD ;
};
if(isBig(item)) {
auto mp = m_merged_pile;
mp.push_back(item.transformedShape());
@ -857,7 +862,7 @@ template<> std::function<double(const Item&, const ItemGroup&)> AutoArranger<Cir
if(miss < 0) miss = 0;
score += miss*miss;
}
return score;
};
}
@ -873,7 +878,7 @@ std::function<double(const Item &, const ItemGroup&)> AutoArranger<ExPolygon>::g
auto result = objfunc(itm, origin_pack);
double score = std::get<0>(result);
auto mp = m_merged_pile;
mp.emplace_back(itm.transformedShape());
auto chull = sl::convexHull(mp);
@ -930,14 +935,14 @@ void _arrange(
// Integer ceiling the min distance from the bed perimeters
coord_t md = params.min_obj_distance;
md = md / 2;
auto corrected_bin = bin;
//sl::offset(corrected_bin, md);
ArrangeParams mod_params = params;
mod_params.min_obj_distance = 0; // items are already inflated
AutoArranger<BinT> arranger{corrected_bin, mod_params, progressfn, stopfn};
remove_large_items(excludes, corrected_bin);
// If there is something on the plate
@ -947,7 +952,7 @@ void _arrange(
inp.reserve(shapes.size() + excludes.size());
for (auto &itm : shapes ) inp.emplace_back(itm);
for (auto &itm : excludes) inp.emplace_back(itm);
// Use the minimum bounding box rotation as a starting point.
// TODO: This only works for convex hull. If we ever switch to concave
// polygon nesting, a convex hull needs to be calculated.
@ -987,16 +992,16 @@ inline double distance_to(const Point& p1, const Point& p2)
static CircleBed to_circle(const Point &center, const Points& points) {
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt : points)
{
double distance = distance_to(center, pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
CircleBed ret(center, avg_dist);
for(auto el : vertex_distances)
{
@ -1005,7 +1010,7 @@ static CircleBed to_circle(const Point &center, const Points& points) {
break;
}
}
return ret;
}
@ -1039,6 +1044,7 @@ static void process_arrangeable(const ArrangePolygon &arrpoly,
item.print_temp = arrpoly.print_temp;
item.vitrify_temp = arrpoly.vitrify_temp;
item.inflation(arrpoly.inflation);
item.filament_temp_type = arrpoly.filament_temp_type;
}
template<class Fn> auto call_with_bed(const Points &bed, Fn &&fn)
@ -1079,20 +1085,20 @@ void arrange(ArrangePolygons & arrangables,
const ArrangeParams & params)
{
namespace clppr = Slic3r::ClipperLib;
std::vector<Item> items, fixeditems;
items.reserve(arrangables.size());
for (ArrangePolygon &arrangeable : arrangables)
process_arrangeable(arrangeable, items);
for (const ArrangePolygon &fixed: excludes)
process_arrangeable(fixed, fixeditems);
for (Item &itm : fixeditems) itm.inflate(scaled(-2. * EPSILON));
_arrange(items, fixeditems, to_nestbin(bed), params, params.progressind, params.stopcondition);
for(size_t i = 0; i < items.size(); ++i) {
Point tr = items[i].translation();
arrangables[i].translation = {coord_t(tr.x()), coord_t(tr.y())};

