ENH: new filament group algorithm

1.When n<10, calc all case cost
2.When n>10, first k-medoids algorithm first
3.Enable setting group size

jira:NEW

Signed-off-by: xun.zhang <xun.zhang@bambulab.com>
Change-Id: I625f47e0235c70e440c6d489b052a156fbffca3f
This commit is contained in:
xun.zhang 2024-07-08 21:31:28 +08:00 committed by lane.wei
parent 326d7d28b4
commit 9ec276d3d7
5 changed files with 507 additions and 295 deletions

View File

@ -428,6 +428,8 @@ set(lisbslic3r_sources
ClipperZUtils.hpp
FlushVolPredictor.hpp
FlushVolPredictor.cpp
FilamentGroup.hpp
FilamentGroup.cpp
)
if (APPLE)

View File

@ -0,0 +1,279 @@
#include "FilamentGroup.hpp"
#include "GCode/ToolOrdering.hpp"
namespace Slic3r
{
int FilamentGroup::calc_filament_group(const std::vector<std::vector<unsigned int>>& layer_filaments)
{
std::set<unsigned int>used_filaments;
for (const auto& lf : layer_filaments)
for (const auto& extruder : lf)
used_filaments.insert(extruder);
m_filament_labels.resize(used_filaments.size());
m_used_filaments = std::vector<unsigned int>(used_filaments.begin(), used_filaments.end());
std::sort(m_used_filaments.begin(), m_used_filaments.end());
if (m_filament_num <= 1)
return 0;
if (m_filament_num < 10)
return calc_filament_group_by_enum(layer_filaments);
else
return calc_filament_group_by_pam(layer_filaments,300);
}
int FilamentGroup::calc_filament_group_by_enum(const std::vector<std::vector<unsigned int>>& layer_filaments)
{
auto bit_count_one = [](int n)
{
int count = 0;
while (n != 0)
{
n &= n - 1;
count++;
}
return count;
};
uint64_t max_group_num = (1 << m_filament_num);
int best_cost = std::numeric_limits<int>::max();
std::vector<int>best_label;
for (uint64_t i = 0; i < max_group_num; ++i) {
int num_to_group_1 = bit_count_one(i);
if (num_to_group_1 > m_max_group_size[1] || (m_filament_num - num_to_group_1) > m_max_group_size[0])
continue;
std::set<int>group_0, group_1;
for (int j = 0; j < m_filament_num; ++j) {
if (i & (1 << j))
group_1.insert(m_used_filaments[j]);
else
group_0.insert(m_used_filaments[j]);
}
if (group_0.size() < m_max_group_size[0] && group_1.size() < m_max_group_size[1]){
std::vector<int>filament_maps(m_filament_num);
for (int i = 0; i < m_filament_num; ++i) {
if (group_0.find(m_used_filaments[i]) != group_0.end())
filament_maps[i] = 0;
if (group_1.find(m_used_filaments[i]) != group_1.end())
filament_maps[i] = 1;
}
int total_cost = reorder_filaments_for_minimum_flush_volume(
m_used_filaments,
filament_maps,
layer_filaments,
m_flush_matrix,
get_custom_seq,
nullptr
);
if (total_cost < best_cost) {
best_cost = total_cost;
best_label = filament_maps;
}
}
}
m_filament_labels = best_label;
return best_cost;
}
int FilamentGroup::calc_filament_group_by_pam(const std::vector<std::vector<unsigned int>>& layer_filaments, int timeout_ms)
{
//calc pair counts
std::vector<std::vector<int>>count_matrix(m_filament_num,std::vector<int>(m_filament_num));
for (const auto& lf : layer_filaments) {
for (auto iter = lf.begin(); iter != lf.end(); ++iter) {
auto idx1 = std::find(m_used_filaments.begin(), m_used_filaments.end(), *iter)-m_used_filaments.begin();
for (auto niter = std::next(iter); niter != lf.end(); ++niter) {
auto idx2 = std::find(m_used_filaments.begin(), m_used_filaments.end(), *niter) - m_used_filaments.begin();
count_matrix[idx1][idx2] += 1;
count_matrix[idx2][idx1] += 1;
}
}
}
//calc distance matrix
std::vector<std::vector<float>>distance_matrix(m_filament_num, std::vector<float>(m_filament_num));
for (size_t i = 0; i < m_used_filaments.size(); ++i) {
for (size_t j = 0; j < m_used_filaments.size(); ++j) {
if (i == j)
distance_matrix[i][j] = 0;
else {
//TODO: check m_flush_matrix
float max_val = std::max(m_flush_matrix[0][m_used_filaments[i]][m_used_filaments[j]], m_flush_matrix[0][m_used_filaments[j]][m_used_filaments[i]]);
