ENH: add clipper2 for preparing

Add clipper2 code into repo

Signed-off-by: salt.wei <salt.wei@bambulab.com>
Change-Id: Ib98ea3085055db7d125a92879c46b54e39bdc6b1
(cherry picked from commit 7398e71236a300531a172163c71f15440c37bd5e)
This commit is contained in:
salt.wei 2022-11-08 21:51:21 +08:00 committed by Lane.Wei
parent f258da6add
commit e863d1054a
16 changed files with 7863 additions and 2 deletions

View File

@ -7,6 +7,7 @@ add_subdirectory(admesh)
# boost/nowide
add_subdirectory(boost)
add_subdirectory(clipper)
add_subdirectory(clipper2)
add_subdirectory(miniz)
add_subdirectory(minilzo)
add_subdirectory(glu-libtess)

View File

@ -0,0 +1,50 @@
cmake_minimum_required(VERSION 3.10)
project(Clipper2 VERSION 1.0.6 LANGUAGES C CXX)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set_property(GLOBAL PROPERTY USE_FOLDERS OFF)
option(BUILD_SHARED_LIBS "Build shared libs" OFF)
include(GNUInstallDirs)
set(CLIPPER2_INC
Clipper2Lib/include/clipper2/clipper.h
Clipper2Lib/include/clipper2/clipper.core.h
Clipper2Lib/include/clipper2/clipper.engine.h
Clipper2Lib/include/clipper2/clipper.export.h
Clipper2Lib/include/clipper2/clipper.minkowski.h
Clipper2Lib/include/clipper2/clipper.offset.h
Clipper2Lib/include/clipper2/clipper.rectclip.h
)
set(CLIPPER2_SRC
Clipper2Lib/src/clipper.engine.cpp
Clipper2Lib/src/clipper.offset.cpp
Clipper2Lib/src/clipper.rectclip.cpp
)
# 2d version of Clipper2
add_library(Clipper2 ${CLIPPER2_INC} ${CLIPPER2_SRC})
target_include_directories(Clipper2
PUBLIC Clipper2Lib/include
)
if (WIN32)
target_compile_options(Clipper2 PRIVATE /W4 /WX)
else()
target_compile_options(Clipper2 PRIVATE -Wall -Wextra -Wpedantic -Werror)
target_link_libraries(Clipper2 PUBLIC -lm)
endif()
set_target_properties(Clipper2 PROPERTIES FOLDER Libraries
VERSION ${PROJECT_VERSION}
SOVERSION ${PROJECT_VERSION_MAJOR}
PUBLIC_HEADER "${CLIPPER2_INC}"
)

View File

@ -0,0 +1,653 @@
/*******************************************************************************
* Author : Angus Johnson *
* Date : 4 November 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : Core Clipper Library structures and functions *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#ifndef CLIPPER_CORE_H
#define CLIPPER_CORE_H
#include <cstdlib>
#include <cmath>
#include <vector>
#include <string>
#include <iostream>
#include <algorithm>
#include <climits>
//#define NO_EXCEPTIONS
namespace Clipper2Lib
{
#ifndef NO_EXCEPTIONS
static const char* precision_error =
"Precision exceeds the permitted range";
#endif
static double const PI = 3.141592653589793238;
static int64_t const MAX_COORD = LLONG_MAX / 2;
//By far the most widely used filling rules for polygons are EvenOdd
//and NonZero, sometimes called Alternate and Winding respectively.
//https://en.wikipedia.org/wiki/Nonzero-rule
enum class FillRule { EvenOdd, NonZero, Positive, Negative };
// Point ------------------------------------------------------------------------
template <typename T>
struct Point {
T x;
T y;
#ifdef USINGZ
int64_t z;
template <typename T2>
inline void Init(const T2 x_ = 0, const T2 y_ = 0, const int64_t z_ = 0)
{
if constexpr (std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T2>::is_integer)
{
x = static_cast<T>(std::round(x_));
y = static_cast<T>(std::round(y_));
z = z_;
}
else
{
x = static_cast<T>(x_);
y = static_cast<T>(y_);
z = z_;
}
}
explicit Point() : x(0), y(0), z(0) {};
template <typename T2>
Point(const T2 x_, const T2 y_, const int64_t z_ = 0)
{
Init(x_, y_);
z = z_;
}
template <typename T2>
explicit Point<T>(const Point<T2>& p)
{
Init(p.x, p.y, p.z);
}
Point operator * (const double scale) const
{
return Point(x * scale, y * scale, z);
}
friend std::ostream& operator<<(std::ostream& os, const Point& point)
{
os << point.x << "," << point.y << "," << point.z;
return os;
}
#else
template <typename T2>
inline void Init(const T2 x_ = 0, const T2 y_ = 0)
{
if constexpr (std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T2>::is_integer)
{
x = static_cast<T>(std::round(x_));
y = static_cast<T>(std::round(y_));
}
else
{
x = static_cast<T>(x_);
y = static_cast<T>(y_);
}
}
explicit Point() : x(0), y(0) {};
template <typename T2>
Point(const T2 x_, const T2 y_) { Init(x_, y_); }
template <typename T2>
explicit Point<T>(const Point<T2>& p) { Init(p.x, p.y); }
Point operator * (const double scale) const
{
return Point(x * scale, y * scale);
}
friend std::ostream& operator<<(std::ostream& os, const Point& point)
{
os << point.x << "," << point.y;
return os;
}
#endif
friend bool operator==(const Point &a, const Point &b)
{
return a.x == b.x && a.y == b.y;
}
friend bool operator!=(const Point& a, const Point& b)
{
return !(a == b);
}
inline Point<T> operator-() const
{
return Point<T>(-x,-y);
}
inline Point operator+(const Point &b) const
{
return Point(x+b.x, y+b.y);
}
inline Point operator-(const Point &b) const
{
return Point(x-b.x, y-b.y);
}
inline void Negate() { x = -x; y = -y; }
};
