ENH: add filament cluster algorithm

1.Add new KMediods algorithm
2.Consider physical and geometric printables
3.Refine code structure

jira:NONE

Signed-off-by: xun.zhang <xun.zhang@bambulab.com>
Change-Id: I1412835c3c6380f9cedb44ff6914004365bba889
This commit is contained in:
xun.zhang 2024-09-02 21:10:01 +08:00 committed by lane.wei
parent ed61d1d31b
commit c53a35856d
6 changed files with 536 additions and 358 deletions

View File

@ -1,280 +1,72 @@
#include "FilamentGroup.hpp"
#include "GCode/ToolOrderUtils.hpp"
#include <queue>
#include <random>
#include <cassert>
namespace Slic3r
{
void KMediods::fit(const FGStrategy&g_strategy , int timeout_ms)
{
std::vector<int>best_medoids;
std::vector<int>best_labels;
int best_cost = std::numeric_limits<int>::max();
FlushTimeMachine T;
T.time_machine_start();
int count = 0;
while (true)
{
std::vector<int>medoids;
std::vector<int>labels;
if (count == 0)
medoids = initialize(INIT_TYPE::Farthest);
else
medoids = initialize(INIT_TYPE::Random);
labels = assign_label(medoids,g_strategy);
int cost = calc_cost(labels, medoids);
for (int i = 0; i < m_filament_num; ++i) {
if (std::find(medoids.begin(), medoids.end(), i) != medoids.end())
continue;
for (int j = 0; j < 2; ++j) {
std::vector<int> new_medoids = medoids;
new_medoids[j] = i;
std::vector<int> new_labels = assign_label(new_medoids,g_strategy);
int new_cost = calc_cost(new_labels, new_medoids);
if (new_cost < cost)
{
labels = new_labels;
cost = new_cost;
medoids = new_medoids;
}
}
}
if (cost < best_cost)
{
best_cost = cost;
best_labels = labels;
best_medoids = medoids;
}
count += 1;
if (T.time_machine_end() > timeout_ms || m_medoids_set.size() == (m_filament_num * (m_filament_num - 1) / 2))
break;
static void remove_intersection(std::set<int>& a, std::set<int>& b) {
std::vector<int>intersection;
std::set_intersection(a.begin(), a.end(), b.begin(), b.end(), std::back_inserter(intersection));
for (auto& item : intersection) {
a.erase(item);
b.erase(item);
}
this->m_filament_labels = best_labels;
}
std::vector<int> KMediods::assign_label(const std::vector<int>& medoids,const FGStrategy&g_strategy)
static bool extract_indices(const std::vector<unsigned int>& used_filaments, const std::vector<std::set<int>>& physical_unprintable_elems, const std::vector<std::set<int>>& geometric_unprintable_elems,
std::vector<std::set<int>>& physical_unprintable_idxs, std::vector<std::set<int>>& geometric_unprintable_idxs)
{
std::vector<int>labels(m_filament_num);
struct Comp {
bool operator()(const std::pair<int, int>& a, const std::pair<int, int>& b) {
return a.second > b.second;
}
};
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>,Comp>min_heap;
assert(physical_unprintable_elems.size() == geometric_unprintable_elems.size());
std::vector<std::set<int>>(physical_unprintable_elems.size()).swap(physical_unprintable_idxs);
std::vector<std::set<int>>(geometric_unprintable_elems.size()).swap(geometric_unprintable_idxs);
for (int i = 0; i < m_filament_num; ++i) {
int distancec_to_0 = m_distance_matrix[i][medoids[0]];
int distancec_to_1 = m_distance_matrix[i][medoids[1]];
min_heap.push({ i,distancec_to_0 - distancec_to_1 });
}
std::set<int> group_0, group_1;
bool have_enough_size = (m_filament_num <= (m_max_group_size[0] + m_max_group_size[1]));
if (have_enough_size || g_strategy == FGStrategy::BestFit) {
while (!min_heap.empty()) {
auto top = min_heap.top();
min_heap.pop();
if (group_0.size() < m_max_group_size[0] && (top.second <= 0 || group_1.size() >= m_max_group_size[1]))
group_0.insert(top.first);
else if (group_1.size() < m_max_group_size[1] && (top.second > 0 || group_0.size() >= m_max_group_size[0]))
group_1.insert(top.first);
else {
if (top.second <= 0)
group_0.insert(top.first);
else
group_1.insert(top.first);
}
}
}
else if (g_strategy == FGStrategy::BestCost) {
while (!min_heap.empty()) {
auto top = min_heap.top();
min_heap.pop();
if (top.second <= 0)
group_0.insert(top.first);
else
group_1.insert(top.first);
for (size_t gid = 0; gid < physical_unprintable_elems.size(); ++gid) {
for (auto& f : physical_unprintable_elems[gid]) {
auto iter = std::find(used_filaments.begin(), used_filaments.end(), (unsigned)f);
if (iter != used_filaments.end())
physical_unprintable_idxs[gid].insert(iter - used_filaments.begin());
}
}
for (auto& item : group_0)
labels[item] = 0;
for (auto& item : group_1)
labels[item] = 1;
return labels;
for (size_t gid = 0; gid < geometric_unprintable_elems.size(); ++gid) {
for (auto& f : geometric_unprintable_elems[gid]) {
auto iter = std::find(used_filaments.begin(), used_filaments.end(), (unsigned)f);
if (iter != used_filaments.end())
geometric_unprintable_idxs[gid].insert(iter - used_filaments.begin());
}
}
return true;
}
int KMediods::calc_cost(const std::vector<int>& labels, const std::vector<int>& medoids)
static bool check_printable(const std::vector<std::set<int>>& groups, const std::map<int,int>& unprintable)
{
int total_cost = 0;
for (int i = 0; i < m_filament_num; ++i)
total_cost += m_distance_matrix[i][medoids[labels[i]]];
return total_cost;
}
std::vector<int> KMediods::initialize(INIT_TYPE type)
{
auto hash_func = [](int n1, int n2) {
return n1 * 100 + n2;
};
srand(time(nullptr));
std::vector<int>ret;
if (type == INIT_TYPE::Farthest) {
//get the farthest items
int target_i = 0, target_j = 0, target_val = std::numeric_limits<int>::min();
for (int i = 0; i < m_distance_matrix.size(); ++i) {
for (int j = 0; j < m_distance_matrix[0].size(); ++j) {
if (i != j && m_distance_matrix[i][j] > target_val) {
target_val = m_distance_matrix[i][j];
target_i = i;
target_j = j;
}
}