float min_val = std::min(m_flush_matrix[0][m_used_filaments[i]][m_used_filaments[j]], m_flush_matrix[0][m_used_filaments[j]][m_used_filaments[i]]);
double p = 0;
distance_matrix[i][j] = (max_val * p + min_val * (1 - p)) * count_matrix[i][j];
}
}
}
KMediods PAM(distance_matrix, m_filament_num,m_max_group_size);
PAM.fit(timeout_ms);
this->m_filament_labels = PAM.get_filament_labels();
int cost = reorder_filaments_for_minimum_flush_volume(
m_used_filaments,
this->m_filament_labels,
layer_filaments,
m_flush_matrix,
get_custom_seq,
nullptr
);
return cost;
}
void KMediods::fit( int timeout_ms)
{
std::vector<int>best_medoids;
std::vector<int>best_labels;
int best_cost = std::numeric_limits<int>::max();
FlushTimeMachine T;
T.time_machine_start();
int count = 0;
while (true)
{
std::vector<int>medoids;
std::vector<int>labels;
if (count == 0)
medoids = initialize(INIT_TYPE::Farthest);
else
medoids = initialize(INIT_TYPE::Random);
labels = assign_label(medoids);
int cost = calc_cost(labels, medoids);
for (int i = 0; i < m_filament_num; ++i) {
if (std::find(medoids.begin(), medoids.end(), i) != medoids.end())
continue;
for (int j = 0; j < 2; ++j) {
std::vector<int> new_medoids = medoids;
new_medoids[j] = i;
std::vector<int> new_labels = assign_label(new_medoids);
int new_cost = calc_cost(new_labels, new_medoids);
if (new_cost < cost)
{
labels = new_labels;
cost = new_cost;
medoids = new_medoids;
}
}
}
if (cost < best_cost)
{
best_cost = cost;
best_labels = labels;
best_medoids = medoids;
}
count += 1;
if (T.time_machine_end() > timeout_ms)
break;
}
this->m_filament_labels = best_labels;
}
std::vector<int> KMediods::assign_label(const std::vector<int>& medoids) const
{
std::vector<int>labels(m_filament_num);
struct Comp {
bool operator()(const std::pair<int, int>& a, const std::pair<int, int>& b) {
return a.second > b.second;
}
};
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>,Comp>min_heap;
for (int i = 0; i < m_filament_num; ++i) {
int distancec_to_0 = m_distance_matrix[i][medoids[0]];
int distancec_to_1 = m_distance_matrix[i][medoids[1]];
min_heap.push({ i,distancec_to_0 - distancec_to_1 });
}
std::set<int> group_0, group_1;
while (!min_heap.empty()) {
auto top = min_heap.top();
min_heap.pop();
if (group_0.size() < m_max_group_size[0] && (top.second <= 0 || group_1.size() >= m_max_group_size[1]))
group_0.insert(top.first);
else
group_1.insert(top.first);
}
for (auto& item : group_0)
labels[item] = 0;
for (auto& item : group_1)
labels[item] = 1;
return labels;
}
int KMediods::calc_cost(const std::vector<int>& labels, const std::vector<int>& medoids) const
{
int total_cost = 0;
for (int i = 0; i < m_filament_num; ++i)
total_cost += m_distance_matrix[i][medoids[labels[i]]];
return total_cost;
}
std::vector<int> KMediods::initialize(INIT_TYPE type) const
{
auto hash_func = [](int n1, int n2) {
return n1 * 100 + n2;
};
srand(time(nullptr));
std::vector<int>ret;
if (type == INIT_TYPE::Farthest) {
//get the farthest items
int target_i=0,target_j=0,target_val=std::numeric_limits<int>::min();
for(int i=0;i<m_distance_matrix.size();++i){
for(int j=0;j<m_distance_matrix[0].size();++j){
if(i!=j &&m_distance_matrix[i][j]>target_val){
target_val=m_distance_matrix[i][j];
target_i=i;
target_j=j;
}
}
}
ret.emplace_back(std::min(target_i, target_j));
ret.emplace_back(std::max(target_i, target_j));
}
else if (type == INIT_TYPE::Random) {
while (true) {
std::vector<int>medoids;
while (medoids.size() < 2)
{
int candidate = rand() % m_filament_num;
if (std::find(medoids.begin(), medoids.end(), candidate) == medoids.end())
medoids.push_back(candidate);
}
std::sort(medoids.begin(), medoids.end());