//nb: using 'using' here (instead of typedef) as they can be used in templates
using Point64 = Point<int64_t>;
using PointD = Point<double>;
template <typename T>
using Path = std::vector<Point<T>>;
template <typename T>
using Paths = std::vector<Path<T>>;
using Path64 = Path<int64_t>;
using PathD = Path<double>;
using Paths64 = std::vector< Path64>;
using PathsD = std::vector< PathD>;
template <typename T>
std::ostream& operator << (std::ostream& outstream, const Path<T>& path)
{
if (!path.empty())
{
auto pt = path.cbegin(), last = path.cend() - 1;
while (pt != last)
outstream << *pt++ << ", ";
outstream << *last << std::endl;
}
return outstream;
}
template <typename T>
std::ostream& operator << (std::ostream& outstream, const Paths<T>& paths)
{
for (auto p : paths)
outstream << p;
return outstream;
}
template <typename T1, typename T2>
inline Path<T1> ScalePath(const Path<T2>& path, double scale)
{
Path<T1> result;
result.reserve(path.size());
#ifdef USINGZ
for (const Point<T2>& pt : path)
result.push_back(Point<T1>(pt.x * scale, pt.y * scale, pt.z));
#else
for (const Point<T2>& pt : path)
result.push_back(Point<T1>(pt.x * scale, pt.y * scale));
#endif
return result;
}
template <typename T1, typename T2>
inline Paths<T1> ScalePaths(const Paths<T2>& paths, double scale)
{
Paths<T1> result;
result.reserve(paths.size());
for (const Path<T2>& path : paths)
result.push_back(ScalePath<T1, T2>(path, scale));
return result;
}
template <typename T1, typename T2>
inline Path<T1> TransformPath(const Path<T2>& path)
{
Path<T1> result;
result.reserve(path.size());
std::transform(path.cbegin(), path.cend(), std::back_inserter(result),
[](const Point<T2>& pt) {return Point<T1>(pt); });
return result;
}
template <typename T1, typename T2>
inline Paths<T1> TransformPaths(const Paths<T2>& paths)
{
Paths<T1> result;
std::transform(paths.cbegin(), paths.cend(), std::back_inserter(result),
[](const Path<T2>& path) {return TransformPath<T1, T2>(path); });
return result;
}
inline PathD Path64ToPathD(const Path64& path)
{
return TransformPath<double, int64_t>(path);
}
inline PathsD Paths64ToPathsD(const Paths64& paths)
{
return TransformPaths<double, int64_t>(paths);
}
inline Path64 PathDToPath64(const PathD& path)
{
return TransformPath<int64_t, double>(path);
}
inline Paths64 PathsDToPaths64(const PathsD& paths)
{
return TransformPaths<int64_t, double>(paths);
}
template<typename T>
inline double Sqr(T val)
{
return static_cast<double>(val) * static_cast<double>(val);
}
template<typename T>
inline bool NearEqual(const Point<T>& p1,
const Point<T>& p2, double max_dist_sqrd)
{
return Sqr(p1.x - p2.x) + Sqr(p1.y - p2.y) < max_dist_sqrd;
}
template<typename T>
inline Path<T> StripNearEqual(const Path<T>& path,
double max_dist_sqrd, bool is_closed_path)
{
if (path.size() == 0) return Path<T>();
Path<T> result;
result.reserve(path.size());
typename Path<T>::const_iterator path_iter = path.cbegin();
Point<T> first_pt = *path_iter++, last_pt = first_pt;
result.push_back(first_pt);
for (; path_iter != path.cend(); ++path_iter)
{
if (!NearEqual(*path_iter, last_pt, max_dist_sqrd))
{
last_pt = *path_iter;
result.push_back(last_pt);
}
}
if (!is_closed_path) return result;
while (result.size() > 1 &&
NearEqual(result.back(), first_pt, max_dist_sqrd)) result.pop_back();
return result;
}
template<typename T>
inline Paths<T> StripNearEqual(const Paths<T>& paths,
double max_dist_sqrd, bool is_closed_path)
{
Paths<T> result;
result.reserve(paths.size());
for (typename Paths<T>::const_iterator paths_citer = paths.cbegin();
paths_citer != paths.cend(); ++paths_citer)
{
result.push_back(StripNearEqual(*paths_citer, max_dist_sqrd, is_closed_path));
}
return result;
}
template<typename T>
inline Path<T> StripDuplicates(const Path<T>& path, bool is_closed_path)
{
if (path.size() == 0) return Path<T>();
Path<T> result;
result.reserve(path.size());
typename Path<T>::const_iterator path_iter = path.cbegin();
Point<T> first_pt = *path_iter++, last_pt = first_pt;
result.push_back(first_pt);
for (; path_iter != path.cend(); ++path_iter)
{
if (*path_iter != last_pt)
{
last_pt = *path_iter;
result.push_back(last_pt);
}
}
if (!is_closed_path) return result;
while (result.size() > 1 && result.back() == first_pt) result.pop_back();
return result;
}
template<typename T>
inline Paths<T> StripDuplicates(const Paths<T>& paths, bool is_closed_path)
{
Paths<T> result;
result.reserve(paths.size());
for (typename Paths<T>::const_iterator paths_citer = paths.cbegin();
paths_citer != paths.cend(); ++paths_citer)
{
result.push_back(StripDuplicates(*paths_citer, is_closed_path));
}
return result;
}
// Rect ------------------------------------------------------------------------
template <typename T>
struct Rect;
using Rect64 = Rect<int64_t>;
using RectD = Rect<double>;
template <typename T>
struct Rect {
T left;
T top;
T right;
T bottom;
Rect() :
left(0),
top(0),
right(0),
bottom(0) {}
Rect(T l, T t, T r, T b) :
left(l),
top(t),
right(r),
