NEW: Port of Cura's multi-material interlocking (#5775)

* Init port of Cura's MM interlocking

* Refactor a bit

* Fix crash when bottom surface is multi-color

* Fix crash when boundary avoidance is 0

* Add config

---------

Co-authored-by: zhimin.zeng <zhimin.zeng@bambulab.com>
jira: none
Change-Id: I81cacddf46ad5921a7a2a23fff07cc17addceb6f
This commit is contained in:
Noisyfox 2024-06-30 23:25:15 +08:00 committed by lane.wei
parent 8dfa6839e5
commit a21779dd30
15 changed files with 1038 additions and 3 deletions

View File

@ -432,6 +432,12 @@ set(lisbslic3r_sources
FilamentGroup.cpp
GCode/ToolOrderUtils.hpp
GCode/ToolOrderUtils.cpp
FlushVolPredictor.hpp
FlushVolPredictor.cpp
Interlocking/InterlockingGenerator.hpp
Interlocking/InterlockingGenerator.cpp
Interlocking/VoxelUtils.hpp
Interlocking/VoxelUtils.cpp
)
if (APPLE)

View File

@ -830,6 +830,13 @@ Slic3r::ExPolygons union_ex(const Slic3r::ExPolygons& poly1, const Slic3r::ExPol
return union_ex(expolys);
}
Slic3r::ExPolygons xor_ex(const Slic3r::ExPolygons &subject, const Slic3r::ExPolygon &clip, ApplySafetyOffset do_safety_offset) {
return _clipper_ex(ClipperLib::ctXor, ClipperUtils::ExPolygonsProvider(subject), ClipperUtils::ExPolygonProvider(clip), do_safety_offset);
}
Slic3r::ExPolygons xor_ex(const Slic3r::ExPolygons &subject, const Slic3r::ExPolygons &clip, ApplySafetyOffset do_safety_offset) {
return _clipper_ex(ClipperLib::ctXor, ClipperUtils::ExPolygonsProvider(subject), ClipperUtils::ExPolygonsProvider(clip), do_safety_offset);
}
template<typename PathsProvider1, typename PathsProvider2>
Polylines _clipper_pl_open(ClipperLib::ClipType clipType, PathsProvider1 &&subject, PathsProvider2 &&clip)
{

View File

@ -563,6 +563,9 @@ Slic3r::ExPolygons union_ex(const Slic3r::ExPolygons& poly1, const Slic3r::ExPol
ClipperLib::PolyTree union_pt(const Slic3r::Polygons &subject);
ClipperLib::PolyTree union_pt(const Slic3r::ExPolygons &subject);
Slic3r::ExPolygons xor_ex(const Slic3r::ExPolygons &subject, const Slic3r::ExPolygon &clip, ApplySafetyOffset do_safety_offset = ApplySafetyOffset::No);
Slic3r::ExPolygons xor_ex(const Slic3r::ExPolygons &subject, const Slic3r::ExPolygons &clip, ApplySafetyOffset do_safety_offset = ApplySafetyOffset::No);
Slic3r::Polygons union_pt_chained_outside_in(const Slic3r::Polygons &subject);
ClipperLib::PolyNodes order_nodes(const ClipperLib::PolyNodes &nodes);