if (m_medoids_set.find(hash_func(medoids[0], medoids[1])) != m_medoids_set.end() && m_medoids_set.size() != (m_filament_num * (m_filament_num - 1) / 2))
continue;
else {
ret = medoids;
break;
}
}
}
m_medoids_set.insert(hash_func(ret[0],ret[1]));
return ret;
}
}

View File

@ -0,0 +1,90 @@
#ifndef FILAMENT_GROUP_HPP
#define FILAMENT_GROUP_HPP
#include<chrono>
namespace Slic3r
{
using FlushMatrix = std::vector<std::vector<float>>;
struct FlushTimeMachine
{
private:
std::chrono::high_resolution_clock::time_point start;
public:
void time_machine_start()
{
start = std::chrono::high_resolution_clock::now();
}
int time_machine_end()
{
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
return duration.count();
}
};
class FilamentGroup
{
public:
FilamentGroup(const std::vector<FlushMatrix>& flush_matrix, const int filament_num, const std::vector<int>& max_group_size) :
m_flush_matrix{ flush_matrix },
m_filament_num{ filament_num },
m_max_group_size{ max_group_size }
{}
int calc_filament_group(const std::vector<std::vector<unsigned int>>& layer_filaments);
int calc_filament_group_by_enum(const std::vector<std::vector<unsigned int>>& layer_filaments);
int calc_filament_group_by_pam(const std::vector<std::vector<unsigned int>>& layer_filaments, int timeout_ms = 300);
std::vector<int> get_filament_map() const {return m_filament_labels;}
private:
std::vector<FlushMatrix>m_flush_matrix;
int m_filament_num;
std::vector<int>m_max_group_size;
std::vector<unsigned int>m_used_filaments;
public:
std::optional<std::function<bool(int, std::vector<int>&)>> get_custom_seq;
private:
std::vector<int>m_filament_labels;
std::vector<std::vector<unsigned int>>m_filament_orders;
};
class KMediods
{
enum INIT_TYPE
{
Random = 0,
Farthest
};
public:
KMediods(const std::vector<std::vector<float>>& distance_matrix, const int filament_num, const std::vector<int>& max_group_size) :
m_distance_matrix{ distance_matrix },
m_filament_num{ filament_num },
m_max_group_size{ max_group_size } {}
void fit(int timeout_ms = 300);
std::vector<int>get_filament_labels()const {
return m_filament_labels;
}
private:
std::vector<int>initialize(INIT_TYPE type)const;
std::vector<int>assign_label(const std::vector<int>& medoids)const;
int calc_cost(const std::vector<int>& labels, const std::vector<int>& medoids)const;
private:
std::vector<std::vector<float>>m_distance_matrix;
int m_filament_num;
std::vector<int>m_max_group_size;
std::vector<int>m_used_filaments;
mutable std::set<int>m_medoids_set;
private:
std::vector<int>m_filament_labels;
};
}
#endif // !FILAMENT_GROUP_HPP

View File

@ -3,7 +3,6 @@
#include "Layer.hpp"
#include "ClipperUtils.hpp"
#include "ParameterUtils.hpp"
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
@ -94,7 +93,7 @@ static std::vector<unsigned int> solve_extruder_order(const std::vector<std::vec
std::vector<unsigned int> get_extruders_order(const std::vector<std::vector<float>> &wipe_volumes, std::vector<unsigned int> all_extruders, std::optional<unsigned int>start_extruder_id, float* cost = nullptr)
{
if (all_extruders.size() == 1) {
if (all_extruders.size() <= 1) {
if (cost)
*cost = 0;
return all_extruders;
@ -104,7 +103,7 @@ std::vector<unsigned int> get_extruders_order(const std::vector<std::vector<floa
#ifdef USE_DP_OPTIMIZE
return solve_extruder_order(wipe_volumes, all_extruders, start_extruder_id, cost);
#else
if (all_extruders.size() > 1) {
if (all_extruders.size() > 1) {
int begin_index = 0;
auto iter = std::find(all_extruders.begin(), all_extruders.end(), start_extruder_id);
if (iter != all_extruders.end()) {
@ -137,6 +136,75 @@ if (all_extruders.size() > 1) {
#endif // OPTIMIZE
}
int reorder_filaments_for_minimum_flush_volume(const std::vector<unsigned int>&filament_lists,
const std::vector<int>&filament_maps,
const std::vector<std::vector<unsigned int>>& layer_filaments,