bottom(b) {}
T Width() const { return right - left; }
T Height() const { return bottom - top; }
void Width(T width) { right = left + width; }
void Height(T height) { bottom = top + height; }
Point<T> MidPoint() const
{
return Point<T>((left + right) / 2, (top + bottom) / 2);
}
Path<T> AsPath() const
{
Path<T> result;
result.reserve(4);
result.push_back(Point<T>(left, top));
result.push_back(Point<T>(right, top));
result.push_back(Point<T>(right, bottom));
result.push_back(Point<T>(left, bottom));
return result;
}
bool Contains(const Point<T>& pt) const
{
return pt.x > left && pt.x < right&& pt.y > top && pt.y < bottom;
}
bool Contains(const Rect<T>& rec) const
{
return rec.left >= left && rec.right <= right &&
rec.top >= top && rec.bottom <= bottom;
}
void Scale(double scale) {
left *= scale;
top *= scale;
right *= scale;
bottom *= scale;
}
bool IsEmpty() const { return bottom <= top || right <= left; };
bool Intersects(const Rect<T>& rec) const
{
return (std::max(left, rec.left) < std::min(right, rec.right)) &&
(std::max(top, rec.top) < std::min(bottom, rec.bottom));
};
friend std::ostream &operator<<(std::ostream &os, const Rect<T> &rect) {
os << "("
<< rect.left << "," << rect.top << "," << rect.right << "," << rect.bottom
<< ")";
return os;
}
};
template <typename T1, typename T2>
inline Rect<T1> ScaleRect(const Rect<T2>& rect, double scale)
{
Rect<T1> result;
if constexpr (std::numeric_limits<T1>::is_integer &&
!std::numeric_limits<T2>::is_integer)
{
result.left = static_cast<T1>(std::round(rect.left * scale));
result.top = static_cast<T1>(std::round(rect.top * scale));
result.right = static_cast<T1>(std::round(rect.right * scale));
result.bottom = static_cast<T1>(std::round(rect.bottom * scale));
}
else
{
result.left = rect.left * scale;
result.top = rect.top * scale;
result.right = rect.right * scale;
result.bottom = rect.bottom * scale;
}
return result;
}
// clipper2Exception ---------------------------------------------------------
#ifndef NO_EXCEPTIONS
class Clipper2Exception : public std::exception {
public:
explicit Clipper2Exception(const char *description) :
m_descr(description) {}
virtual const char *what() const throw() { return m_descr.c_str(); }
private:
std::string m_descr;
};
#endif
// Miscellaneous ------------------------------------------------------------
inline void CheckPrecision(int& precision)
{
if (precision >= -8 && precision <= 8) return;
#ifdef NO_EXCEPTIONS
precision = precision > 8 ? 8 : -8;
#else
throw Clipper2Exception(precision_error);
#endif
}
template <typename T>
inline double CrossProduct(const Point<T>& pt1, const Point<T>& pt2, const Point<T>& pt3) {
return (static_cast<double>(pt2.x - pt1.x) * static_cast<double>(pt3.y -
pt2.y) - static_cast<double>(pt2.y - pt1.y) * static_cast<double>(pt3.x - pt2.x));
}
template <typename T>
inline double CrossProduct(const Point<T>& vec1, const Point<T>& vec2)
{
return static_cast<double>(vec1.y * vec2.x) - static_cast<double>(vec2.y * vec1.x);
}
template <typename T>
inline double DotProduct(const Point<T>& pt1, const Point<T>& pt2, const Point<T>& pt3) {
return (static_cast<double>(pt2.x - pt1.x) * static_cast<double>(pt3.x - pt2.x) +
static_cast<double>(pt2.y - pt1.y) * static_cast<double>(pt3.y - pt2.y));
}
template <typename T>
inline double DotProduct(const Point<T>& vec1, const Point<T>& vec2)
{
return static_cast<double>(vec1.x * vec2.x) + static_cast<double>(vec1.y * vec2.y);
}
template <typename T>
inline double DistanceSqr(const Point<T> pt1, const Point<T> pt2)
{
return Sqr(pt1.x - pt2.x) + Sqr(pt1.y - pt2.y);
}
template <typename T>
inline double DistanceFromLineSqrd(const Point<T>& pt, const Point<T>& ln1, const Point<T>& ln2)
{
//perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
//see http://en.wikipedia.org/wiki/Perpendicular_distance
double A = static_cast<double>(ln1.y - ln2.y);
double B = static_cast<double>(ln2.x - ln1.x);
double C = A * ln1.x + B * ln1.y;
C = A * pt.x + B * pt.y - C;
return (C * C) / (A * A + B * B);
}
template <typename T>
inline double Area(const Path<T>& path)
{
size_t cnt = path.size();
if (cnt < 3) return 0.0;
double a = 0.0;
typename Path<T>::const_iterator it1, it2 = path.cend() - 1, stop = it2;
if (!(cnt & 1)) ++stop;
for (it1 = path.cbegin(); it1 != stop;)
{
a += static_cast<double>(it2->y + it1->y) * (it2->x - it1->x);
it2 = it1 + 1;
a += static_cast<double>(it1->y + it2->y) * (it1->x - it2->x);
it1 += 2;
}
if (cnt & 1)
a += static_cast<double>(it2->y + it1->y) * (it2->x - it1->x);
return a * 0.5;
}
template <typename T>
inline double Area(const Paths<T>& paths)
{
double a = 0.0;
for (typename Paths<T>::const_iterator paths_iter = paths.cbegin();
paths_iter != paths.cend(); ++paths_iter)
{
a += Area<T>(*paths_iter);
}
return a;
}
template <typename T>
inline bool IsPositive(const Path<T>& poly)
{
// A curve has positive orientation [and area] if a region 'R'
// is on the left when traveling around the outside of 'R'.