}
ret.emplace_back(std::min(target_i, target_j));
ret.emplace_back(std::max(target_i, target_j));
}
else if (type == INIT_TYPE::Random) {
while (true) {
std::vector<int>medoids;
while (medoids.size() < k)
{
int candidate = rand() % m_filament_num;
if (std::find(medoids.begin(), medoids.end(), candidate) == medoids.end())
medoids.push_back(candidate);
}
std::sort(medoids.begin(), medoids.end());
if (m_medoids_set.find(hash_func(medoids[0], medoids[1])) != m_medoids_set.end() && m_medoids_set.size() != (m_filament_num * (m_filament_num - 1) / 2))
continue;
else {
ret = medoids;
break;
}
for (size_t i = 0; i < groups.size(); ++i) {
auto& group = groups[i];
for (auto& filament : group) {
if (auto iter = unprintable.find(filament); iter != unprintable.end() && i == iter->second)
return false;
}
}
m_medoids_set.insert(hash_func(ret[0],ret[1]));
return ret;
return true;
}
std::vector<int> FilamentGroup::calc_filament_group(const std::vector<std::vector<unsigned int>>& layer_filaments, const FGStrategy& g_strategy,int* cost)
std::vector<unsigned int> collect_sorted_used_filaments(const std::vector<std::vector<unsigned int>>& layer_filaments)
{
std::set<unsigned int>used_filaments_set;
for (const auto& lf : layer_filaments)
for (const auto& extruder : lf)
used_filaments_set.insert(extruder);
std::vector<unsigned int>used_filaments = std::vector<unsigned int>(used_filaments_set.begin(), used_filaments_set.end());
for (const auto& f : lf)
used_filaments_set.insert(f);
std::vector<unsigned int>used_filaments(used_filaments_set.begin(), used_filaments_set.end());
std::sort(used_filaments.begin(), used_filaments.end());
int used_filament_num = used_filaments.size();
std::vector<int> filament_labels(m_total_filament_num, 0);
if (used_filament_num <= 1) {
if (cost)
*cost = 0;
return filament_labels;
}
if (used_filament_num < 10)
return calc_filament_group_by_enum(layer_filaments, used_filaments, g_strategy, cost);
else
return calc_filament_group_by_pam(layer_filaments, used_filaments, g_strategy, cost, 100);
return used_filaments;
}
std::vector<int> FilamentGroup::calc_filament_group_by_enum(const std::vector<std::vector<unsigned int>>& layer_filaments, const std::vector<unsigned int>& used_filaments, const FGStrategy& g_strategy,int*cost)
FlushDistanceEvaluator::FlushDistanceEvaluator(const FlushMatrix& flush_matrix, const std::vector<unsigned int>& used_filaments, const std::vector<std::vector<unsigned int>>& layer_filaments, double p)
{
auto bit_count_one = [](uint64_t n)
{
int count = 0;
while (n != 0)
{
n &= n - 1;
count++;
}
return count;
};
int used_filament_num = used_filaments.size();
bool have_enough_size = (used_filament_num <= (m_max_group_size[0] + m_max_group_size[1]));
uint64_t max_group_num = (static_cast<uint64_t>(1) << used_filament_num);
int best_cost = std::numeric_limits<int>::max();
std::vector<int>best_label;
for (uint64_t i = 0; i < max_group_num; ++i) {
int num_to_group_1 = bit_count_one(i);
int num_to_group_0 = used_filament_num - num_to_group_1;
bool should_accept = false;
if (have_enough_size)
should_accept = (num_to_group_0 <= m_max_group_size[0] && num_to_group_1 <= m_max_group_size[1]);
else if (g_strategy == FGStrategy::BestCost)
should_accept = true;
else if (g_strategy == FGStrategy::BestFit)
should_accept = (num_to_group_0 >= m_max_group_size[0] && num_to_group_1 >= m_max_group_size[1]);
if (!should_accept)
continue;
std::set<int>group_0, group_1;
for (int j = 0; j < used_filament_num; ++j) {
if (i & (static_cast<uint64_t>(1) << j))
group_1.insert(used_filaments[j]);
else
group_0.insert(used_filaments[j]);
}
std::vector<int>filament_maps(used_filament_num);
for (int i = 0; i < used_filament_num; ++i) {
if (group_0.find(used_filaments[i]) != group_0.end())
filament_maps[i] = 0;
if (group_1.find(used_filaments[i]) != group_1.end())
filament_maps[i] = 1;
}
int total_cost = reorder_filaments_for_minimum_flush_volume(
used_filaments,
filament_maps,
layer_filaments,
m_flush_matrix,
get_custom_seq,
nullptr
);
if (total_cost < best_cost) {
best_cost = total_cost;
best_label = filament_maps;
}
}
if (cost)
*cost = best_cost;
std::vector<int> filament_labels(m_total_filament_num, 0);
for (int i = 0; i < best_label.size(); ++i)
filament_labels[used_filaments[i]] = best_label[i];
return filament_labels;
}
std::vector<int> FilamentGroup::calc_filament_group_by_pam(const std::vector<std::vector<unsigned int>>& layer_filaments, const std::vector<unsigned int>& used_filaments, const FGStrategy& g_strategy, int*cost,int timeout_ms)
{
std::vector<int>filament_labels_ret(m_total_filament_num, 0);
int used_filament_num = used_filaments.size();
if (used_filaments.size() == 1)
return filament_labels_ret;
//calc pair counts
std::vector<std::vector<int>>count_matrix(used_filament_num, std::vector<int>(used_filament_num));
std::vector<std::vector<int>>count_matrix(used_filaments.size(), std::vector<int>(used_filaments.size()));
for (const auto& lf : layer_filaments) {
for (auto iter = lf.begin(); iter != lf.end(); ++iter) {
auto id_iter1 = std::find(used_filaments.begin(), used_filaments.end(), *iter);
@ -292,29 +84,327 @@ namespace Slic3r
}
}
//calc distance matrix
std::vector<std::vector<float>>distance_matrix(used_filament_num, std::vector<float>(used_filament_num));
m_distance_matrix.resize(used_filaments.size(), std::vector<float>(used_filaments.size()));
for (size_t i = 0; i < used_filaments.size(); ++i) {
for (size_t j = 0; j < used_filaments.size(); ++j) {
if (i == j)
distance_matrix[i][j] = 0;
m_distance_matrix[i][j] = 0;
else {
//TODO: check m_flush_matrix