View File

@ -0,0 +1,331 @@
// Copyright (c) 2023 UltiMaker
// CuraEngine is released under the terms of the AGPLv3 or higher.
#include "InterlockingGenerator.hpp"
#include "Layer.hpp"
namespace std {
template<> struct hash<Slic3r::GridPoint3>
{
size_t operator()(const Slic3r::GridPoint3& pp) const noexcept
{
static int prime = 31;
int result = 89;
result = static_cast<int>(result * prime + pp.x());
result = static_cast<int>(result * prime + pp.y());
result = static_cast<int>(result * prime + pp.z());
return static_cast<size_t>(result);
}
};
} // namespace std
namespace Slic3r {
void InterlockingGenerator::generate_interlocking_structure(PrintObject* print_object)
{
const auto& config = print_object->config();
if (!config.interlocking_beam) {
return;
}
const float rotation = Geometry::deg2rad(config.interlocking_orientation.value);
const coord_t beam_layer_count = config.interlocking_beam_layer_count;
const int interface_depth = config.interlocking_depth;
const int boundary_avoidance = config.interlocking_boundary_avoidance;
const coord_t beam_width = scaled(config.interlocking_beam_width.value);
const DilationKernel interface_dilation(GridPoint3(interface_depth, interface_depth, interface_depth), DilationKernel::Type::PRISM);
const bool air_filtering = boundary_avoidance > 0;
const DilationKernel air_dilation(GridPoint3(boundary_avoidance, boundary_avoidance, boundary_avoidance), DilationKernel::Type::PRISM);
const coord_t cell_width = beam_width + beam_width;
const Vec3crd cell_size(cell_width, cell_width, 2 * beam_layer_count);
for (size_t region_a_index = 0; region_a_index < print_object->num_printing_regions(); region_a_index++) {
const PrintRegion& region_a = print_object->printing_region(region_a_index);
const auto extruder_nr_a = region_a.extruder(FlowRole::frExternalPerimeter);
for (size_t region_b_index = region_a_index + 1; region_b_index < print_object->num_printing_regions(); region_b_index++) {
const PrintRegion& region_b = print_object->printing_region(region_b_index);
const auto extruder_nr_b = region_b.extruder(FlowRole::frExternalPerimeter);
if (extruder_nr_a == extruder_nr_b) {
continue;
}
InterlockingGenerator gen(*print_object, region_a_index, region_b_index, beam_width, boundary_avoidance, rotation, cell_size, beam_layer_count,
interface_dilation, air_dilation, air_filtering);
gen.generateInterlockingStructure();
}
}
}
std::pair<ExPolygons, ExPolygons> InterlockingGenerator::growBorderAreasPerpendicular(const ExPolygons& a, const ExPolygons& b, const coord_t& detect) const
{
const coord_t min_line =
std::min(print_object.printing_region(region_a_index).flow(print_object, frExternalPerimeter, 0.1).scaled_width(),
print_object.printing_region(region_b_index).flow(print_object, frExternalPerimeter, 0.1).scaled_width());
const ExPolygons total_shrunk = offset_ex(union_ex(offset_ex(a, min_line), offset_ex(b, min_line)), 2 * -min_line);
ExPolygons from_border_a = diff_ex(a, total_shrunk);
ExPolygons from_border_b = diff_ex(b, total_shrunk);
ExPolygons temp_a, temp_b;
for (coord_t i = 0; i < (detect / min_line) + 2; ++i) {
temp_a = offset_ex(from_border_a, min_line);
temp_b = offset_ex(from_border_b, min_line);
from_border_a = diff_ex(temp_a, temp_b);
from_border_b = diff_ex(temp_b, temp_a);
}
return {from_border_a, from_border_b};
}
void InterlockingGenerator::handleThinAreas(const std::unordered_set<GridPoint3>& has_all_meshes) const
{
const coord_t number_of_beams_detect = boundary_avoidance;
const coord_t number_of_beams_expand = boundary_avoidance - 1;
constexpr coord_t rounding_errors = 5;
const coord_t max_beam_width = beam_width;
const coord_t detect = (max_beam_width * number_of_beams_detect) + rounding_errors;
const coord_t expand = (max_beam_width * number_of_beams_expand) + rounding_errors;
const coord_t close_gaps =
std::min(print_object.printing_region(region_a_index).flow(print_object, frExternalPerimeter, 0.1).scaled_width(),
print_object.printing_region(region_b_index).flow(print_object, frExternalPerimeter, 0.1).scaled_width()) / 4;
// Make an inclusionary polygon, to only actually handle thin areas near actual microstructures (so not in skin for example).
std::vector<Polygons> near_interlock_per_layer;
near_interlock_per_layer.assign(print_object.layer_count(), Polygons());
for (const auto& cell : has_all_meshes) {
const auto bottom_corner = vu.toLowerCorner(cell);
for (coord_t layer_nr = bottom_corner.z();
layer_nr < bottom_corner.z() + cell_size.z() && layer_nr < static_cast<coord_t>(near_interlock_per_layer.size()); ++layer_nr) {
near_interlock_per_layer[static_cast<size_t>(layer_nr)].push_back(vu.toPolygon(cell));
}
}