//https://mathworld.wolfram.com/CurveOrientation.html
//nb: This statement is premised on using Cartesian coordinates
return Area<T>(poly) >= 0;
}
inline bool SegmentsIntersect(const Point64& seg1a, const Point64& seg1b,
const Point64& seg2a, const Point64& seg2b, bool inclusive = false)
{
if (inclusive)
{
double res1 = CrossProduct(seg1a, seg2a, seg2b);
double res2 = CrossProduct(seg1b, seg2a, seg2b);
if (res1 * res2 > 0) return false;
double res3 = CrossProduct(seg2a, seg1a, seg1b);
double res4 = CrossProduct(seg2b, seg1a, seg1b);
if (res3 * res4 > 0) return false;
return (res1 || res2 || res3 || res4); // ensures not collinear
}
else {
double dx1 = static_cast<double>(seg1a.x - seg1b.x);
double dy1 = static_cast<double>(seg1a.y - seg1b.y);
double dx2 = static_cast<double>(seg2a.x - seg2b.x);
double dy2 = static_cast<double>(seg2a.y - seg2b.y);
return (((dy1 * (seg2a.x - seg1a.x) - dx1 * (seg2a.y - seg1a.y)) *
(dy1 * (seg2b.x - seg1a.x) - dx1 * (seg2b.y - seg1a.y)) < 0) &&
((dy2 * (seg1a.x - seg2a.x) - dx2 * (seg1a.y - seg2a.y)) *
(dy2 * (seg1b.x - seg2a.x) - dx2 * (seg1b.y - seg2a.y)) < 0));
}
}
enum class PointInPolygonResult { IsOn, IsInside, IsOutside };
template <typename T>
inline PointInPolygonResult PointInPolygon(const Point<T>& pt, const Path<T>& polygon)
{
if (polygon.size() < 3)
return PointInPolygonResult::IsOutside;
int val = 0;
typename Path<T>::const_iterator start = polygon.cbegin(), cit = start;
typename Path<T>::const_iterator cend = polygon.cend(), pit = cend - 1;
while (pit->y == pt.y)
{
if (pit == start) return PointInPolygonResult::IsOutside;
--pit;
}
bool is_above = pit->y < pt.y;
while (cit != cend)
{
if (is_above)
{
while (cit != cend && cit->y < pt.y) ++cit;
if (cit == cend) break;
}
else
{
while (cit != cend && cit->y > pt.y) ++cit;
if (cit == cend) break;
}
if (cit == start) pit = cend - 1;
else pit = cit - 1;
if (cit->y == pt.y)
{
if (cit->x == pt.x || (cit->y == pit->y &&
((pt.x < pit->x) != (pt.x < cit->x))))
return PointInPolygonResult::IsOn;
++cit;
continue;
}
if (pt.x < cit->x && pt.x < pit->x)
{
// we're only interested in edges crossing on the left
}
else if (pt.x > pit->x && pt.x > cit->x)
val = 1 - val; // toggle val
else
{
double d = CrossProduct(*pit, *cit, pt);
if (d == 0) return PointInPolygonResult::IsOn;
if ((d < 0) == is_above) val = 1 - val;
}
is_above = !is_above;
++cit;
}
return (val == 0) ?
PointInPolygonResult::IsOutside :
PointInPolygonResult::IsInside;
}
} // namespace
#endif // CLIPPER_CORE_H

View File

@ -0,0 +1,586 @@
/*******************************************************************************
* Author : Angus Johnson *
* Date : 4 November 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : This is the main polygon clipping module *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#ifndef CLIPPER_ENGINE_H
#define CLIPPER_ENGINE_H
constexpr auto CLIPPER2_VERSION = "1.0.6";
#include <cstdlib>
#include <queue>
#include <stdexcept>
#include <vector>
#include <functional>
#include "clipper.core.h"
namespace Clipper2Lib {
struct Scanline;
struct IntersectNode;
struct Active;
struct Vertex;
struct LocalMinima;
struct OutRec;
struct Joiner;
//Note: all clipping operations except for Difference are commutative.
enum class ClipType { None, Intersection, Union, Difference, Xor };
enum class PathType { Subject, Clip };
enum class VertexFlags : uint32_t {
None = 0, OpenStart = 1, OpenEnd = 2, LocalMax = 4, LocalMin = 8
};
constexpr enum VertexFlags operator &(enum VertexFlags a, enum VertexFlags b)
{
return (enum VertexFlags)(uint32_t(a) & uint32_t(b));
}
constexpr enum VertexFlags operator |(enum VertexFlags a, enum VertexFlags b)
{
return (enum VertexFlags)(uint32_t(a) | uint32_t(b));
}
struct Vertex {
Point64 pt;
Vertex* next = nullptr;
Vertex* prev = nullptr;
VertexFlags flags = VertexFlags::None;
};
struct OutPt {
Point64 pt;
OutPt* next = nullptr;
OutPt* prev = nullptr;
OutRec* outrec;
Joiner* joiner = nullptr;
OutPt(const Point64& pt_, OutRec* outrec_): pt(pt_), outrec(outrec_) {
next = this;
prev = this;
}
};
class PolyPath;
class PolyPath64;
class PolyPathD;
using PolyTree64 = PolyPath64;
using PolyTreeD = PolyPathD;
struct OutRec;
typedef std::vector<OutRec*> OutRecList;
//OutRec: contains a path in the clipping solution. Edges in the AEL will
//have OutRec pointers assigned when they form part of the clipping solution.
struct OutRec {
size_t idx = 0;
OutRec* owner = nullptr;
OutRecList* splits = nullptr;
Active* front_edge = nullptr;
Active* back_edge = nullptr;
OutPt* pts = nullptr;
PolyPath* polypath = nullptr;
Rect64 bounds = {};
Path64 path;
bool is_open = false;
~OutRec() { if (splits) delete splits; };
};
///////////////////////////////////////////////////////////////////
//Important: UP and DOWN here are premised on Y-axis positive down
//displays, which is the orientation used in Clipper's development.