float max_val = std::max(m_flush_matrix[0][used_filaments[i]][used_filaments[j]], m_flush_matrix[0][used_filaments[j]][used_filaments[i]]);
float min_val = std::min(m_flush_matrix[0][used_filaments[i]][used_filaments[j]], m_flush_matrix[0][used_filaments[j]][used_filaments[i]]);
float max_val = std::max(flush_matrix[used_filaments[i]][used_filaments[j]], flush_matrix[used_filaments[j]][used_filaments[i]]);
float min_val = std::min(flush_matrix[used_filaments[i]][used_filaments[j]], flush_matrix[used_filaments[j]][used_filaments[i]]);
m_distance_matrix[i][j] = (max_val * p + min_val * (1 - p)) * count_matrix[i][j];
}
}
}
}
double p = 0.65;
distance_matrix[i][j] = (max_val * p + min_val * (1 - p)) * count_matrix[i][j];
double FlushDistanceEvaluator::get_distance(int idx_a, int idx_b) const
{
assert(0 <= idx_a && idx_a < m_distance_matrix.size());
assert(0 <= idx_b && idx_b < m_distance_matrix.size());
return m_distance_matrix[idx_a][idx_b];
}
std::vector<int> KMediods2::cluster_small_data(const std::map<int, int>& unplaceable_limits, const std::vector<int>& group_size)
{
std::vector<int>labels(m_elem_count, -1);
std::vector<int>new_group_size = group_size;
for (auto& [elem, center] : unplaceable_limits) {
if (labels[elem] == -1) {
int gid = 1 - center;
labels[elem] = gid;
new_group_size[gid] -= 1;
}
}
for (auto& label : labels) {
if (label == -1) {
int gid = -1;
for (size_t idx = 0; idx < new_group_size.size(); ++idx) {
if (new_group_size[idx] > 0) {
gid = idx;
break;
}
}
if (gid != -1) {
label = gid;
new_group_size[gid] -= 1;
}
else {
label = 0;
}
}
}
KMediods PAM(distance_matrix, used_filament_num, m_max_group_size);
PAM.fit(g_strategy, timeout_ms);
std::vector<int>filament_labels = PAM.get_filament_labels();
return labels;
}
std::vector<int> KMediods2::assign_cluster_label(const std::vector<int>& center, const std::map<int, int>& unplaceable_limtis, const std::vector<int>& group_size, const FGStrategy& strategy)
{
struct Comp {
bool operator()(const std::pair<int, int>& a, const std::pair<int, int>& b) {
return a.second > b.second;
}
};
std::vector<std::set<int>>groups(2);
std::vector<int>new_max_group_size = group_size;
// store filament idx and distance gap between center 0 and center 1
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, Comp>min_heap;
for (int i = 0; i < m_elem_count; ++i) {
if (auto it = unplaceable_limtis.find(i); it != unplaceable_limtis.end()) {
int gid = it->second;
assert(gid == 0 || gid == 1);
groups[1 - gid].insert(i); // insert to group
new_max_group_size[1 - gid] = std::max(new_max_group_size[1 - gid] - 1, 0); // decrease group_size
continue;
}
int distance_to_0 = m_evaluator->get_distance(i, center[0]);
int distance_to_1 = m_evaluator->get_distance(i, center[1]);
min_heap.push({ i,distance_to_0 - distance_to_1 });
}
bool have_enough_size = (min_heap.size() <= (new_max_group_size[0] + new_max_group_size[1]));
if (have_enough_size || strategy == FGStrategy::BestFit) {
while (!min_heap.empty()) {
auto top = min_heap.top();
min_heap.pop();
if (groups[0].size() < new_max_group_size[0] && (top.second <= 0 || groups[1].size() >= new_max_group_size[1]))
groups[0].insert(top.first);
else if (groups[1].size() < new_max_group_size[1] && (top.second > 0 || groups[0].size() >= new_max_group_size[0]))
groups[1].insert(top.first);
else {
if (top.second <= 0)
groups[0].insert(top.first);
else
groups[1].insert(top.first);
}
}
}
else {
while (!min_heap.empty()) {
auto top = min_heap.top();
min_heap.pop();
if (top.second <= 0)
groups[0].insert(top.first);
else
groups[1].insert(top.first);
}
}
std::vector<int>labels(m_elem_count);
for (auto& f : groups[0])
labels[f] = 0;
for (auto& f : groups[1])
labels[f] = 1;
return labels;
}
int KMediods2::calc_cost(const std::vector<int>& labels, const std::vector<int>& medoids)
{
int total_cost = 0;
for (int i = 0; i < m_elem_count; ++i)
total_cost += m_evaluator->get_distance(i, medoids[labels[i]]);
return total_cost;
}
void KMediods2::do_clustering(const FGStrategy& g_strategy, int timeout_ms)
{
FlushTimeMachine T;
T.time_machine_start();
if (m_elem_count < m_k) {
m_cluster_labels = cluster_small_data(m_unplaceable_limits, m_max_cluster_size);
return;
}
std::vector<int>best_labels;
int best_cost = std::numeric_limits<int>::max();
for (int center_0 = 0; center_0 < m_elem_count; ++center_0) {
if (auto iter = m_unplaceable_limits.find(center_0); iter != m_unplaceable_limits.end() && iter->second == 0)
continue;
for (int center_1 = 0; center_1 < m_elem_count; ++center_1) {
if (center_0 == center_1)
continue;
if (auto iter = m_unplaceable_limits.find(center_1); iter != m_unplaceable_limits.end() && iter->second == 1)
continue;
std::vector<int>new_centers = { center_0,center_1 };
std::vector<int>new_labels = assign_cluster_label(new_centers, m_unplaceable_limits, m_max_cluster_size, g_strategy);
int new_cost = calc_cost(new_labels, new_centers);
if (new_cost < best_cost) {
best_cost = new_cost;
best_labels = new_labels;
}
if (T.time_machine_end() > timeout_ms)
break;
}
if (T.time_machine_end() > timeout_ms)
break;
}
this->m_cluster_labels = best_labels;
}
FilamentGroup::FilamentGroup(const FilamentGroupContext& context)
{
assert(context.flush_matrix.size() == 2);
assert(context.flush_matrix.size() == context.max_group_size.size());
assert(context.max_group_size.size() == context.physical_unprintables.size());
assert(context.physical_unprintables.size() == context.geometric_unprintables.size());
m_context = context;
}
std::vector<int> FilamentGroup::calc_filament_group(const std::vector<std::vector<unsigned int>>& layer_filaments, const FGStrategy& g_strategy, int* cost)