for (auto& near_interlock : near_interlock_per_layer) {
near_interlock = offset(union_(closing(near_interlock, rounding_errors)), detect);
polygons_rotate(near_interlock, rotation);
}
// Only alter layers when they are present in both meshes, zip should take care if that.
for (size_t layer_nr = 0; layer_nr < print_object.layer_count(); layer_nr++){
auto layer = print_object.get_layer(layer_nr);
ExPolygons polys_a = to_expolygons(layer->get_region(region_a_index)->slices.surfaces);
ExPolygons polys_b = to_expolygons(layer->get_region(region_b_index)->slices.surfaces);
const auto [from_border_a, from_border_b] = growBorderAreasPerpendicular(polys_a, polys_b, detect);
// Get the areas of each mesh that are _not_ thin (large), by performing a morphological open.
const ExPolygons large_a = opening_ex(polys_a, detect);
const ExPolygons large_b = opening_ex(polys_b, detect);
// Derive the area that the thin areas need to expand into (so the added areas to the thin strips) from the information we already have.
const ExPolygons thin_expansion_a =
offset_ex(intersection_ex(intersection_ex(intersection_ex(large_b, offset_ex(diff_ex(polys_a, large_a), expand)),
near_interlock_per_layer[layer_nr]),
from_border_a),
rounding_errors);
const ExPolygons thin_expansion_b =
offset_ex(intersection_ex(intersection_ex(intersection_ex(large_a, offset_ex(diff_ex(polys_b, large_b), expand)),
near_interlock_per_layer[layer_nr]),
from_border_b),
rounding_errors);
// Expanded thin areas of the opposing polygon should 'eat into' the larger areas of the polygon,
// and conversely, add the expansions to their own thin areas.
layer->get_region(region_a_index)->slices.set(closing_ex(diff_ex(union_ex(polys_a, thin_expansion_a), thin_expansion_b), close_gaps), stInternal);
layer->get_region(region_b_index)->slices.set(closing_ex(diff_ex(union_ex(polys_b, thin_expansion_b), thin_expansion_a), close_gaps), stInternal);
}
}
void InterlockingGenerator::generateInterlockingStructure() const
{
std::vector<std::unordered_set<GridPoint3>> voxels_per_mesh = getShellVoxels(interface_dilation);
std::unordered_set<GridPoint3>& has_any_mesh = voxels_per_mesh[0];
std::unordered_set<GridPoint3>& has_all_meshes = voxels_per_mesh[1];
has_any_mesh.merge(has_all_meshes); // perform union and intersection simultaneously. Cannibalizes voxels_per_mesh
if (has_all_meshes.empty()) {
return;
}
const std::vector<ExPolygons> layer_regions = computeUnionedVolumeRegions();
if (air_filtering) {
std::unordered_set<GridPoint3> air_cells;
addBoundaryCells(layer_regions, air_dilation, air_cells);
for (const GridPoint3& p : air_cells) {
has_all_meshes.erase(p);
}
handleThinAreas(has_all_meshes);
}
applyMicrostructureToOutlines(has_all_meshes, layer_regions);
}
std::vector<std::unordered_set<GridPoint3>> InterlockingGenerator::getShellVoxels(const DilationKernel& kernel) const
{
std::vector<std::unordered_set<GridPoint3>> voxels_per_mesh(2);
// mark all cells which contain some boundary
for (size_t region_idx = 0; region_idx < 2; region_idx++)
{
const size_t region = (region_idx == 0) ? region_a_index : region_b_index;
std::unordered_set<GridPoint3>& mesh_voxels = voxels_per_mesh[region_idx];
std::vector<ExPolygons> rotated_polygons_per_layer(print_object.layer_count());
for (size_t layer_nr = 0; layer_nr < print_object.layer_count(); layer_nr++)
{
auto layer = print_object.get_layer(layer_nr);
rotated_polygons_per_layer[layer_nr] = to_expolygons(layer->get_region(region)->slices.surfaces);
expolygons_rotate(rotated_polygons_per_layer[layer_nr], rotation);
}
addBoundaryCells(rotated_polygons_per_layer, kernel, mesh_voxels);
}
return voxels_per_mesh;
}
void InterlockingGenerator::addBoundaryCells(const std::vector<ExPolygons>& layers,
const DilationKernel& kernel,
std::unordered_set<GridPoint3>& cells) const
{
auto voxel_emplacer = [&cells](GridPoint3 p) {
if (p.z() < 0) {
return true;
}
cells.emplace(p);
return true;
};
for (size_t layer_nr = 0; layer_nr < layers.size(); layer_nr++) {
const coord_t z = static_cast<coord_t>(layer_nr);
vu.walkDilatedPolygons(layers[layer_nr], z, kernel, voxel_emplacer);
ExPolygons skin = layers[layer_nr];
if (layer_nr > 0) {
skin = xor_ex(skin, layers[layer_nr - 1]);
}
skin = opening_ex(skin, cell_size.x() / 2.f); // remove superfluous small areas, which would anyway be included because of walkPolygons
vu.walkDilatedAreas(skin, z, kernel, voxel_emplacer);
}
}
std::vector<ExPolygons> InterlockingGenerator::computeUnionedVolumeRegions() const
{
const size_t max_layer_count = print_object.layer_count() +
1; // introduce ghost layer on top for correct skin computation of topmost layer.
std::vector<ExPolygons> layer_regions(max_layer_count);