View File

@ -40,12 +40,12 @@ static const constexpr int UNARRANGED = -1;
/// be modified during arrangement. Instead, the translation and rotation fields
/// will mark the needed transformation for the polygon to be in the arranged
/// position. These can also be set to an initial offset and rotation.
///
///
/// The bed_idx field will indicate the logical bed into which the
/// polygon belongs: UNARRANGED means no place for the polygon
/// (also the initial state before arrange), 0..N means the index of the bed.
/// Zero is the physical bed, larger than zero means a virtual bed.
struct ArrangePolygon {
struct ArrangePolygon {
ExPolygon poly; /// The 2D silhouette to be arranged
Vec2crd translation{0, 0}; /// The translation of the poly
double rotation{0.0}; /// The rotation of the poly in radians
@ -62,6 +62,7 @@ struct ArrangePolygon {
int row{0};
int col{0};
std::vector<int> extrude_ids{}; /// extruder_id for least extruder switch
int filament_temp_type{ -1 };
int bed_temp{0}; ///bed temperature for different material judge
int print_temp{0}; ///print temperature for different material judge
int first_bed_temp{ 0 }; ///first layer bed temperature for different material judge
@ -69,20 +70,20 @@ struct ArrangePolygon {
int vitrify_temp{ 0 }; // max bed temperature for material compatibility, which is usually the filament vitrification temp
int itemid{ 0 }; // item id in the vector, used for accessing all possible params like extrude_id
int is_applied{ 0 }; // transform has been applied
double height{ 0 }; // item height
double height{ 0 }; // item height
double brim_width{ 0 }; // brim width
std::string name;
// If empty, any rotation is allowed (currently unsupported)
// If only a zero is there, no rotation is allowed
std::vector<double> allowed_rotations = {0.};
/// Optional setter function which can store arbitrary data in its closure
std::function<void(const ArrangePolygon&)> setter = nullptr;
/// Helper function to call the setter with the arrange data arguments
void apply() {
if (setter && !is_applied) {
if (setter && !is_applied) {
setter(*this);
is_applied = 1;
}
@ -104,15 +105,15 @@ struct ArrangePolygon {
using ArrangePolygons = std::vector<ArrangePolygon>;
struct ArrangeParams {
/// The minimum distance which is allowed for any
/// The minimum distance which is allowed for any
/// pair of items on the print bed in any direction.
coord_t min_obj_distance = 0;
/// The accuracy of optimization.
/// Goes from 0.0 to 1.0 and scales performance as well
float accuracy = 1.f;
/// Allow parallel execution.
bool parallel = true;
@ -136,18 +137,18 @@ struct ArrangeParams {
ArrangePolygons excluded_regions; // regions cant't be used
ArrangePolygons nonprefered_regions; // regions can be used but not prefered
/// Progress indicator callback called when an object gets packed.
/// Progress indicator callback called when an object gets packed.
/// The unsigned argument is the number of items remaining to pack.
std::function<void(unsigned, std::string)> progressind = [](unsigned st, std::string str = "") {
std::cout << "st=" << st << ", " << str << std::endl;
};
std::function<void(const ArrangePolygon &)> on_packed;
/// A predicate returning true if abort is needed.
std::function<bool(void)> stopcondition;
ArrangeParams() = default;
explicit ArrangeParams(coord_t md) : min_obj_distance(md) {}
// to json format
@ -186,11 +187,11 @@ Points get_shrink_bedpts(const DynamicPrintConfig* print_cfg, const ArrangeParam
/**
* \brief Arranges the input polygons.
*
* WARNING: Currently, only convex polygons are supported by the libnest2d
* WARNING: Currently, only convex polygons are supported by the libnest2d
* library which is used to do the arrangement. This might change in the future
* this is why the interface contains a general polygon capable to have holes.
*
* \param items Input vector of ArrangePolygons. The transformation, rotation
* \param items Input vector of ArrangePolygons. The transformation, rotation
* and bin_idx fields will be changed after the call finished and can be used
* to apply the result on the input polygon.
*/

View File

@ -2,6 +2,7 @@
#include <libslic3r/Model.hpp>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include <libslic3r/Print.hpp>
#include "MTUtils.hpp"
namespace Slic3r {
@ -10,7 +11,7 @@ arrangement::ArrangePolygons get_arrange_polys(const Model &model, ModelInstance
{
size_t count = 0;
for (auto obj : model.objects) count += obj->instances.size();
ArrangePolygons input;
input.reserve(count);
instances.clear(); instances.reserve(count);
@ -21,21 +22,21 @@ arrangement::ArrangePolygons get_arrange_polys(const Model &model, ModelInstance
input.emplace_back(ap);
instances.emplace_back(minst);
}
return input;
}
bool apply_arrange_polys(ArrangePolygons &input, ModelInstancePtrs &instances, VirtualBedFn vfn)
{
bool ret = true;
for(size_t i = 0; i < input.size(); ++i) {
if (input[i].bed_idx != 0) { ret = false; if (vfn) vfn(input[i]); }
if (input[i].bed_idx >= 0)
instances[i]->apply_arrange_result(input[i].translation.cast<double>(),
input[i].rotation);
}
return ret;
}
@ -52,7 +53,7 @@ Slic3r::arrangement::ArrangePolygon get_arrange_poly(const Model &model)
const Points &pts = obj_ap.poly.contour.points;
std::copy(pts.begin(), pts.end(), std::back_inserter(apts));
}
apts = std::move(Geometry::convex_hull(apts).points);
return ap;
}
@ -118,7 +119,7 @@ arrangement::ArrangePolygon get_arrange_poly(ModelInstance* inst, const Slic3r::
ArrangePolygon get_instance_arrange_poly(ModelInstance* instance, const Slic3r::DynamicPrintConfig& config)
{
ArrangePolygon ap = get_arrange_poly(PtrWrapper{ instance }, config);
//BBS: add temperature information
if (config.has("curr_bed_type")) {
ap.bed_temp = 0;
@ -138,11 +139,23 @@ ArrangePolygon get_instance_arrange_poly(ModelInstance* instance, const Slic3r::
ap.print_temp = config.opt_int("nozzle_temperature", ap.extrude_ids.front() - 1);
if (config.has("nozzle_temperature_initial_layer")) //get the nozzle_temperature_initial_layer
ap.first_print_temp = config.opt_int("nozzle_temperature_initial_layer", ap.extrude_ids.front() - 1);
if (config.has("temperature_vitrification")) {
ap.vitrify_temp = config.opt_int("temperature_vitrification", ap.extrude_ids.front() - 1);
}
// get filament temp types
auto* filament_types_opt = dynamic_cast<const ConfigOptionStrings*>(config.option("filament_type"));
if (filament_types_opt) {
std::set<int> filament_temp_types;
for (auto i : ap.extrude_ids) {
std::string type_str = filament_types_opt->get_at(i-1);
int temp_type = Print::get_filament_temp_type(type_str);
filament_temp_types.insert(temp_type);
}
ap.filament_temp_type = Print::get_compatible_filament_type(filament_temp_types);
}
// get brim width
auto obj = instance->get_object();
@ -162,7 +175,7 @@ ArrangePolygon get_instance_arrange_poly(ModelInstance* instance, const Slic3r::
ap.brim_width = 24.0; // 2*MAX_BRANCH_RADIUS_FIRST_LAYER
ap.has_tree_support = true;
}
ap.height = obj->bounding_box().size().z();
ap.name = obj->name;
return ap;