///////////////////////////////////////////////////////////////////
struct Active {
Point64 bot;
Point64 top;
int64_t curr_x = 0; //current (updated at every new scanline)
double dx = 0.0;
int wind_dx = 1; //1 or -1 depending on winding direction
int wind_cnt = 0;
int wind_cnt2 = 0; //winding count of the opposite polytype
OutRec* outrec = nullptr;
//AEL: 'active edge list' (Vatti's AET - active edge table)
// a linked list of all edges (from left to right) that are present
// (or 'active') within the current scanbeam (a horizontal 'beam' that
// sweeps from bottom to top over the paths in the clipping operation).
Active* prev_in_ael = nullptr;
Active* next_in_ael = nullptr;
//SEL: 'sorted edge list' (Vatti's ST - sorted table)
// linked list used when sorting edges into their new positions at the
// top of scanbeams, but also (re)used to process horizontals.
Active* prev_in_sel = nullptr;
Active* next_in_sel = nullptr;
Active* jump = nullptr;
Vertex* vertex_top = nullptr;
LocalMinima* local_min = nullptr; // the bottom of an edge 'bound' (also Vatti)
bool is_left_bound = false;
};
struct LocalMinima {
Vertex* vertex;
PathType polytype;
bool is_open;
LocalMinima(Vertex* v, PathType pt, bool open) :
vertex(v), polytype(pt), is_open(open){}
};
struct IntersectNode {
Point64 pt;
Active* edge1;
Active* edge2;
IntersectNode() : pt(Point64(0, 0)), edge1(NULL), edge2(NULL) {}
IntersectNode(Active* e1, Active* e2, Point64& pt_) :
pt(pt_), edge1(e1), edge2(e2)
{
}
};
#ifdef USINGZ
typedef std::function<void(const Point64& e1bot, const Point64& e1top,
const Point64& e2bot, const Point64& e2top, Point64& pt)> ZCallback64;
typedef std::function<void(const PointD& e1bot, const PointD& e1top,
const PointD& e2bot, const PointD& e2top, PointD& pt)> ZCallbackD;
#endif
// ClipperBase -------------------------------------------------------------
class ClipperBase {
private:
ClipType cliptype_ = ClipType::None;
FillRule fillrule_ = FillRule::EvenOdd;
FillRule fillpos = FillRule::Positive;
int64_t bot_y_ = 0;
bool minima_list_sorted_ = false;
bool using_polytree_ = false;
Active* actives_ = nullptr;
Active *sel_ = nullptr;
Joiner *horz_joiners_ = nullptr;
std::vector<LocalMinima*> minima_list_; //pointers in case of memory reallocs
std::vector<LocalMinima*>::iterator current_locmin_iter_;
std::vector<Vertex*> vertex_lists_;
std::priority_queue<int64_t> scanline_list_;
std::vector<IntersectNode> intersect_nodes_;
std::vector<Joiner*> joiner_list_; //pointers in case of memory reallocs
void Reset();
void InsertScanline(int64_t y);
bool PopScanline(int64_t &y);
bool PopLocalMinima(int64_t y, LocalMinima *&local_minima);
void DisposeAllOutRecs();
void DisposeVerticesAndLocalMinima();
void DeleteEdges(Active*& e);
void AddLocMin(Vertex &vert, PathType polytype, bool is_open);
bool IsContributingClosed(const Active &e) const;
inline bool IsContributingOpen(const Active &e) const;
void SetWindCountForClosedPathEdge(Active &edge);
void SetWindCountForOpenPathEdge(Active &e);
void InsertLocalMinimaIntoAEL(int64_t bot_y);
void InsertLeftEdge(Active &e);
inline void PushHorz(Active &e);
inline bool PopHorz(Active *&e);
inline OutPt* StartOpenPath(Active &e, const Point64& pt);
inline void UpdateEdgeIntoAEL(Active *e);
OutPt* IntersectEdges(Active &e1, Active &e2, const Point64& pt);
inline void DeleteFromAEL(Active &e);
inline void AdjustCurrXAndCopyToSEL(const int64_t top_y);
void DoIntersections(const int64_t top_y);
void AddNewIntersectNode(Active &e1, Active &e2, const int64_t top_y);
bool BuildIntersectList(const int64_t top_y);
void ProcessIntersectList();
void SwapPositionsInAEL(Active& edge1, Active& edge2);
OutPt* AddOutPt(const Active &e, const Point64& pt);
OutPt* AddLocalMinPoly(Active &e1, Active &e2,
const Point64& pt, bool is_new = false);
OutPt* AddLocalMaxPoly(Active &e1, Active &e2, const Point64& pt);
void DoHorizontal(Active &horz);
bool ResetHorzDirection(const Active &horz, const Active *max_pair,
int64_t &horz_left, int64_t &horz_right);
void DoTopOfScanbeam(const int64_t top_y);
Active *DoMaxima(Active &e);
void JoinOutrecPaths(Active &e1, Active &e2);
void CompleteSplit(OutPt* op1, OutPt* op2, OutRec& outrec);
bool ValidateClosedPathEx(OutPt*& outrec);
void CleanCollinear(OutRec* outrec);
void FixSelfIntersects(OutRec* outrec);
void DoSplitOp(OutRec* outRec, OutPt* splitOp);
Joiner* GetHorzTrialParent(const OutPt* op);
bool OutPtInTrialHorzList(OutPt* op);
void SafeDisposeOutPts(OutPt*& op);
void SafeDeleteOutPtJoiners(OutPt* op);
void AddTrialHorzJoin(OutPt* op);
void DeleteTrialHorzJoin(OutPt* op);
void ConvertHorzTrialsToJoins();
void AddJoin(OutPt* op1, OutPt* op2);
void DeleteJoin(Joiner* joiner);
void ProcessJoinerList();
OutRec* ProcessJoin(Joiner* joiner);
protected:
bool has_open_paths_ = false;
bool succeeded_ = true;
std::vector<OutRec*> outrec_list_; //pointers in case list memory reallocated
bool ExecuteInternal(ClipType ct, FillRule ft, bool use_polytrees);
bool DeepCheckOwner(OutRec* outrec, OutRec* owner);
#ifdef USINGZ
ZCallback64 zCallback_ = nullptr;
void SetZ(const Active& e1, const Active& e2, Point64& pt);
#endif
void CleanUp(); // unlike Clear, CleanUp preserves added paths
void AddPath(const Path64& path, PathType polytype, bool is_open);
void AddPaths(const Paths64& paths, PathType polytype, bool is_open);
public:
virtual ~ClipperBase();
bool PreserveCollinear = true;
bool ReverseSolution = false;
void Clear();
};
// PolyPath / PolyTree --------------------------------------------------------
//PolyTree: is intended as a READ-ONLY data structure for CLOSED paths returned
//by clipping operations. While this structure is more complex than the
//alternative Paths structure, it does preserve path 'ownership' - ie those
//paths that contain (or own) other paths. This will be useful to some users.