for (size_t layer_nr = 0; layer_nr < max_layer_count - 1; layer_nr++) {
auto& layer_region = layer_regions[static_cast<size_t>(layer_nr)];
for (size_t region_idx : {region_a_index, region_b_index}) {
auto layer = print_object.get_layer(layer_nr);
expolygons_append(layer_region, to_expolygons(layer->get_region(region_idx)->slices.surfaces));
}
layer_region = closing_ex(layer_region, ignored_gap_); // Morphological close to merge meshes into single volume
expolygons_rotate(layer_region, rotation);
}
return layer_regions;
}
std::vector<std::vector<ExPolygons>> InterlockingGenerator::generateMicrostructure() const
{
std::vector<std::vector<ExPolygons>> cell_area_per_mesh_per_layer;
cell_area_per_mesh_per_layer.resize(2);
cell_area_per_mesh_per_layer[0].resize(2);
const coord_t beam_w_sum = beam_width + beam_width;
const coord_t middle = cell_size.x() * beam_width / beam_w_sum;
const coord_t width[2] = {middle, cell_size.x() - middle};
for (size_t mesh_idx : {0ul, 1ul}) {
Point offset(mesh_idx ? middle : 0, 0);
Point area_size(width[mesh_idx], cell_size.y());
Polygon poly;
poly.append(offset);
poly.append(offset + Point(area_size.x(), 0));
poly.append(offset + area_size);
poly.append(offset + Point(0, area_size.y()));
cell_area_per_mesh_per_layer[0][mesh_idx].emplace_back(poly);
}
cell_area_per_mesh_per_layer[1] = cell_area_per_mesh_per_layer[0];
for (ExPolygons& polys : cell_area_per_mesh_per_layer[1]) {
for (ExPolygon& poly : polys) {
for (Point& p : poly.contour) {
std::swap(p.x(), p.y());
}
}
}
return cell_area_per_mesh_per_layer;
}
void InterlockingGenerator::applyMicrostructureToOutlines(const std::unordered_set<GridPoint3>& cells,
const std::vector<ExPolygons>& layer_regions) const
{
std::vector<std::vector<ExPolygons>> cell_area_per_mesh_per_layer = generateMicrostructure();
const float unapply_rotation = -rotation;
const size_t max_layer_count = print_object.layer_count();
std::vector<ExPolygons> structure_per_layer[2]; // for each mesh the structure on each layer
// Every `beam_layer_count` number of layers are combined to an interlocking beam layer
// to store these we need ceil(max_layer_count / beam_layer_count) of these layers
// the formula is rewritten as (max_layer_count + beam_layer_count - 1) / beam_layer_count, so it works for integer division
size_t num_interlocking_layers = (max_layer_count + static_cast<size_t>(beam_layer_count) - 1ul) /
static_cast<size_t>(beam_layer_count);
structure_per_layer[0].resize(num_interlocking_layers);
structure_per_layer[1].resize(num_interlocking_layers);
// Only compute cell structure for half the layers, because since our beams are two layers high, every odd layer of the structure will
// be the same as the layer below.
for (const GridPoint3& grid_loc : cells) {
Vec3crd bottom_corner = vu.toLowerCorner(grid_loc);
for (size_t mesh_idx = 0; mesh_idx < 2; mesh_idx++) {
for (size_t layer_nr = bottom_corner.z(); layer_nr < bottom_corner.z() + cell_size.z() && layer_nr < max_layer_count;
layer_nr += beam_layer_count) {
ExPolygons areas_here = cell_area_per_mesh_per_layer[static_cast<size_t>(layer_nr / beam_layer_count) %
cell_area_per_mesh_per_layer.size()][mesh_idx];
for (auto & here : areas_here) {
here.translate(bottom_corner.x(), bottom_corner.y());
}
expolygons_append(structure_per_layer[mesh_idx][static_cast<size_t>(layer_nr / beam_layer_count)], areas_here);
}
}
}
for (size_t mesh_idx = 0; mesh_idx < 2; mesh_idx++) {
for (size_t layer_nr = 0; layer_nr < structure_per_layer[mesh_idx].size(); layer_nr++) {
ExPolygons& layer_structure = structure_per_layer[mesh_idx][layer_nr];
layer_structure = union_ex(layer_structure);
expolygons_rotate(layer_structure, unapply_rotation);
}
}
for (size_t region_idx = 0; region_idx < 2; region_idx++) {
const size_t region = (region_idx == 0) ? region_a_index : region_b_index;
for (size_t layer_nr = 0; layer_nr < max_layer_count; layer_nr++) {
ExPolygons layer_outlines = layer_regions[layer_nr];
expolygons_rotate(layer_outlines, unapply_rotation);
const ExPolygons areas_here = intersection_ex(structure_per_layer[region_idx][layer_nr / static_cast<size_t>(beam_layer_count)], layer_outlines);
const ExPolygons& areas_other = structure_per_layer[!region_idx][layer_nr / static_cast<size_t>(beam_layer_count)];
auto layer = print_object.get_layer(layer_nr);
auto& slices = layer->get_region(region)->slices;
ExPolygons polys = to_expolygons(slices.surfaces);
slices.set(union_ex(diff_ex(polys, areas_other), // reduce layer areas inward with beams from other mesh
areas_here) // extend layer areas outward with newly added beams
, stInternal);
}
}
}
} // namespace Slic3r