{
std::vector<unsigned int> used_filaments = collect_sorted_used_filaments(layer_filaments);
int used_filament_num = used_filaments.size();
if (used_filament_num < 10)
return calc_filament_group_by_enum(layer_filaments, used_filaments, g_strategy, cost);
else
return calc_filament_group_by_pam2(layer_filaments, used_filaments, g_strategy, cost, 100);
}
// sorted used_filaments
std::vector<int> FilamentGroup::calc_filament_group_by_enum(const std::vector<std::vector<unsigned int>>& layer_filaments, const std::vector<unsigned int>& used_filaments, const FGStrategy& g_strategy,int*cost)
{
static constexpr int UNPLACEABLE_LIMIT_REWARD = 100; // reward value if the group result follows the unprintable limit
static constexpr int MAX_SIZE_LIMIT_REWARD = 10; // reward value if the group result follows the max size per extruder
static constexpr int BEST_FIT_LIMIT_REWARD = 1; // reward value if the group result try to fill the max size per extruder
auto bit_count_one = [](uint64_t n)
{
int count = 0;
while (n != 0)
{
n &= n - 1;
count++;
}
return count;
};
std::map<int, int>unplaceable_limits;
{
// if the filament cannot be placed in both extruder, we just ignore it
std::vector<std::set<int>>physical_unprintables = m_context.physical_unprintables;
std::vector<std::set<int>>geometric_unprintables = m_context.geometric_unprintables;
// TODO: should we instantly fail here later?
remove_intersection(physical_unprintables[0], physical_unprintables[1]);
remove_intersection(geometric_unprintables[0], geometric_unprintables[1]);
for (auto& unprintables : { physical_unprintables, geometric_unprintables }) {
for (size_t group_id = 0; group_id < 2; ++group_id) {
for (size_t elem = 0; elem < used_filaments.size(); ++elem) {
for (auto f : unprintables[group_id]) {
if (unplaceable_limits.count(f) == 0)
unplaceable_limits[f] = group_id;
}
}
}
}
}
int used_filament_num = used_filaments.size();
uint64_t max_group_num = (static_cast<uint64_t>(1) << used_filament_num);
int best_cost = std::numeric_limits<int>::max();
std::vector<int>best_label;
int best_prefer_level = 0;
for (uint64_t i = 0; i < max_group_num; ++i) {
std::vector<std::set<int>>groups(2);
for (int j = 0; j < used_filament_num; ++j) {
if (i & (static_cast<uint64_t>(1) << j))
groups[1].insert(used_filaments[j]);
else
groups[0].insert(used_filaments[j]);
}
int prefer_level = 0;
if (check_printable(groups, unplaceable_limits))
prefer_level += UNPLACEABLE_LIMIT_REWARD;
if (groups[0].size() <= m_context.max_group_size[0] && groups[1].size() <= m_context.max_group_size[1])
prefer_level += MAX_SIZE_LIMIT_REWARD;
if (FGStrategy::BestFit == g_strategy && groups[0].size() >= m_context.max_group_size[0] && groups[1].size() >= m_context.max_group_size[1])
prefer_level += BEST_FIT_LIMIT_REWARD;
std::vector<int>filament_maps(used_filament_num);
for (int i = 0; i < used_filament_num; ++i) {
if (groups[0].find(used_filaments[i]) != groups[0].end())
filament_maps[i] = 0;
if (groups[1].find(used_filaments[i]) != groups[1].end())
filament_maps[i] = 1;
}
int total_cost = reorder_filaments_for_minimum_flush_volume(
used_filaments,
filament_maps,
layer_filaments,
m_context.flush_matrix,
get_custom_seq,
nullptr
);
if (prefer_level > best_prefer_level || (prefer_level == best_prefer_level && total_cost < best_cost)) {
best_prefer_level = prefer_level;
best_cost = total_cost;
best_label = filament_maps;
}
}
if (cost)
*cost = best_cost;
std::vector<int> filament_labels(m_context.total_filament_num, 0);
for (int i = 0; i < best_label.size(); ++i)
filament_labels[used_filaments[i]] = best_label[i];
return filament_labels;
}
// sorted used_filaments
std::vector<int> FilamentGroup::calc_filament_group_by_pam2(const std::vector<std::vector<unsigned int>>& layer_filaments, const std::vector<unsigned int>& used_filaments, const FGStrategy& g_strategy, int*cost,int timeout_ms)
{
std::vector<int>filament_labels_ret(m_context.total_filament_num, 0);
if (used_filaments.size() == 1)
return filament_labels_ret;
std::map<int, int>unplaceable_limits;
{
// map the unprintable filaments to idx of used filaments , if not used ,just ignore
std::vector<std::set<int>> physical_unprintable_idxs, geometric_unprintable_idxs;
extract_indices(used_filaments, m_context.physical_unprintables, m_context.geometric_unprintables, physical_unprintable_idxs, geometric_unprintable_idxs);
remove_intersection(physical_unprintable_idxs[0], physical_unprintable_idxs[1]);
remove_intersection(geometric_unprintable_idxs[0], geometric_unprintable_idxs[1]);
for (auto& unprintables : { physical_unprintable_idxs, geometric_unprintable_idxs }) {
for (size_t group_id = 0; group_id < 2; ++group_id) {
for(auto f:unprintables[group_id]){
if(unplaceable_limits.count(f)==0)
unplaceable_limits[f]=group_id;
}
}
}
}
auto distance_evaluator = std::make_shared<FlushDistanceEvaluator>(m_context.flush_matrix[0], used_filaments, layer_filaments);
KMediods2 PAM((int)used_filaments.size(),distance_evaluator);
PAM.set_max_cluster_size(m_context.max_group_size);
PAM.set_unplaceable_limits(unplaceable_limits);
PAM.do_clustering(g_strategy, timeout_ms);
std::vector<int>filament_labels = PAM.get_cluster_labels();
if(cost)
*cost=reorder_filaments_for_minimum_flush_volume(used_filaments,filament_labels,layer_filaments,m_flush_matrix,std::nullopt,nullptr);
*cost=reorder_filaments_for_minimum_flush_volume(used_filaments,filament_labels,layer_filaments,m_context.flush_matrix,std::nullopt,nullptr);
for (int i = 0; i < filament_labels.size(); ++i)
filament_labels_ret[used_filaments[i]] = filament_labels[i];