class PolyPath {
protected:
PolyPath* parent_;
public:
PolyPath(PolyPath* parent = nullptr): parent_(parent){}
virtual ~PolyPath() { Clear(); };
//https://en.cppreference.com/w/cpp/language/rule_of_three
PolyPath(const PolyPath&) = delete;
PolyPath& operator=(const PolyPath&) = delete;
unsigned Level() const
{
unsigned result = 0;
const PolyPath* p = parent_;
while (p) { ++result; p = p->parent_; }
return result;
}
virtual PolyPath* AddChild(const Path64& path) = 0;
virtual void Clear() {};
virtual size_t Count() const { return 0; }
const PolyPath* Parent() const { return parent_; }
bool IsHole() const
{
const PolyPath* pp = parent_;
bool is_hole = pp;
while (pp) {
is_hole = !is_hole;
pp = pp->parent_;
}
return is_hole;
}
};
class PolyPath64 : public PolyPath {
private:
std::vector<PolyPath64*> childs_;
Path64 polygon_;
typedef typename std::vector<PolyPath64*>::const_iterator pp64_itor;
public:
PolyPath64(PolyPath64* parent = nullptr) : PolyPath(parent) {}
PolyPath64* operator [] (size_t index) { return static_cast<PolyPath64*>(childs_[index]); }
pp64_itor begin() const { return childs_.cbegin(); }
pp64_itor end() const { return childs_.cend(); }
PolyPath64* AddChild(const Path64& path) override
{
PolyPath64* result = new PolyPath64(this);
childs_.push_back(result);
result->polygon_ = path;
return result;
}
void Clear() override
{
for (const PolyPath64* child : childs_) delete child;
childs_.resize(0);
}
size_t Count() const override
{
return childs_.size();
}
const Path64& Polygon() const { return polygon_; };
double Area() const
{
double result = Clipper2Lib::Area<int64_t>(polygon_);
for (const PolyPath64* child : childs_)
result += child->Area();
return result;
}
friend std::ostream& operator << (std::ostream& outstream, const PolyPath64& polypath)
{
const size_t level_indent = 4;
const size_t coords_per_line = 4;
const size_t last_on_line = coords_per_line - 1;
unsigned level = polypath.Level();
if (level > 0)
{
std::string level_padding;
level_padding.insert(0, (level - 1) * level_indent, ' ');
std::string caption = polypath.IsHole() ? "Hole " : "Outer Polygon ";
std::string childs = polypath.Count() == 1 ? " child" : " children";
outstream << level_padding.c_str() << caption << "with " << polypath.Count() << childs << std::endl;
outstream << level_padding;
size_t i = 0, highI = polypath.Polygon().size() - 1;
for (; i < highI; ++i)
{
outstream << polypath.Polygon()[i] << ' ';
if ((i % coords_per_line) == last_on_line)
outstream << std::endl << level_padding;
}
if (highI > 0) outstream << polypath.Polygon()[i];
outstream << std::endl;
}
for (auto child : polypath)
outstream << *child;
return outstream;
}
};
class PolyPathD : public PolyPath {
private:
std::vector<PolyPathD*> childs_;
double inv_scale_;
PathD polygon_;
typedef typename std::vector<PolyPathD*>::const_iterator ppD_itor;
public:
PolyPathD(PolyPathD* parent = nullptr) : PolyPath(parent)
{
inv_scale_ = parent ? parent->inv_scale_ : 1.0;
}
PolyPathD* operator [] (size_t index)
{
return static_cast<PolyPathD*>(childs_[index]);
}
ppD_itor begin() const { return childs_.cbegin(); }
ppD_itor end() const { return childs_.cend(); }
void SetInvScale(double value) { inv_scale_ = value; }
double InvScale() { return inv_scale_; }
PolyPathD* AddChild(const Path64& path) override
{
PolyPathD* result = new PolyPathD(this);
childs_.push_back(result);
result->polygon_ = ScalePath<double, int64_t>(path, inv_scale_);
return result;
}
void Clear() override
{
for (const PolyPathD* child : childs_) delete child;
childs_.resize(0);
}
size_t Count() const override
{
return childs_.size();
}
const PathD& Polygon() const { return polygon_; };
double Area() const
{
double result = Clipper2Lib::Area<double>(polygon_);
for (const PolyPathD* child : childs_)
result += child->Area();
return result;
}
};
class Clipper64 : public ClipperBase
{
private:
void BuildPaths64(Paths64& solutionClosed, Paths64* solutionOpen);
void BuildTree64(PolyPath64& polytree, Paths64& open_paths);
public:
#ifdef USINGZ
void SetZCallback(ZCallback64 cb) { zCallback_ = cb; }
#endif
void AddSubject(const Paths64& subjects)
{
AddPaths(subjects, PathType::Subject, false);
}
void AddOpenSubject(const Paths64& open_subjects)
{
AddPaths(open_subjects, PathType::Subject, true);
}
void AddClip(const Paths64& clips)
{
AddPaths(clips, PathType::Clip, false);
}
bool Execute(ClipType clip_type,