View File

@ -0,0 +1,172 @@
// Copyright (c) 2022 Ultimaker B.V.
// CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef INTERLOCKING_GENERATOR_HPP
#define INTERLOCKING_GENERATOR_HPP
#include "../Print.hpp"
#include "VoxelUtils.hpp"
namespace Slic3r {
/*!
* Class for generating an interlocking structure between two adjacent models of a different extruder.
*
* The structure consists of horizontal beams of the two materials interlaced.
* In the z direction the direction of these beams is alternated with 90*.
*
* Example with two materials # and O
* Even beams: Odd beams:
* ###### ##OO##OO
* OOOOOO ##OO##OO
* ###### ##OO##OO
* OOOOOO ##OO##OO
*
* One material of a single cell of the structure looks like this:
* .-*-.
* .-* *-.
* |*-. *-.
* | *-. *-.
* .-* *-. *-. *-.
* .-* *-. *-. .-*|
* .-* .-* *-. *-.-* |
* |*-. .-* .-* *-. | .-*
* | *-.-* .-* *-|-*
* *-. | .-*
* *-|-*
*
* We set up a voxel grid of (2*beam_w,2*beam_w,2*beam_h) and mark all the voxels which contain both meshes.
* We then remove all voxels which also contain air, so that the interlocking pattern will not be visible from the outside.
* We then generate and combine the polygons for each voxel and apply those areas to the outlines ofthe meshes.
*/
class InterlockingGenerator
{
public:
/*!
* Generate an interlocking structure between each two adjacent meshes.
*/
static void generate_interlocking_structure(PrintObject* print_object);
private:
/*!
* Generate an interlocking structure between two meshes
*/
void generateInterlockingStructure() const;
/*!
* Private class for storing some variables used in the computation of the interlocking structure between two meshes.
* \param region_a_index The first region
* \param region_b_index The second region
* \param rotation The angle by which to rotate the interlocking pattern
* \param cell_size The size of a voxel cell in (coord_t, coord_t, layer_count)
* \param beam_layer_count The number of layers for the height of the beams
* \param interface_dilation The thicknening kernel for the interface
* \param air_dilation The thickening kernel applied to air so that cells near the outside of the model won't be generated
* \param air_filtering Whether to fully remove all of the interlocking cells which would be visible on the outside (i.e. touching air).
* If no air filtering then those cells will be cut off in the middle of a beam.
*/
InterlockingGenerator(PrintObject& print_object,
const size_t region_a_index,
const size_t region_b_index,
const coord_t beam_width,
const coord_t boundary_avoidance,
const float rotation,
const Vec3crd& cell_size,
const coord_t beam_layer_count,
const DilationKernel& interface_dilation,
const DilationKernel& air_dilation,
const bool air_filtering)
: print_object(print_object)
, region_a_index(region_a_index)
, region_b_index(region_b_index)
, beam_width(beam_width)
, boundary_avoidance(boundary_avoidance)
, vu(cell_size)
, rotation(rotation)
, cell_size(cell_size)
, beam_layer_count(beam_layer_count)
, interface_dilation(interface_dilation)
, air_dilation(air_dilation)
, air_filtering(air_filtering)
{}
/*! Given two polygons, return the parts that border on air, and grow 'perpendicular' up to 'detect' distance.
*
* \param a The first polygon.
* \param b The second polygon.
* \param detec The expand distance. (Not equal to offset, but a series of small offsets and differences).
* \return A pair of polygons that repressent the 'borders' of a and b, but expanded 'perpendicularly'.
*/
std::pair<ExPolygons, ExPolygons> growBorderAreasPerpendicular(const ExPolygons& a, const ExPolygons& b, const coord_t& detect) const;
/*! Special handling for thin strips of material.
*
* Expand the meshes into each other where they need it, namely when a thin strip of material needs to be attached.
* \param has_all_meshes Only do this special handling if there's actually microstructure nearby that needs to be adhered to.
*/
void handleThinAreas(const std::unordered_set<GridPoint3>& has_all_meshes) const;
/*!
* Compute the voxels overlapping with the shell of both models.
* This includes the walls, but also top/bottom skin.
*
* \param kernel The dilation kernel to give the returned voxel shell more thickness
* \return The shell voxels for mesh a and those for mesh b
*/
std::vector<std::unordered_set<GridPoint3>> getShellVoxels(const DilationKernel& kernel) const;
/*!
* Compute the voxels overlapping with the shell of some layers.
* This includes the walls, but also top/bottom skin.
*
* \param layers The layer outlines for which to compute the shell voxels
* \param kernel The dilation kernel to give the returned voxel shell more thickness
* \param[out] cells The output cells which elong to the shell
*/
void addBoundaryCells(const std::vector<ExPolygons>& layers, const DilationKernel& kernel, std::unordered_set<GridPoint3>& cells) const;
/*!
* Compute the regions occupied by both models.
*
* A morphological close is performed so that we don't register small gaps between the two models as being separate.
* \return layer_regions The computed layer regions
*/
std::vector<ExPolygons> computeUnionedVolumeRegions() const;
/*!
* Generate the polygons for the beams of a single cell
* \return cell_area_per_mesh_per_layer The output polygons for each beam
*/
std::vector<std::vector<ExPolygons>> generateMicrostructure() const;
/*!
* Change the outlines of the meshes with the computed interlocking structure.
*
* \param cells The cells where we want to apply the interlocking structure.
* \param layer_regions The total volume of the two meshes combined (and small gaps closed)
*/
void applyMicrostructureToOutlines(const std::unordered_set<GridPoint3>& cells, const std::vector<ExPolygons>& layer_regions) const;
static const coord_t ignored_gap_ = 100u; //!< Distance between models to be considered next to each other so that an interlocking structure will be generated there
PrintObject& print_object;
const size_t region_a_index;
const size_t region_b_index;
const coord_t beam_width;
const coord_t boundary_avoidance;
const VoxelUtils vu;
const float rotation;
const Vec3crd cell_size;
const coord_t beam_layer_count;
const DilationKernel interface_dilation;
const DilationKernel air_dilation;
// Whether to fully remove all of the interlocking cells which would be visible on the outside. If no air filtering then those cells
// will be cut off midway in a beam.
const bool air_filtering;
};
} // namespace Slic3r
#endif // INTERLOCKING_GENERATOR_HPP