View File

@ -1,12 +1,20 @@
#ifndef FILAMENT_GROUP_HPP
#define FILAMENT_GROUP_HPP
#include<chrono>
#include<numeric>
#include <chrono>
#include <memory>
#include <numeric>
#include <set>
#include <map>
#include <vector>
#include "GCode/ToolOrderUtils.hpp"
const static int DEFAULT_CLUSTER_SIZE = 16;
namespace Slic3r
{
std::vector<unsigned int>collect_sorted_used_filaments(const std::vector<std::vector<unsigned int>>& layer_filaments);
struct FlushTimeMachine
{
private:
@ -31,29 +39,43 @@ namespace Slic3r
BestFit
};
struct FilamentGroupContext
{
std::vector<FlushMatrix> flush_matrix;
std::vector<std::set<int>>physical_unprintables;
std::vector<std::set<int>>geometric_unprintables;
std::vector<int>max_group_size;
int total_filament_num;
};
class FlushDistanceEvaluator
{
public:
FlushDistanceEvaluator(const FlushMatrix& flush_matrix,const std::vector<unsigned int>&used_filaments,const std::vector<std::vector<unsigned int>>& layer_filaments, double p = 0.65);
~FlushDistanceEvaluator() = default;
double get_distance(int idx_a, int idx_b) const;
private:
std::vector<std::vector<float>>m_distance_matrix;
};
class FilamentGroup
{
public:
FilamentGroup(const std::vector<FlushMatrix>& flush_matrix, const int total_filament_num, const std::vector<int>& max_group_size) :
m_flush_matrix{ flush_matrix },
m_total_filament_num{ total_filament_num },
m_max_group_size{ max_group_size }
{}
FilamentGroup(const FilamentGroupContext& context);
std::vector<int> calc_filament_group(const std::vector<std::vector<unsigned int>>& layer_filaments, const FGStrategy& g_strategy = FGStrategy::BestFit, int* cost = nullptr);
private:
public:
std::vector<int> calc_filament_group_by_enum(const std::vector<std::vector<unsigned int>>& layer_filaments, const std::vector<unsigned int>& used_filaments, const FGStrategy& g_strategy, int* cost = nullptr);
std::vector<int> calc_filament_group_by_pam(const std::vector<std::vector<unsigned int>>& layer_filaments, const std::vector<unsigned int>& used_filaments, const FGStrategy& g_strategy, int* cost = nullptr, int timeout_ms = 300);
std::vector<int> calc_filament_group_by_pam2(const std::vector<std::vector<unsigned int>>& layer_filaments, const std::vector<unsigned int>& used_filaments, const FGStrategy& g_strategy, int* cost = nullptr, int timeout_ms = 300);
private:
std::vector<FlushMatrix>m_flush_matrix;
std::vector<int>m_max_group_size;
int m_total_filament_num;
FilamentGroupContext m_context;
public:
std::optional<std::function<bool(int, std::vector<int>&)>> get_custom_seq;
};
class KMediods
class KMediods2
{
enum INIT_TYPE
{
@ -61,29 +83,34 @@ namespace Slic3r
Farthest
};
public:
KMediods(const std::vector<std::vector<float>>& distance_matrix, const int filament_num,const std::vector<int>& max_group_size) :
m_distance_matrix{ distance_matrix },
m_filament_num{ filament_num },
m_max_group_size{ max_group_size }{}
void fit(const FGStrategy& g_strategy,int timeout_ms = 300);
std::vector<int>get_filament_labels()const {
return m_filament_labels;
KMediods2(const int elem_count, const std::shared_ptr<FlushDistanceEvaluator>& evaluator) :
m_evaluator{ evaluator },
m_elem_count{ elem_count }
{
m_max_cluster_size = std::vector<int>(m_k, DEFAULT_CLUSTER_SIZE);
}
// set max group size
void set_max_cluster_size(const std::vector<int>& group_size) { m_max_cluster_size = group_size; }
// key stores elem idx, value stores the cluster id that elem cnanot be placed
void set_unplaceable_limits(const std::map<int, int>& placeable_limits) { m_unplaceable_limits = placeable_limits; }
void do_clustering(const FGStrategy& g_strategy,int timeout_ms = 100);
std::vector<int>get_cluster_labels()const { return m_cluster_labels; }
private:
std::vector<int>initialize(INIT_TYPE type);
std::vector<int>assign_label(const std::vector<int>& medoids,const FGStrategy&g_strategy);
std::vector<int>cluster_small_data(const std::map<int, int>& unplaceable_limits, const std::vector<int>& group_size);
std::vector<int>assign_cluster_label(const std::vector<int>& center, const std::map<int, int>& unplaceable_limits, const std::vector<int>& group_size, const FGStrategy& strategy);
int calc_cost(const std::vector<int>& labels, const std::vector<int>& medoids);
private:
std::vector<std::vector<float>>m_distance_matrix;
int m_filament_num;
std::vector<int>m_max_group_size;
std::set<int>m_medoids_set;
const int k = 2;
private:
std::vector<int>m_filament_labels;
};
std::shared_ptr<FlushDistanceEvaluator> m_evaluator;
std::map<int, int>m_unplaceable_limits;
std::vector<int>m_max_cluster_size;
int m_elem_count;
const int m_k = 2;
std::vector<int>m_cluster_labels;
};
}
#endif // !FILAMENT_GROUP_HPP