FillRule fill_rule, Paths64& closed_paths)
{
Paths64 dummy;
return Execute(clip_type, fill_rule, closed_paths, dummy);
}
bool Execute(ClipType clip_type, FillRule fill_rule,
Paths64& closed_paths, Paths64& open_paths)
{
closed_paths.clear();
open_paths.clear();
if (ExecuteInternal(clip_type, fill_rule, false))
BuildPaths64(closed_paths, &open_paths);
CleanUp();
return succeeded_;
}
bool Execute(ClipType clip_type, FillRule fill_rule, PolyTree64& polytree)
{
Paths64 dummy;
return Execute(clip_type, fill_rule, polytree, dummy);
}
bool Execute(ClipType clip_type,
FillRule fill_rule, PolyTree64& polytree, Paths64& open_paths)
{
if (ExecuteInternal(clip_type, fill_rule, true))
{
open_paths.clear();
polytree.Clear();
BuildTree64(polytree, open_paths);
}
CleanUp();
return succeeded_;
}
};
class ClipperD : public ClipperBase {
private:
double scale_ = 1.0, invScale_ = 1.0;
#ifdef USINGZ
ZCallbackD zCallback_ = nullptr;
#endif
void BuildPathsD(PathsD& solutionClosed, PathsD* solutionOpen);
void BuildTreeD(PolyPathD& polytree, PathsD& open_paths);
public:
explicit ClipperD(int precision = 2) : ClipperBase()
{
CheckPrecision(precision);
// to optimize scaling / descaling precision
// set the scale to a power of double's radix (2) (#25)
scale_ = std::pow(std::numeric_limits<double>::radix,
std::ilogb(std::pow(10, precision)) + 1);
invScale_ = 1 / scale_;
}
#ifdef USINGZ
void SetZCallback(ZCallbackD cb) { zCallback_ = cb; };
void ZCB(const Point64& e1bot, const Point64& e1top,
const Point64& e2bot, const Point64& e2top, Point64& pt)
{
// de-scale (x & y)
// temporarily convert integers to their initial float values
// this will slow clipping marginally but will make it much easier
// to understand the coordinates passed to the callback function
PointD tmp = PointD(pt) * invScale_;
PointD e1b = PointD(e1bot) * invScale_;
PointD e1t = PointD(e1top) * invScale_;
PointD e2b = PointD(e2bot) * invScale_;
PointD e2t = PointD(e2top) * invScale_;
zCallback_(e1b,e1t, e2b, e2t, tmp);
pt.z = tmp.z; // only update 'z'
};
void CheckCallback()
{
if(zCallback_)
// if the user defined float point callback has been assigned
// then assign the proxy callback function
ClipperBase::zCallback_ =
std::bind(&ClipperD::ZCB, this, std::placeholders::_1,
std::placeholders::_2, std::placeholders::_3,
std::placeholders::_4, std::placeholders::_5);
else
ClipperBase::zCallback_ = nullptr;
}
#endif
void AddSubject(const PathsD& subjects)
{
AddPaths(ScalePaths<int64_t, double>(subjects, scale_), PathType::Subject, false);
}
void AddOpenSubject(const PathsD& open_subjects)
{
AddPaths(ScalePaths<int64_t, double>(open_subjects, scale_), PathType::Subject, true);
}
void AddClip(const PathsD& clips)
{
AddPaths(ScalePaths<int64_t, double>(clips, scale_), PathType::Clip, false);
}
bool Execute(ClipType clip_type, FillRule fill_rule, PathsD& closed_paths)
{
PathsD dummy;
return Execute(clip_type, fill_rule, closed_paths, dummy);
}
bool Execute(ClipType clip_type,
FillRule fill_rule, PathsD& closed_paths, PathsD& open_paths)
{
#ifdef USINGZ
CheckCallback();
#endif
if (ExecuteInternal(clip_type, fill_rule, false))
{
BuildPathsD(closed_paths, &open_paths);
}
CleanUp();
return succeeded_;
}
bool Execute(ClipType clip_type, FillRule fill_rule, PolyTreeD& polytree)
{
PathsD dummy;
return Execute(clip_type, fill_rule, polytree, dummy);
}
bool Execute(ClipType clip_type,
FillRule fill_rule, PolyTreeD& polytree, PathsD& open_paths)
{
#ifdef USINGZ
CheckCallback();
#endif
if (ExecuteInternal(clip_type, fill_rule, true))
{
polytree.Clear();
polytree.SetInvScale(invScale_);
open_paths.clear();
BuildTreeD(polytree, open_paths);
}
CleanUp();
return succeeded_;
}
};
} // namespace
#endif // CLIPPER_ENGINE_H

View File

@ -0,0 +1,830 @@
/*******************************************************************************
* Author : Angus Johnson *
* Date : 30 October 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : This module exports the Clipper2 Library (ie DLL/so) *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
// The exported functions below refer to simple structures that
// can be understood across multiple languages. Consequently
// Path64, PathD, Polytree64 etc are converted from C++ classes
// (std::vector<> etc) into the following data structures:
//
// CPath64 (int64_t*) & CPathD (double_t*):
// Path64 and PathD are converted into arrays of x,y coordinates.