View File

@ -0,0 +1,219 @@
// Copyright (c) 2022 Ultimaker B.V.
// CuraEngine is released under the terms of the AGPLv3 or higher.
#include "VoxelUtils.hpp"
#include "../Geometry.hpp"
#include "../Fill/FillRectilinear.hpp"
#include "../Surface.hpp"
namespace Slic3r
{
DilationKernel::DilationKernel(GridPoint3 kernel_size, DilationKernel::Type type)
: kernel_size_(kernel_size)
, type_(type)
{
coord_t mult = kernel_size.x() * kernel_size.y() * kernel_size.z(); // multiplier for division to avoid rounding and to avoid use of floating point numbers
relative_cells_.reserve(mult);
GridPoint3 half_kernel = kernel_size / 2;
GridPoint3 start = -half_kernel;
GridPoint3 end = kernel_size - half_kernel;
for (coord_t x = start.x(); x < end.x(); x++)
{
for (coord_t y = start.y(); y < end.y(); y++)
{
for (coord_t z = start.z(); z < end.z(); z++)
{
GridPoint3 current(x, y, z);
if (type != Type::CUBE)
{
GridPoint3 limit((x < 0) ? start.x() : end.x() - 1, (y < 0) ? start.y() : end.y() - 1, (z < 0) ? start.z() : end.z() - 1);
if (limit.x() == 0)
limit.x() = 1;
if (limit.y() == 0)
limit.y() = 1;
if (limit.z() == 0)
limit.z() = 1;
const GridPoint3 rel_dists = (mult * current).array() / limit.array();
if ((type == Type::DIAMOND && rel_dists.x() + rel_dists.y() + rel_dists.z() > mult) || (type == Type::PRISM && rel_dists.x() + rel_dists.y() > mult))
{
continue; // don't consider this cell
}
}
relative_cells_.emplace_back(x, y, z);
}
}
}
}
bool VoxelUtils::walkLine(Vec3crd start, Vec3crd end, const std::function<bool(GridPoint3)>& process_cell_func) const
{
Vec3crd diff = end - start;
const GridPoint3 start_cell = toGridPoint(start);
const GridPoint3 end_cell = toGridPoint(end);
if (start_cell == end_cell)
{
return process_cell_func(start_cell);
}
Vec3crd current_cell = start_cell;
while (true)
{
bool continue_ = process_cell_func(current_cell);
if (! continue_)
{
return false;
}
int stepping_dim = -1; // dimension in which the line next exits the current cell
double percentage_along_line = std::numeric_limits<double>::max();
for (int dim = 0; dim < 3; dim++)
{
if (diff[dim] == 0)
{
continue;
}
coord_t crossing_boundary = toLowerCoord(current_cell[dim], dim) + (diff[dim] > 0) * cell_size_[dim];
double percentage_along_line_here = (crossing_boundary - start[dim]) / static_cast<double>(diff[dim]);
if (percentage_along_line_here < percentage_along_line)
{
percentage_along_line = percentage_along_line_here;
stepping_dim = dim;
}
}
assert(stepping_dim != -1);
if (percentage_along_line > 1.0)
{
// next cell is beyond the end
return true;
}
current_cell[stepping_dim] += (diff[stepping_dim] > 0) ? 1 : -1;
}
return true;
}
bool VoxelUtils::walkPolygons(const ExPolygon& polys, coord_t z, const std::function<bool(GridPoint3)>& process_cell_func) const
{
for (const Polygon& poly : to_polygons(polys))
{
Point last = poly.back();
for (Point p : poly)
{
bool continue_ = walkLine(Vec3crd(last.x(), last.y(), z), Vec3crd(p.x(), p.y(), z), process_cell_func);
if (! continue_)
{
return false;
}
last = p;
}
}
return true;
}
bool VoxelUtils::walkDilatedPolygons(const ExPolygon& polys, coord_t z, const DilationKernel& kernel, const std::function<bool(GridPoint3)>& process_cell_func) const
{
ExPolygon translated = polys;
GridPoint3 k = kernel.kernel_size_;
k.x() %= 2;
k.y() %= 2;
k.z() %= 2;
const Vec3crd translation = (Vec3crd(1, 1, 1) - k).array() * cell_size_.array() / 2;
if (translation.x() && translation.y())
{
translated.translate(Point(translation.x(), translation.y()));
}
return walkPolygons(translated, z + translation.z(), dilate(kernel, process_cell_func));
}
bool VoxelUtils::walkAreas(const ExPolygon& polys, coord_t z, const std::function<bool(GridPoint3)>& process_cell_func) const
{
ExPolygon translated = polys;
const Vec3crd translation = -cell_size_ / 2; // offset half a cell so that the dots of spreadDotsArea are centered on the middle of the cell isntead of the lower corners.
if (translation.x() && translation.y())
{
translated.translate(Point(translation.x(), translation.y()));
}
return _walkAreas(translated, z, process_cell_func);
}
static Points spreadDotsArea(const ExPolygon& polygons, Point grid_size)
{
std::unique_ptr<Fill> filler(Fill::new_from_type(ipAlignedRectilinear));
filler->angle = Geometry::deg2rad(90.f);
filler->spacing = unscaled(grid_size.x());
filler->bounding_box = get_extents(polygons);
FillParams params;
params.density = 1.f;
params.anchor_length_max = 0;
Surface surface(stInternal, polygons);
auto polylines = filler->fill_surface(&surface, params);
Points result;
for (const Polyline& line : polylines) {
assert(line.size() == 2);
Point a = line[0];
Point b = line[1];
assert(a.x() == b.x());
if (a.y() > b.y()) {
std::swap(a, b);
}
for (coord_t y = a.y() - (a.y() % grid_size.y()) - grid_size.y(); y < b.y(); y += grid_size.y()) {
if (y < a.y())
continue;
result.emplace_back(a.x(), y);
}
}
return result;
}
bool VoxelUtils::_walkAreas(const ExPolygon& polys, coord_t z, const std::function<bool(GridPoint3)>& process_cell_func) const
{
Points skin_points = spreadDotsArea(polys, Point(cell_size_.x(), cell_size_.y()));
for (Point p : skin_points)
{
bool continue_ = process_cell_func(toGridPoint(Vec3crd(p.x() + cell_size_.x() / 2, p.y() + cell_size_.y() / 2, z)));
if (! continue_)
{
return false;
}
}
return true;
}
bool VoxelUtils::walkDilatedAreas(const ExPolygon& polys, coord_t z, const DilationKernel& kernel, const std::function<bool(GridPoint3)>& process_cell_func) const
{
ExPolygon translated = polys;
GridPoint3 k = kernel.kernel_size_;
k.x() %= 2;
k.y() %= 2;
k.z() %= 2;
const Vec3crd translation = (Vec3crd(1, 1, 1) - k).array() * cell_size_.array() / 2 // offset half a cell when using an even kernel
- cell_size_.array() / 2; // offset half a cell so that the dots of spreadDotsArea are centered on the middle of the cell isntead of the lower corners.
if (translation.x() && translation.y())
{
translated.translate(Point(translation.x(), translation.y()));
}
return _walkAreas(translated, z + translation.z(), dilate(kernel, process_cell_func));
}
std::function<bool(GridPoint3)> VoxelUtils::dilate(const DilationKernel& kernel, const std::function<bool(GridPoint3)>& process_cell_func) const
{
return [&process_cell_func, &kernel](GridPoint3 loc)
{
for (const GridPoint3& rel : kernel.relative_cells_)
{
bool continue_ = process_cell_func(loc + rel);
if (! continue_)
return false;
}
return true;
};
}
} // namespace cura