const std::vector<FlushMatrix>& flush_matrix,
std::optional<std::function<bool(int,std::vector<int>&)>> get_custom_seq,
std::vector<std::vector<unsigned int>>* filament_sequences)
{
int cost = 0;
if (filament_sequences) {
filament_sequences->clear();
filament_sequences->resize(layer_filaments.size());
}
std::vector<std::set<int>>groups(2);
for (int i = 0; i < filament_maps.size(); ++i) {
if (filament_maps[i] == 0)
groups[0].insert(filament_lists[i]);
if (filament_maps[i] == 1)
groups[1].insert(filament_lists[i]);
}
for (size_t idx = 0; idx < groups.size();++idx) {
std::optional<unsigned int>current_extruder_id;
int layer = 0;
for (const auto& lf : layer_filaments) {
std::vector<int>custom_filament_seq;
if (get_custom_seq && (*get_custom_seq)(layer, custom_filament_seq) && !custom_filament_seq.empty()) {
std::vector<unsigned int> unsign_custom_extruder_seq;
for (int extruder : custom_filament_seq) {
unsigned int unsign_extruder = static_cast<unsigned int>(extruder) - 1;
auto it = std::find(lf.begin(), lf.end(), unsign_extruder);
if (it != lf.end()) {
unsign_custom_extruder_seq.emplace_back(unsign_extruder);
}
}
assert(lf.size() == unsign_custom_extruder_seq.size());
if (filament_sequences)
(*filament_sequences)[layer] = unsign_custom_extruder_seq;
current_extruder_id = unsign_custom_extruder_seq.back();
continue;
}
std::vector<unsigned>filament_used_in_group;
for (const auto& filament : lf) {
if (groups[idx].find(filament) != groups[idx].end())
filament_used_in_group.emplace_back(filament);
}
float tmp_cost = 0;
auto sequence = get_extruders_order(flush_matrix[idx], filament_used_in_group, current_extruder_id, &tmp_cost);
assert(sequence.size()==filament_used_in_group.size());
if (filament_sequences)
(*filament_sequences)[layer].insert((*filament_sequences)[layer].end(), sequence.begin(), sequence.end());
if (!sequence.empty())
current_extruder_id = sequence.back();
cost += tmp_cost;
layer += 1;
}
}
return cost;
}
// Returns true in case that extruder a comes before b (b does not have to be present). False otherwise.
bool LayerTools::is_extruder_order(unsigned int a, unsigned int b) const
@ -869,8 +937,6 @@ std::set<std::pair<std::vector<unsigned int>, std::vector<unsigned int>>> genera
return unique_combinations;
}
using FlushMatrix = std::vector<std::vector<float>>;
float get_flush_volume(const std::vector<int> &filament_maps, const std::vector<unsigned int> &extruders, const std::vector<FlushMatrix> &matrix, size_t nozzle_nums)
{
std::vector<std::vector<unsigned int>> nozzle_filaments;
@ -914,14 +980,6 @@ std::vector<int> ToolOrdering::get_recommended_filament_maps()
nozzle_flush_mtx.emplace_back(wipe_volumes);
}
auto extruders_to_hash_key = [](const std::vector<unsigned int> &extruders, std::optional<unsigned int> initial_extruder_id) -> uint32_t {
uint32_t hash_key = 0;
// high 16 bit define initial extruder ,low 16 bit define extruder set
if (initial_extruder_id) hash_key |= (1 << (16 + *initial_extruder_id));
for (auto item : extruders) hash_key |= (1 << item);
return hash_key;
};
std::vector<LayerPrintSequence> other_layers_seqs;
const ConfigOptionInts * other_layers_print_sequence_op = print_config->option<ConfigOptionInts>("other_layers_print_sequence");
const ConfigOptionInt * other_layers_print_sequence_nums_op = print_config->option<ConfigOptionInt>("other_layers_print_sequence_nums");
@ -943,106 +1001,34 @@ std::vector<int> ToolOrdering::get_recommended_filament_maps()
return false;
};
std::set<unsigned int> extruders;
for (int i = 0; i < m_layer_tools.size(); ++i) {
LayerTools &lt = m_layer_tools[i];
for (unsigned int extruder : lt.extruders)
extruders.insert(extruder);
}
auto extruder_group = generate_combinations(std::vector<unsigned int>(extruders.begin(), extruders.end()));