View File

@ -24,6 +24,60 @@ namespace Slic3r {
const static bool g_wipe_into_objects = false;
static std::set<int>get_filament_by_type(const std::vector<unsigned int>& used_filaments, const PrintConfig* print_config, const std::string& type)
{
std::set<int> target_filaments;
for (unsigned int filament_id : used_filaments) {
std::string filament_type = print_config->filament_type.get_at(filament_id);
if (filament_type == type)
target_filaments.insert(filament_id);
}
return target_filaments;
}
std::vector<std::set<int>> ToolOrdering::get_physical_unprintables(const std::vector<unsigned int>& used_filaments, const PrintConfig* config, int master_extruder_id)
{
auto tpu_filaments = get_filament_by_type(used_filaments, config, "TPU");
if (tpu_filaments.size() > 1) {
throw Slic3r::RuntimeError(std::string("Only supports up to one TPU filament."));
}
// consider tpu, only place tpu in extruder with ams
std::vector<std::set<int>>physical_unprintables(config->nozzle_diameter.size());
int extruder_without_tpu = 1 - master_extruder_id;
for (auto& f : tpu_filaments)
physical_unprintables[extruder_without_tpu].insert(f);
// consider nozzle hrc, nozzle hrc should larger than filament hrc
for (size_t eid = 0; eid < physical_unprintables.size(); ++eid) {
auto nozzle_type = config->nozzle_type.get_at(eid);
int nozzle_hrc = Print::get_hrc_by_nozzle_type(NozzleType(nozzle_type));
for (auto& f : used_filaments) {
int filament_hrc = config->required_nozzle_HRC.get_at(f);
if(filament_hrc>nozzle_hrc){
physical_unprintables[eid].insert(f);
}
}
}
return physical_unprintables;
}
std::vector<std::set<int>> ToolOrdering::get_geometrical_unprintables(const std::vector<std::vector<int>>& unprintable_arrs, const PrintConfig* config)
{
auto arrs_idx_switched = unprintable_arrs;
int extruder_nums = config->nozzle_diameter.size();
std::vector<std::set<int>> unprintables(extruder_nums);
for (auto& arr : arrs_idx_switched)
for (auto& item : arr)
item -= 1;
for (size_t idx = 0; idx < arrs_idx_switched.size(); ++idx)
unprintables[idx] = std::set<int>(arrs_idx_switched[idx].begin(), arrs_idx_switched[idx].end());
return unprintables;
}
// Returns true in case that extruder a comes before b (b does not have to be present). False otherwise.
bool LayerTools::is_extruder_order(unsigned int a, unsigned int b) const
{
@ -474,25 +528,6 @@ void ToolOrdering::collect_extruders(const PrintObject &object, const std::vecto
}
}
std::set<int> ToolOrdering::get_tpu_filaments() const
{
std::vector<unsigned int> all_filaments;
for (const auto &lt : m_layer_tools) {
append(all_filaments, lt.extruders);
sort_remove_duplicates(all_filaments);
}
std::set<int> tpu_filaments;
for (unsigned int filament_id : all_filaments) {
std::string filament_name = m_print->config().filament_type.get_at(filament_id);
if (filament_name == "TPU") {
tpu_filaments.insert(filament_id);
}
}
return tpu_filaments;
}
bool ToolOrdering::check_tpu_group(std::vector<int> filament_maps) const
{
std::vector<unsigned int> all_filaments;
@ -855,12 +890,12 @@ float get_flush_volume(const std::vector<int> &filament_maps, const std::vector<
return flush_volume;
}
std::vector<int> ToolOrdering::get_recommended_filament_maps(const std::vector<std::vector<unsigned int>>& layer_filaments, const PrintConfig *print_config)
std::vector<int> ToolOrdering::get_recommended_filament_maps(const std::vector<std::vector<unsigned int>>& layer_filaments, const PrintConfig* print_config, const std::vector<std::set<int>>&physical_unprintables,const std::vector<std::set<int>>&geometric_unprintables)
{
if (!print_config || layer_filaments.empty())
return std::vector<int>();
const unsigned int filament_nums = (unsigned int) (print_config->filament_colour.values.size() + EPSILON);
const unsigned int filament_nums = (unsigned int)(print_config->filament_colour.values.size() + EPSILON);
// get flush matrix
std::vector<FlushMatrix> nozzle_flush_mtx;
@ -875,27 +910,27 @@ std::vector<int> ToolOrdering::get_recommended_filament_maps(const std::vector<s
}
std::vector<LayerPrintSequence> other_layers_seqs;
const ConfigOptionInts * other_layers_print_sequence_op = print_config->option<ConfigOptionInts>("other_layers_print_sequence");
const ConfigOptionInt * other_layers_print_sequence_nums_op = print_config->option<ConfigOptionInt>("other_layers_print_sequence_nums");
const ConfigOptionInts* other_layers_print_sequence_op = print_config->option<ConfigOptionInts>("other_layers_print_sequence");
const ConfigOptionInt* other_layers_print_sequence_nums_op = print_config->option<ConfigOptionInt>("other_layers_print_sequence_nums");
if (other_layers_print_sequence_op && other_layers_print_sequence_nums_op) {
const std::vector<int> &print_sequence = other_layers_print_sequence_op->values;
int sequence_nums = other_layers_print_sequence_nums_op->value;
other_layers_seqs = get_other_layers_print_sequence(sequence_nums, print_sequence);
const std::vector<int>& print_sequence = other_layers_print_sequence_op->values;
int sequence_nums = other_layers_print_sequence_nums_op->value;
other_layers_seqs = get_other_layers_print_sequence(sequence_nums, print_sequence);
}
// other_layers_seq: the layer_idx and extruder_idx are base on 1
auto get_custom_seq = [&other_layers_seqs](int layer_idx, std::vector<int> &out_seq) -> bool {