View File

@ -0,0 +1,212 @@
// Copyright (c) 2022 Ultimaker B.V.
// CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_VOXEL_UTILS_H
#define UTILS_VOXEL_UTILS_H
#include <functional>
#include "../Polygon.hpp"
#include "../ExPolygon.hpp"
namespace Slic3r
{
using GridPoint3 = Vec3crd;
/*!
* Class for holding the relative positiongs wrt a reference cell on which to perform a dilation.
*/
struct DilationKernel
{
/*!
* A cubic kernel checks all voxels in a cube around a reference voxel.
* _____
* |\ ___\
* | | |
* \|____|
*
* A diamond kernel uses a manhattan distance to create a diamond shape around a reference voxel.
* /|\
* /_|_\
* \ | /
* \|/
*
* A prism kernel is diamond in XY, but extrudes straight in Z around a reference voxel.
* / \
* / \
* |\ /|
* | \ / |
* | | |
* \ | /
* \|/
*/
enum class Type
{
CUBE,
DIAMOND,
PRISM
};
GridPoint3 kernel_size_; //!< Size of the kernel in number of voxel cells
Type type_;
std::vector<GridPoint3> relative_cells_; //!< All offset positions relative to some reference cell which is to be dilated
DilationKernel(GridPoint3 kernel_size, Type type);
};
/*!
* Utility class for walking over a 3D voxel grid.
*
* Contains the math for intersecting voxels with lines, polgons, areas, etc.
*/
class VoxelUtils
{
public:
using grid_coord_t = coord_t;
Vec3crd cell_size_;
VoxelUtils(Vec3crd cell_size)
: cell_size_(cell_size)
{
}
/*!
* Process voxels which a line segment crosses.
*
* \param start Start point of the line
* \param end End point of the line
* \param process_cell_func Function to perform on each cell the line crosses
* \return Whether executing was stopped short as indicated by the \p cell_processing_function
*/
bool walkLine(Vec3crd start, Vec3crd end, const std::function<bool(GridPoint3)>& process_cell_func) const;
/*!
* Process voxels which the line segments of a polygon crosses.
*
* \warning Voxels may be processed multiple times!
*
* \param polys The polygons to walk
* \param z The height at which the polygons occur
* \param process_cell_func Function to perform on each voxel cell
* \return Whether executing was stopped short as indicated by the \p cell_processing_function
*/
bool walkPolygons(const ExPolygon& polys, coord_t z, const std::function<bool(GridPoint3)>& process_cell_func) const;
/*!
* Process voxels near the line segments of a polygon.
* For each voxel the polygon crosses we process each of the offset voxels according to the kernel.
*
* \warning Voxels may be processed multiple times!
*
* \param polys The polygons to walk
* \param z The height at which the polygons occur
* \param process_cell_func Function to perform on each voxel cell
* \return Whether executing was stopped short as indicated by the \p cell_processing_function
*/
bool walkDilatedPolygons(const ExPolygon& polys, coord_t z, const DilationKernel& kernel, const std::function<bool(GridPoint3)>& process_cell_func) const;
bool walkDilatedPolygons(const ExPolygons& polys, coord_t z, const DilationKernel& kernel, const std::function<bool(GridPoint3)>& process_cell_func) const
{
for (const auto & poly : polys) {
if (!walkDilatedPolygons(poly, z, kernel, process_cell_func)) {
return false;
}
}
return true;
}
private:
/*!
* \warning the \p polys is assumed to be translated by half the cell_size in xy already
*/
bool _walkAreas(const ExPolygon& polys, coord_t z, const std::function<bool(GridPoint3)>& process_cell_func) const;
public:
/*!
* Process all voxels inside the area of a polygons object.
*
* \warning The voxels along the area are not processed. Thin areas might not process any voxels at all.
*
* \param polys The area to fill
* \param z The height at which the polygons occur
* \param process_cell_func Function to perform on each voxel cell
* \return Whether executing was stopped short as indicated by the \p cell_processing_function
*/
bool walkAreas(const ExPolygon& polys, coord_t z, const std::function<bool(GridPoint3)>& process_cell_func) const;
/*!
* Process all voxels inside the area of a polygons object.
* For each voxel inside the polygon we process each of the offset voxels according to the kernel.
*
* \warning The voxels along the area are not processed. Thin areas might not process any voxels at all.
*
* \param polys The area to fill
* \param z The height at which the polygons occur
* \param process_cell_func Function to perform on each voxel cell
* \return Whether executing was stopped short as indicated by the \p cell_processing_function
*/
bool walkDilatedAreas(const ExPolygon& polys, coord_t z, const DilationKernel& kernel, const std::function<bool(GridPoint3)>& process_cell_func) const;
bool walkDilatedAreas(const ExPolygons& polys, coord_t z, const DilationKernel& kernel, const std::function<bool(GridPoint3)>& process_cell_func) const
{
for (const auto & poly : polys) {
if (!walkDilatedAreas(poly, z, kernel, process_cell_func)) {
return false;
}
}
return true;
}
/*!
* Dilate with a kernel.
*
* Extends the \p process_cell_func, so that for each cell we process nearby cells as well.
*
* Apply this function to a process_cell_func to create a new process_cell_func which applies the effect to nearby voxels as well.
*
* \param kernel The offset positions relative to the input of \p process_cell_func
* \param process_cell_func Function to perform on each voxel cell
*/
std::function<bool(GridPoint3)> dilate(const DilationKernel& kernel, const std::function<bool(GridPoint3)>& process_cell_func) const;
GridPoint3 toGridPoint(const Vec3crd& point) const
{
return GridPoint3(toGridCoord(point.x(), 0), toGridCoord(point.y(), 1), toGridCoord(point.z(), 2));
}
grid_coord_t toGridCoord(const coord_t& coord, const size_t dim) const
{
assert(dim < 3);
return coord / cell_size_[dim] - (coord < 0);
}
Vec3crd toLowerCorner(const GridPoint3& location) const
{
return Vec3crd(toLowerCoord(location.x(), 0), toLowerCoord(location.y(), 1), toLowerCoord(location.z(), 2));
}
coord_t toLowerCoord(const grid_coord_t& grid_coord, const size_t dim) const
{
assert(dim < 3);
return grid_coord * cell_size_[dim];
}
/*!
* Returns a rectangular polygon equal to the cross section of a voxel cell at coordinate \p p
*/
Polygon toPolygon(const GridPoint3 p) const
{
Polygon ret;
Vec3crd c = toLowerCorner(p);
ret.append({c.x(), c.y()});
ret.append({c.x() + cell_size_.x(), c.y()});
ret.append({c.x() + cell_size_.x(), c.y() + cell_size_.y()});
ret.append({c.x(), c.y() + cell_size_.y()});
return ret;
}
};
} // namespace Slic3r
#endif // UTILS_VOXEL_UTILS_H

View File

@ -2309,7 +2309,9 @@ std::vector<std::vector<ExPolygons>> multi_material_segmentation_by_painting(con
BOOST_LOG_TRIVIAL(debug) << "MM segmentation - layers segmentation in parallel - end";
throw_on_cancel_callback();
if (auto max_width = print_object.config().mmu_segmented_region_max_width, interlocking_depth = print_object.config().mmu_segmented_region_interlocking_depth; max_width > 0.f || interlocking_depth > 0.f) {
auto interlocking_beam = print_object.config().interlocking_beam;
if (auto max_width = print_object.config().mmu_segmented_region_max_width, interlocking_depth = print_object.config().mmu_segmented_region_interlocking_depth;
!interlocking_beam && (max_width > 0.f || interlocking_depth > 0.f)) {
cut_segmented_layers(input_expolygons, segmented_regions, float(scale_(max_width)), float(scale_(interlocking_depth)), throw_on_cancel_callback);
throw_on_cancel_callback();
}

View File

@ -900,7 +900,8 @@ static std::vector<std::string> s_Preset_print_options {
"print_flow_ratio",
//Orca
"exclude_object", /*"seam_slope_type",*/ "seam_slope_conditional", "scarf_angle_threshold", /*"seam_slope_start_height", */"seam_slope_entire_loop",/* "seam_slope_min_length",*/
"seam_slope_steps", "seam_slope_inner_walls", "role_base_wipe_speed"/*, "seam_slope_gap"*/};
"seam_slope_steps", "seam_slope_inner_walls", "role_base_wipe_speed"/*, "seam_slope_gap"*/,
"interlocking_beam", "interlocking_orientation", "interlocking_beam_layer_count", "interlocking_depth", "interlocking_boundary_avoidance", "interlocking_beam_width"};
static std::vector<std::string> s_Preset_filament_options {
/*"filament_colour", */ "default_filament_colour","required_nozzle_HRC","filament_diameter", "filament_type", "filament_soluble", "filament_is_support","filament_scarf_seam_type", "filament_scarf_height", "filament_scarf_gap","filament_scarf_length",