std::vector<int> recommended_filament_maps;
float min_flush_volume = std::numeric_limits<float>::max();
for (auto iter = extruder_group.begin(); iter != extruder_group.end(); ++iter) {
std::vector<int> filament_maps;
filament_maps.resize(number_of_extruders);
for (unsigned int e : iter->first) {
filament_maps[e] = 0;
}
for (unsigned int e : iter->second) {
filament_maps[e] = 1;
}
std::optional<unsigned int> current_extruder_id;
std::vector<std::optional<unsigned int>> nozzle_to_cur_filaments;
nozzle_to_cur_filaments.resize(nozzle_nums);
float flush_volume_cost = 0;
for (int i = 0; i < m_layer_tools.size(); ++i) {
LayerTools &lt = m_layer_tools[i];
if (lt.extruders.empty())
continue;
std::vector<int> custom_extruder_seq;
if (get_custom_seq(i, custom_extruder_seq) && !custom_extruder_seq.empty()) {
std::vector<unsigned int> unsign_custom_extruder_seq;
for (int extruder : custom_extruder_seq) {
unsigned int unsign_extruder = static_cast<unsigned int>(extruder) - 1;
auto it = std::find(lt.extruders.begin(), lt.extruders.end(), unsign_extruder);
if (it != lt.extruders.end()) {
unsign_custom_extruder_seq.emplace_back(unsign_extruder);
nozzle_to_cur_filaments[filament_maps[unsign_extruder]] = unsign_extruder;
}
}
assert(lt.extruders.size() == unsign_custom_extruder_seq.size());
lt.extruders = unsign_custom_extruder_seq;
current_extruder_id = lt.extruders.back();
flush_volume_cost += get_flush_volume(filament_maps, lt.extruders, nozzle_flush_mtx, nozzle_nums);
continue;
}
// The algorithm complexity is O(n2*2^n)
if (i != 0) {
std::vector<std::vector<unsigned int>> nozzle_filaments;
nozzle_filaments.resize(nozzle_nums);
for (unsigned int filament_id : lt.extruders) {
nozzle_filaments[filament_maps[filament_id]].emplace_back(filament_id);
}
for (size_t nozzle_id = 0; nozzle_id < nozzle_nums; ++nozzle_id) {
auto hash_key = extruders_to_hash_key(nozzle_filaments[nozzle_id], nozzle_to_cur_filaments[nozzle_id]);
auto iter = m_tool_order_cache.find(hash_key);
// todo : the cache with flush cost
//if (iter == m_tool_order_cache.end()) {
float f_cost = 0;
nozzle_filaments[nozzle_id] = get_extruders_order(nozzle_flush_mtx[nozzle_id], nozzle_filaments[nozzle_id], nozzle_to_cur_filaments[nozzle_id], &f_cost);
std::vector<uint8_t> hash_val;
hash_val.reserve(nozzle_filaments[nozzle_id].size());
for (auto item : nozzle_filaments[nozzle_id])
hash_val.emplace_back(static_cast<uint8_t>(item));
m_tool_order_cache[hash_key] = hash_val;
flush_volume_cost += f_cost;
//} else {
// std::vector<unsigned int> extruder_order;
// extruder_order.reserve(iter->second.size());
// for (auto item : iter->second)
// extruder_order.emplace_back(static_cast<unsigned int>(item));
// nozzle_filaments[nozzle_id] = std::move(extruder_order);
//}
nozzle_to_cur_filaments[nozzle_id] = nozzle_filaments[nozzle_id].back();
}
lt.extruders.clear();
for (size_t nozzle_id = 0; nozzle_id < nozzle_nums; ++nozzle_id) {
lt.extruders.insert(lt.extruders.end(), nozzle_filaments[nozzle_id].begin(), nozzle_filaments[nozzle_id].end());
}
}
current_extruder_id = lt.extruders.back();
}
if (flush_volume_cost == 0) {
recommended_filament_maps = filament_maps;
break;
}
if (flush_volume_cost < min_flush_volume) {
min_flush_volume = flush_volume_cost;
recommended_filament_maps = filament_maps;
std::vector<unsigned int>used_filaments;
std::vector<std::vector<unsigned int>>layer_filaments;
for (auto& lt : m_layer_tools) {
layer_filaments.emplace_back(lt.extruders);
for (auto& extruder : lt.extruders) {
if (std::find(used_filaments.begin(), used_filaments.end(), extruder) == used_filaments.end())
used_filaments.emplace_back(extruder);
}
}
return recommended_filament_maps;
std::sort(used_filaments.begin(), used_filaments.end());