auto get_custom_seq = [&other_layers_seqs](int layer_idx, std::vector<int>& out_seq) -> bool {
for (size_t idx = other_layers_seqs.size() - 1; idx != size_t(-1); --idx) {
const auto &other_layers_seq = other_layers_seqs[idx];
const auto& other_layers_seq = other_layers_seqs[idx];
if (layer_idx + 1 >= other_layers_seq.first.first && layer_idx + 1 <= other_layers_seq.first.second) {
out_seq = other_layers_seq.second;
return true;
}
}
return false;
};
};
std::vector<int>ret(filament_nums,0);
std::vector<int>ret(filament_nums, 0);
// if mutli_extruder, calc group,otherwise set to 0
if (extruder_nums == 2) {
std::vector<std::string> extruder_ams_count_str = print_config->extruder_ams_count.values;
@ -910,9 +945,32 @@ std::vector<int> ToolOrdering::get_recommended_filament_maps(const std::vector<s
}
}
FilamentGroup fg(nozzle_flush_mtx, (int) filament_nums, group_size);
fg.get_custom_seq = get_custom_seq;
ret = fg.calc_filament_group(layer_filaments, FGStrategy::BestFit);
FilamentGroupContext context;
context.flush_matrix = std::move(nozzle_flush_mtx);
context.geometric_unprintables = geometric_unprintables;
context.physical_unprintables = physical_unprintables;
context.max_group_size = std::move(group_size);
context.total_filament_num = (int)filament_nums;
// TODO: load master extruder id from config
int master_extruder_id = 1;
// speacially handle tpu filaments
auto used_filaments = collect_sorted_used_filaments(layer_filaments);
auto tpu_filaments = get_filament_by_type(used_filaments, print_config, "TPU");
if (!tpu_filaments.empty()) {
for (size_t fidx = 0; fidx < filament_nums; ++fidx) {
if (tpu_filaments.count(fidx))
ret[fidx] = master_extruder_id;
else
ret[fidx] = 1 - master_extruder_id;
}
}
else {
FilamentGroup fg(context);
fg.get_custom_seq = get_custom_seq;
ret = fg.calc_filament_group(layer_filaments, FGStrategy::BestFit);
}
}
return ret;
@ -949,17 +1007,6 @@ void ToolOrdering::reorder_extruders_for_minimum_flush_volume(bool reorder_first
using FlushMatrix = std::vector<std::vector<float>>;
size_t nozzle_nums = print_config->nozzle_diameter.values.size();
std::vector<std::set<int>> extruder_tpu_status(2, std::set<int>());
if (nozzle_nums > 1) {
std::set<int> tpu_filaments = get_tpu_filaments();
if (tpu_filaments.size() > 1) {
throw Slic3r::RuntimeError(std::string("Only supports up to one TPU filament."));
}
// todo multi_exturder: Need to determine whether the TPU can be placed on the left or right head according to the print model.
extruder_tpu_status[0] = tpu_filaments;
}
std::vector<FlushMatrix> nozzle_flush_mtx;
for (size_t nozzle_id = 0; nozzle_id < nozzle_nums; ++nozzle_id) {
std::vector<float> flush_matrix(cast<float>(get_flush_volumes_matrix(print_config->flush_volumes_matrix.values, nozzle_id, nozzle_nums)));
@ -972,6 +1019,17 @@ void ToolOrdering::reorder_extruders_for_minimum_flush_volume(bool reorder_first
std::vector<int>filament_maps(number_of_extruders, 0);
FilamentMapMode map_mode = FilamentMapMode::fmmAuto;
std::vector<std::vector<unsigned int>> layer_filaments;
for (auto& lt : m_layer_tools) {
layer_filaments.emplace_back(lt.extruders);
}
std::vector<unsigned int> used_filaments = collect_sorted_used_filaments(layer_filaments);
std::vector<std::set<int>>geometric_unprintables = get_geometrical_unprintables(m_print->get_unprintable_filament_ids(), print_config);
std::vector<std::set<int>>physical_unprintables = get_physical_unprintables(used_filaments, print_config);
if (nozzle_nums > 1) {
filament_maps = m_print->get_filament_maps();
map_mode = m_print->get_filament_map_mode();
@ -982,12 +1040,7 @@ void ToolOrdering::reorder_extruders_for_minimum_flush_volume(bool reorder_first
print_config = &(m_print_object_ptr->print()->config());
}
std::vector<std::vector<unsigned int>> layer_filaments;
for (auto& lt : m_layer_tools) {
layer_filaments.emplace_back(lt.extruders);
}
filament_maps = ToolOrdering::get_recommended_filament_maps(layer_filaments, print_config);
filament_maps = ToolOrdering::get_recommended_filament_maps(layer_filaments, print_config, physical_unprintables, geometric_unprintables);
if (filament_maps.empty())
return;
@ -1009,10 +1062,6 @@ void ToolOrdering::reorder_extruders_for_minimum_flush_volume(bool reorder_first
std::vector<std::vector<unsigned int>>filament_sequences;
std::vector<unsigned int>filament_lists(number_of_extruders);
std::iota(filament_lists.begin(), filament_lists.end(), 0);
std::vector<std::vector<unsigned int>>layer_filaments;
for (auto& lt : m_layer_tools) {
layer_filaments.emplace_back(lt.extruders);
}
std::vector<LayerPrintSequence> other_layers_seqs;
const ConfigOptionInts* other_layers_print_sequence_op = print_config->option<ConfigOptionInts>("other_layers_print_sequence");
@ -1083,7 +1132,7 @@ void ToolOrdering::reorder_extruders_for_minimum_flush_volume(bool reorder_first
if (map_mode == fmmManual)
{
std::vector<std::vector<unsigned int>>filament_sequences_one_extruder;
std::vector<int>filament_maps_auto = get_recommended_filament_maps(layer_filaments, print_config);
std::vector<int>filament_maps_auto = get_recommended_filament_maps(layer_filaments, print_config, physical_unprintables, geometric_unprintables);
reorder_filaments_for_minimum_flush_volume(
filament_lists,
filament_maps_auto,