View File

@ -916,6 +916,44 @@ bool Print::check_multi_filaments_compatibility(const std::vector<std::string>&
return true;
}
bool Print::is_filaments_compatible(const std::vector<int>& filament_types)
{
bool has_high_temperature_filament = false;
bool has_low_temperature_filament = false;
for (const auto& type : filament_types) {
if (type == FilamentTempType::HighTemp)
has_high_temperature_filament = true;
else if (type == FilamentTempType::LowTemp)
has_low_temperature_filament = true;
}
if (has_high_temperature_filament && has_low_temperature_filament)
return false;
return true;
}
int Print::get_compatible_filament_type(const std::set<int>& filament_types)
{
bool has_high_temperature_filament = false;
bool has_low_temperature_filament = false;
for (const auto& type : filament_types) {
if (type == FilamentTempType::HighTemp)
has_high_temperature_filament = true;
else if (type == FilamentTempType::LowTemp)
has_low_temperature_filament = true;
}
if (has_high_temperature_filament && has_low_temperature_filament)
return HighLowCompatible;
else if (has_high_temperature_filament)
return HighTemp;
else if (has_low_temperature_filament)
return LowTemp;
return HighLowCompatible;
}
//BBS: this function is used to check whether multi filament can be printed
StringObjectException Print::check_multi_filament_valid(const Print& print)
{

View File

@ -830,6 +830,15 @@ public:
static FilamentTempType get_filament_temp_type(const std::string& filament_type);
static int get_hrc_by_nozzle_type(const NozzleType& type);
static bool check_multi_filaments_compatibility(const std::vector<std::string>& filament_types);
// similar to check_multi_filaments_compatibility, but the input is int, and may be negative (means unset)
static bool is_filaments_compatible(const std::vector<int>& types);
// get the compatible filament type of a multi-material object
// Rule:
// 1. LowTemp+HighLowCompatible=LowTemp
// 2. HighTemp++HighLowCompatible=HighTemp
// 3. LowTemp+HighTemp+...=HighLowCompatible
// Unset types are just ignored.
static int get_compatible_filament_type(const std::set<int>& types);
protected:
// Invalidates the step, and its depending steps in Print.

View File

@ -518,9 +518,9 @@ void ArrangeJob::process()
{
BOOST_LOG_TRIVIAL(warning)<< "Arrange full params: "<< params.to_json();
BOOST_LOG_TRIVIAL(info) << boost::format("arrange: items selected before arranging: %1%") % m_selected.size();
for (auto selected : m_selected)
BOOST_LOG_TRIVIAL(debug) << selected.name << ", extruder: " << selected.extrude_ids.back() << ", bed: " << selected.bed_idx
<< ", bed_temp: " << selected.first_bed_temp << ", print_temp: " << selected.print_temp;
for (auto selected : m_selected) {
BOOST_LOG_TRIVIAL(debug) << selected.name << ", extruder: " << selected.extrude_ids.back() << ", bed: " << selected.bed_idx<<", filemant_type:" << selected.filament_temp_type;
}
BOOST_LOG_TRIVIAL(debug) << "items unselected before arrange: ";
for (auto item : m_unselected)
BOOST_LOG_TRIVIAL(debug) << item.name << ", bed: " << item.bed_idx << ", trans: " << item.translation.transpose();