FilamentGroup fg(
nozzle_flush_mtx,
used_filaments.size(),
{ 16,16 }
);
fg.get_custom_seq = get_custom_seq;
fg.calc_filament_group(layer_filaments);
std::vector<int>ret(number_of_extruders);
auto filament_map = fg.get_filament_map();
for (size_t idx = 0; idx < filament_map.size(); ++idx) {
if (filament_map[idx])
ret[used_filaments[idx]] = 1;
}
return ret;
}
// for print by object
@ -1192,119 +1178,6 @@ void ToolOrdering::reorder_extruders_for_minimum_flush_volume()
print_config = &(m_print_object_ptr->print()->config());
}
if (!print_config || m_layer_tools.empty())
return;
size_t nozzle_nums = print_config->nozzle_diameter.values.size();
if (nozzle_nums > 1 && print_config->option<ConfigOptionEnum<FilamentMapMode>>("filament_map_mode")->value == FilamentMapMode::fmmAuto) {
std::vector<int> filament_maps = m_print->get_filament_maps();
if (print_config->print_sequence != PrintSequence::ByObject) {
filament_maps = get_recommended_filament_maps();
if (filament_maps.empty()) // multi-extruder and one-color
return;
std::transform(filament_maps.begin(), filament_maps.end(), filament_maps.begin(), [](int value) { return value + 1; });
m_print->update_filament_maps_to_config(filament_maps);
}
std::transform(filament_maps.begin(), filament_maps.end(), filament_maps.begin(), [](int value) { return value - 1; });
reorder_extruders_for_minimum_flush_volume_multi_extruder(filament_maps);
return;
}
// Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
std::vector<float> flush_matrix(cast<float>(print_config->flush_volumes_matrix.values));
const unsigned int number_of_extruders = (unsigned int) (sqrt(flush_matrix.size()) + EPSILON);
// Extract purging volumes for each extruder pair:
std::vector<std::vector<float>> wipe_volumes;
for (unsigned int i = 0; i < number_of_extruders; ++i)
wipe_volumes.push_back(std::vector<float>(flush_matrix.begin() + i * number_of_extruders, flush_matrix.begin() + (i + 1) * number_of_extruders));
auto extruders_to_hash_key = [](const std::vector<unsigned int>& extruders, std::optional<unsigned int>initial_extruder_id)->uint32_t {
uint32_t hash_key = 0;
// high 16 bit define initial extruder ,low 16 bit define extruder set
if (initial_extruder_id)
hash_key |= (1 << (16 + *initial_extruder_id));
for (auto item : extruders)
hash_key |= (1 << item);
return hash_key;
};
std::vector<LayerPrintSequence> other_layers_seqs;
const ConfigOptionInts *other_layers_print_sequence_op = print_config->option<ConfigOptionInts>("other_layers_print_sequence");
const ConfigOptionInt *other_layers_print_sequence_nums_op = print_config->option<ConfigOptionInt>("other_layers_print_sequence_nums");
if (other_layers_print_sequence_op && other_layers_print_sequence_nums_op) {
const std::vector<int> &print_sequence = other_layers_print_sequence_op->values;
int sequence_nums = other_layers_print_sequence_nums_op->value;
other_layers_seqs = get_other_layers_print_sequence(sequence_nums, print_sequence);
}
// other_layers_seq: the layer_idx and extruder_idx are base on 1
auto get_custom_seq = [&other_layers_seqs](int layer_idx, std::vector<int>& out_seq) -> bool {
for (size_t idx = other_layers_seqs.size() - 1; idx != size_t(-1); --idx) {
const auto &other_layers_seq = other_layers_seqs[idx];
if (layer_idx + 1 >= other_layers_seq.first.first && layer_idx + 1 <= other_layers_seq.first.second) {
out_seq = other_layers_seq.second;
return true;
}
}
return false;
};
std::optional<unsigned int>current_extruder_id;
for (int i = 0; i < m_layer_tools.size(); ++i) {
LayerTools& lt = m_layer_tools[i];
if (lt.extruders.empty())
continue;
std::vector<int> custom_extruder_seq;
if (get_custom_seq(i, custom_extruder_seq) && !custom_extruder_seq.empty()) {
std::vector<unsigned int> unsign_custom_extruder_seq;