View File

@ -2416,6 +2416,56 @@ void PrintConfigDef::init_fff_params()
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionFloat(0.));
def = this->add("interlocking_beam", coBool);
def->label = L("Use beam interlocking");
def->tooltip = L("Generate interlocking beam structure at the locations where different filaments touch. This improves the adhesion between filaments, especially models printed in different materials.");
def->category = L("Advanced");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionBool(false));
def = this->add("interlocking_beam_width", coFloat);
def->label = L("Interlocking beam width");
def->tooltip = L("The width of the interlocking structure beams.");
def->sidetext = L("mm");
def->min = 0.01;
def->category = L("Advanced");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionFloat(0.8));
def = this->add("interlocking_orientation", coFloat);
def->label = L("Interlocking direction");
def->tooltip = L("Orientation of interlock beams.");
def->sidetext = L("°");
def->min = 0;
def->max = 360;
def->category = L("Advanced");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionFloat(22.5));
def = this->add("interlocking_beam_layer_count", coInt);
def->label = L("Interlocking beam layers");
def->tooltip = L("The height of the beams of the interlocking structure, measured in number of layers. Less layers is stronger, but more prone to defects.");
def->min = 1;
def->category = L("Advanced");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionInt(2));
def = this->add("interlocking_depth", coInt);
def->label = L("Interlocking depth");
def->tooltip = L("The distance from the boundary between filaments to generate interlocking structure, measured in cells. Too few cells will result in poor adhesion.");
def->min = 1;
def->category = L("Advanced");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionInt(2));
def = this->add("interlocking_boundary_avoidance", coInt);
def->label = L("Interlocking boundary avoidance");
def->tooltip = L("The distance from the outside of a model where interlocking structures will not be generated, measured in cells.");
def->min = 0;
def->category = L("Advanced");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionInt(2));
def = this->add("ironing_type", coEnum);
def->label = L("Ironing Type");
def->category = L("Quality");

View File

@ -833,6 +833,14 @@ PRINT_CONFIG_CLASS_DEFINE(
((ConfigOptionPercent, wipe_speed))
((ConfigOptionBool, role_base_wipe_speed))
((ConfigOptionBool, precise_z_height)) // BBS
((ConfigOptionBool, interlocking_beam))
((ConfigOptionFloat,interlocking_beam_width))
((ConfigOptionFloat,interlocking_orientation))
((ConfigOptionInt, interlocking_beam_layer_count))
((ConfigOptionInt, interlocking_depth))
((ConfigOptionInt, interlocking_boundary_avoidance))
)
// This object is mapped to Perl as Slic3r::Config::PrintRegion.

View File

@ -738,7 +738,13 @@ bool PrintObject::invalidate_state_by_config_options(
|| opt_key == "raft_layers"
|| opt_key == "raft_contact_distance"
|| opt_key == "slice_closing_radius"
|| opt_key == "slicing_mode") {
|| opt_key == "slicing_mode"
|| opt_key == "interlocking_beam"
|| opt_key == "interlocking_orientation"
|| opt_key == "interlocking_beam_layer_count"
|| opt_key == "interlocking_depth"
|| opt_key == "interlocking_boundary_avoidance"
|| opt_key == "interlocking_beam_width") {
steps.emplace_back(posSlice);
} else if (
opt_key == "elefant_foot_compensation"

View File

@ -4,6 +4,7 @@
#include "MultiMaterialSegmentation.hpp"
#include "Print.hpp"
#include "ClipperUtils.hpp"
#include "Interlocking/InterlockingGenerator.hpp"
//BBS
#include "ShortestPath.hpp"
@ -1070,6 +1071,9 @@ void PrintObject::slice_volumes()
}
InterlockingGenerator::generate_interlocking_structure(this);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
{
// Compensation value, scaled. Only applying the negative scaling here, as the positive scaling has already been applied during slicing.

View File

@ -707,6 +707,14 @@ void ConfigManipulation::toggle_print_fff_options(DynamicPrintConfig *config, in
toggle_field("accel_to_decel_factor", config->opt_bool("accel_to_decel_enable"));
}
toggle_line("exclude_object", gcflavor == gcfKlipper);
bool use_beam_interlocking = config->opt_bool("interlocking_beam");
toggle_line("mmu_segmented_region_interlocking_depth", !use_beam_interlocking);
toggle_line("interlocking_beam_width", use_beam_interlocking);
toggle_line("interlocking_orientation", use_beam_interlocking);
toggle_line("interlocking_beam_layer_count", use_beam_interlocking);
toggle_line("interlocking_depth", use_beam_interlocking);
toggle_line("interlocking_boundary_avoidance", use_beam_interlocking);
}
void ConfigManipulation::update_print_sla_config(DynamicPrintConfig* config, const bool is_global_config/* = false*/)

View File

@ -2213,8 +2213,14 @@ void TabPrint::build()
optgroup->append_single_option_line("fuzzy_skin_thickness");
optgroup = page->new_optgroup(L("Advanced"), L"advanced");
optgroup->append_single_option_line("interlocking_beam");
// optgroup->append_single_option_line("mmu_segmented_region_max_width");
optgroup->append_single_option_line("mmu_segmented_region_interlocking_depth");
optgroup->append_single_option_line("interlocking_beam_width");
optgroup->append_single_option_line("interlocking_orientation");
optgroup->append_single_option_line("interlocking_beam_layer_count");
optgroup->append_single_option_line("interlocking_depth");
optgroup->append_single_option_line("interlocking_boundary_avoidance");
optgroup = page->new_optgroup(L("G-code output"), L"param_gcode");
optgroup->append_single_option_line("reduce_infill_retraction");