View File

@ -229,7 +229,11 @@ public:
std::vector<LayerTools>& layer_tools() { return m_layer_tools; }
bool has_wipe_tower() const { return ! m_layer_tools.empty() && m_first_printing_extruder != (unsigned int)-1 && m_layer_tools.front().has_wipe_tower; }
static std::vector<int> get_recommended_filament_maps(const std::vector<std::vector<unsigned int>>& layer_filaments, const PrintConfig *print_config);
static std::vector<int> get_recommended_filament_maps(const std::vector<std::vector<unsigned int>>& layer_filaments, const PrintConfig* print_config, const std::vector<std::set<int>>& physical_unprintables, const std::vector<std::set<int>>& geometric_unprintables);
static std::vector<std::set<int>> get_physical_unprintables(const std::vector<unsigned int>& layer_filaments, const PrintConfig* config, int master_extruder_id = 1);
static std::vector<std::set<int>> get_geometrical_unprintables(const std::vector<std::vector<int>>& unprintable_arrs, const PrintConfig* config);
// should be called after doing reorder
FilamentChangeStats get_filament_change_stats(FilamentChangeMode mode);
@ -238,7 +242,6 @@ private:
void initialize_layers(std::vector<coordf_t> &zs);
void collect_extruders(const PrintObject &object, const std::vector<std::pair<double, unsigned int>> &per_layer_extruder_switches);
void reorder_extruders(unsigned int last_extruder_id);
std::set<int> get_tpu_filaments() const;
bool check_tpu_group(std::vector<int> filament_maps) const;
// BBS

View File

@ -1861,19 +1861,21 @@ void Print::process(std::unordered_map<std::string, long long>* slice_time, bool
if (this->config().print_sequence == PrintSequence::ByObject) {
// Order object instances for sequential print.
print_object_instances_ordering = sort_object_instances_by_model_order(*this);
std::vector<std::vector<unsigned int>> all_filaments;
for (print_object_instance_sequential_active = print_object_instances_ordering.begin(); print_object_instance_sequential_active != print_object_instances_ordering.end(); ++print_object_instance_sequential_active) {
tool_ordering = ToolOrdering(*(*print_object_instance_sequential_active)->print_object, initial_extruder_id);
for (const auto& layer_tool : tool_ordering.layer_tools()) {
all_filaments.emplace_back(layer_tool.extruders);
}
}
auto used_filaments = collect_sorted_used_filaments(all_filaments);
auto physical_unprintables = ToolOrdering::get_physical_unprintables(used_filaments, &m_config);
auto geometric_unprintables = ToolOrdering::get_geometrical_unprintables(get_unprintable_filament_ids(), &m_config);
// get recommended filament map
if (get_filament_map_mode() == FilamentMapMode::fmmAuto) {
std::vector<std::vector<unsigned int>> all_filaments;
print_object_instance_sequential_active = print_object_instances_ordering.begin();
for (; print_object_instance_sequential_active != print_object_instances_ordering.end(); ++print_object_instance_sequential_active) {
tool_ordering = ToolOrdering(*(*print_object_instance_sequential_active)->print_object, initial_extruder_id);
for (const auto &layer_tool : tool_ordering.layer_tools()) {
all_filaments.emplace_back(layer_tool.extruders);
}
}
std::vector<int> recomended_maps = ToolOrdering::get_recommended_filament_maps(all_filaments, &config());
std::vector<int> recomended_maps = ToolOrdering::get_recommended_filament_maps(all_filaments, &config(), physical_unprintables, geometric_unprintables);
std::transform(recomended_maps.begin(), recomended_maps.end(), recomended_maps.begin(), [](int value) { return value + 1; });
update_filament_maps_to_config(recomended_maps);
}

View File

@ -827,6 +827,13 @@ public:
// get the group label of filament
size_t get_extruder_id(unsigned int filament_id) const;
// 1 based ids
const std::vector<std::vector<int>>& get_unprintable_filament_ids() const { return m_unprintable_filament_ids; }
void set_unprintable_filament_ids(const std::vector<std::vector<int>> &filament_ids) { m_unprintable_filament_ids = filament_ids; }
std::vector<Vec2d> get_printable_area();
std::vector<std::vector<Vec2d>> get_extruder_printable_area();
bool enable_timelapse_print() const;
std::string output_filename(const std::string &filename_base = std::string()) const override;