for (int extruder : custom_extruder_seq) {
unsigned int unsign_extruder = static_cast<unsigned int>(extruder) - 1;
auto it = std::find(lt.extruders.begin(), lt.extruders.end(), unsign_extruder);
if (it != lt.extruders.end()) {
unsign_custom_extruder_seq.emplace_back(unsign_extruder);
}
}
assert(lt.extruders.size() == unsign_custom_extruder_seq.size());
lt.extruders = unsign_custom_extruder_seq;
current_extruder_id = lt.extruders.back();
continue;
}
// The algorithm complexity is O(n2*2^n)
if (i != 0) {
auto hash_key = extruders_to_hash_key(lt.extruders, current_extruder_id);
auto iter = m_tool_order_cache.find(hash_key);
if (iter == m_tool_order_cache.end()) {
lt.extruders = get_extruders_order(wipe_volumes, lt.extruders, current_extruder_id);
std::vector<uint8_t> hash_val;
hash_val.reserve(lt.extruders.size());
for (auto item : lt.extruders)
hash_val.emplace_back(static_cast<uint8_t>(item));
m_tool_order_cache[hash_key] = hash_val;
}
else {
std::vector<unsigned int>extruder_order;
extruder_order.reserve(iter->second.size());
for (auto item : iter->second)
extruder_order.emplace_back(static_cast<unsigned int>(item));
lt.extruders = std::move(extruder_order);
}
}
current_extruder_id = lt.extruders.back();
}
}
void ToolOrdering::reorder_extruders_for_minimum_flush_volume_multi_extruder(const std::vector<int>& filament_maps)
{
const PrintConfig *print_config = m_print_config_ptr;
if (!print_config && m_print_object_ptr) {
print_config = &(m_print_object_ptr->print()->config());
}
if (!print_config || m_layer_tools.empty())
return;
@ -1321,14 +1194,27 @@ void ToolOrdering::reorder_extruders_for_minimum_flush_volume_multi_extruder(con
nozzle_flush_mtx.emplace_back(wipe_volumes);
}
std::vector<int>filament_maps(number_of_extruders, 0);
if (nozzle_nums > 1) {
filament_maps = m_print->get_filament_maps();
if (print_config->print_sequence != PrintSequence::ByObject) {
filament_maps = get_recommended_filament_maps();
if (filament_maps.empty())
return;
std::transform(filament_maps.begin(), filament_maps.end(), filament_maps.begin(), [](int value) { return value + 1; });
m_print->update_filament_maps_to_config(filament_maps);
}
std::transform(filament_maps.begin(), filament_maps.end(), filament_maps.begin(), [](int value) { return value - 1; });
}
auto extruders_to_hash_key = [](const std::vector<unsigned int> &extruders, std::optional<unsigned int> initial_extruder_id) -> uint32_t {
uint32_t hash_key = 0;
// high 16 bit define initial extruder ,low 16 bit define extruder set
if (initial_extruder_id) hash_key |= (1 << (16 + *initial_extruder_id));
for (auto item : extruders) hash_key |= (1 << item);
return hash_key;
};
std::vector<std::vector<unsigned int>>filament_sequences;
std::vector<unsigned int>filament_lists(number_of_extruders);
std::iota(filament_lists.begin(),filament_lists.end(),0);
std::vector<std::vector<unsigned int>>layer_filaments;
for (auto& lt : m_layer_tools) {
layer_filaments.emplace_back(lt.extruders);
}
std::vector<LayerPrintSequence> other_layers_seqs;
const ConfigOptionInts * other_layers_print_sequence_op = print_config->option<ConfigOptionInts>("other_layers_print_sequence");
@ -1349,74 +1235,20 @@ void ToolOrdering::reorder_extruders_for_minimum_flush_volume_multi_extruder(con
}
}
return false;
};
};
std::optional<unsigned int> current_extruder_id;
reorder_filaments_for_minimum_flush_volume(
filament_lists,
filament_maps,
layer_filaments,
nozzle_flush_mtx,
get_custom_seq,
&filament_sequences
);
std::vector<std::optional<unsigned int>> nozzle_to_cur_filaments;
nozzle_to_cur_filaments.resize(nozzle_nums);
for (int i = 0; i < m_layer_tools.size(); ++i) {
LayerTools &lt = m_layer_tools[i];
if (lt.extruders.empty())
continue;
std::vector<int> custom_extruder_seq;
if (get_custom_seq(i, custom_extruder_seq) && !custom_extruder_seq.empty()) {
std::vector<unsigned int> unsign_custom_extruder_seq;
for (int extruder : custom_extruder_seq) {
unsigned int unsign_extruder = static_cast<unsigned int>(extruder) - 1;
auto it = std::find(lt.extruders.begin(), lt.extruders.end(), unsign_extruder);
if (it != lt.extruders.end()) {
unsign_custom_extruder_seq.emplace_back(unsign_extruder);
nozzle_to_cur_filaments[filament_maps[unsign_extruder]] = unsign_extruder;
}
}
assert(lt.extruders.size() == unsign_custom_extruder_seq.size());
lt.extruders = unsign_custom_extruder_seq;
current_extruder_id = lt.extruders.back();
continue;
}
// The algorithm complexity is O(n2*2^n)
if (i != 0) {
std::vector<std::vector<unsigned int>> nozzle_filaments;
nozzle_filaments.resize(nozzle_nums);
for (unsigned int filament_id : lt.extruders) {
nozzle_filaments[filament_maps[filament_id]].emplace_back(filament_id);
}
for (size_t nozzle_id = 0; nozzle_id < nozzle_nums; ++nozzle_id)
{
auto hash_key = extruders_to_hash_key(nozzle_filaments[nozzle_id], nozzle_to_cur_filaments[nozzle_id]);
auto iter = m_tool_order_cache.find(hash_key);
if (iter == m_tool_order_cache.end()) {
nozzle_filaments[nozzle_id] = get_extruders_order(nozzle_flush_mtx[nozzle_id], nozzle_filaments[nozzle_id], nozzle_to_cur_filaments[nozzle_id]);
std::vector<uint8_t> hash_val;
hash_val.reserve(nozzle_filaments[nozzle_id].size());
for (auto item : nozzle_filaments[nozzle_id])
hash_val.emplace_back(static_cast<uint8_t>(item));
m_tool_order_cache[hash_key] = hash_val;
} else {
std::vector<unsigned int> extruder_order;
extruder_order.reserve(iter->second.size());
for (auto item : iter->second)
extruder_order.emplace_back(static_cast<unsigned int>(item));
nozzle_filaments[nozzle_id] = std::move(extruder_order);
}
nozzle_to_cur_filaments[nozzle_id] = nozzle_filaments[nozzle_id].back();
}
lt.extruders.clear();
for (size_t nozzle_id = 0; nozzle_id < nozzle_nums; ++nozzle_id) {
lt.extruders.insert(lt.extruders.end(), nozzle_filaments[nozzle_id].begin(), nozzle_filaments[nozzle_id].end());
}
}
current_extruder_id = lt.extruders.back();
}
for (size_t i = 0; i < filament_sequences.size(); ++i)
m_layer_tools[i].extruders = std::move(filament_sequences[i]);
}
// Layers are marked for infinite skirt aka draft shield. Not all the layers have to be printed.
void ToolOrdering::mark_skirt_layers(const PrintConfig &config, coordf_t max_layer_height)
{

View File

@ -8,6 +8,9 @@
#include <utility>
#include <boost/container/small_vector.hpp>
#include "FilamentGroup.hpp"
#include "ExtrusionEntity.hpp"
#include "PrintConfig.hpp"
namespace Slic3r {
@ -17,6 +20,13 @@ class LayerTools;
namespace CustomGCode { struct Item; }
class PrintRegion;
int reorder_filaments_for_minimum_flush_volume(const std::vector<unsigned int>& filament_lists,
const std::vector<int>& filament_maps,
const std::vector<std::vector<unsigned int>>& layer_filaments,
const std::vector<FlushMatrix>& flush_matrix,
std::optional<std::function<bool(int, std::vector<int>&)>> get_custom_seq,
std::vector<std::vector<unsigned int>>* filament_sequences);
// Object of this class holds information about whether an extrusion is printed immediately
// after a toolchange (as part of infill/perimeter wiping) or not. One extrusion can be a part
// of several copies - this has to be taken into account.
@ -200,7 +210,6 @@ private:
void collect_extruder_statistics(bool prime_multi_material);
std::vector<int> get_recommended_filament_maps();
void reorder_extruders_for_minimum_flush_volume();
void reorder_extruders_for_minimum_flush_volume_multi_extruder(const std::vector<int> &filament_maps);
// BBS
std::vector<unsigned int> generate_first_layer_tool_order(const Print& print);