// However in these arrays the first x,y coordinate pair is a
// counter with 'x' containing the number of following coordinate
// pairs. ('y' should be 0, with one exception explained below.)
// __________________________________
// |counter|coord1|coord2|...|coordN|
// |N ,0 |x1, y1|x2, y2|...|xN, yN|
// __________________________________
//
// CPaths64 (int64_t**) & CPathsD (double_t**):
// These are arrays of pointers to CPath64 and CPathD where
// the first pointer is to a 'counter path'. This 'counter
// path' has a single x,y coord pair with 'y' (not 'x')
// containing the number of paths that follow. ('x' = 0).
// _______________________________
// |counter|path1|path2|...|pathN|
// |addr0 |addr1|addr2|...|addrN| (*addr0[0]=0; *addr0[1]=N)
// _______________________________
//
// The structures of CPolytree64 and CPolytreeD are defined
// below and these structures don't need to be explained here.
#ifndef CLIPPER2_EXPORT_H
#define CLIPPER2_EXPORT_H
#include <cstdlib>
#include <vector>
#include "clipper2/clipper.core.h"
#include "clipper2/clipper.engine.h"
#include "clipper2/clipper.offset.h"
#include "clipper2/clipper.rectclip.h"
namespace Clipper2Lib {
typedef int64_t* CPath64;
typedef int64_t** CPaths64;
typedef double* CPathD;
typedef double** CPathsD;
typedef struct CPolyPath64 {
CPath64 polygon;
uint32_t is_hole;
uint32_t child_count;
CPolyPath64* childs;
}
CPolyTree64;
typedef struct CPolyPathD {
CPathD polygon;
uint32_t is_hole;
uint32_t child_count;
CPolyPathD* childs;
}
CPolyTreeD;
template <typename T>
struct CRect {
T left;
T top;
T right;
T bottom;
};
typedef CRect<int64_t> CRect64;
typedef CRect<double> CRectD;
template <typename T>
inline bool CRectIsEmpty(const CRect<T>& rect)
{
return (rect.right <= rect.left) || (rect.bottom <= rect.top);
}
template <typename T>
inline Rect<T> CRectToRect(const CRect<T>& rect)
{
Rect<T> result;
result.left = rect.left;
result.top = rect.top;
result.right = rect.right;
result.bottom = rect.bottom;
return result;
}
#define EXTERN_DLL_EXPORT extern "C" __declspec(dllexport)
//////////////////////////////////////////////////////
// EXPORTED FUNCTION DEFINITIONS
//////////////////////////////////////////////////////
EXTERN_DLL_EXPORT const char* Version();
// Some of the functions below will return data in the various CPath
// and CPolyTree structures which are pointers to heap allocated
// memory. Eventually this memory will need to be released with one
// of the following 'DisposeExported' functions. (This may be the
// only safe way to release this memory since the executable
// accessing these exported functions may use a memory manager that
// allocates and releases heap memory in a different way. Also,
// CPath structures that have been constructed by the executable
// should not be destroyed using these 'DisposeExported' functions.)
EXTERN_DLL_EXPORT void DisposeExportedCPath64(CPath64 p);
EXTERN_DLL_EXPORT void DisposeExportedCPaths64(CPaths64& pp);
EXTERN_DLL_EXPORT void DisposeExportedCPathD(CPathD p);
EXTERN_DLL_EXPORT void DisposeExportedCPathsD(CPathsD& pp);
EXTERN_DLL_EXPORT void DisposeExportedCPolyTree64(CPolyTree64*& cpt);
EXTERN_DLL_EXPORT void DisposeExportedCPolyTreeD(CPolyTreeD*& cpt);
// Boolean clipping:
// cliptype: None=0, Intersection=1, Union=2, Difference=3, Xor=4
// fillrule: EvenOdd=0, NonZero=1, Positive=2, Negative=3
EXTERN_DLL_EXPORT int BooleanOp64(uint8_t cliptype,
uint8_t fillrule, const CPaths64 subjects,
const CPaths64 subjects_open, const CPaths64 clips,
CPaths64& solution, CPaths64& solution_open,
bool preserve_collinear = true, bool reverse_solution = false);
EXTERN_DLL_EXPORT int BooleanOpPt64(uint8_t cliptype,
uint8_t fillrule, const CPaths64 subjects,
const CPaths64 subjects_open, const CPaths64 clips,
CPolyTree64*& solution, CPaths64& solution_open,
bool preserve_collinear = true, bool reverse_solution = false);
EXTERN_DLL_EXPORT int BooleanOpD(uint8_t cliptype,
uint8_t fillrule, const CPathsD subjects,
const CPathsD subjects_open, const CPathsD clips,
CPathsD& solution, CPathsD& solution_open, int precision = 2,
bool preserve_collinear = true, bool reverse_solution = false);
EXTERN_DLL_EXPORT int BooleanOpPtD(uint8_t cliptype,
uint8_t fillrule, const CPathsD subjects,
const CPathsD subjects_open, const CPathsD clips,
CPolyTreeD*& solution, CPathsD& solution_open, int precision = 2,
bool preserve_collinear = true, bool reverse_solution = false);
// Polygon offsetting (inflate/deflate):
// jointype: Square=0, Round=1, Miter=2
// endtype: Polygon=0, Joined=1, Butt=2, Square=3, Round=4
EXTERN_DLL_EXPORT CPaths64 InflatePaths64(const CPaths64 paths,
double delta, uint8_t jointype, uint8_t endtype,
double miter_limit = 2.0, double arc_tolerance = 0.0,
bool reverse_solution = false);
EXTERN_DLL_EXPORT CPathsD InflatePathsD(const CPathsD paths,
double delta, uint8_t jointype, uint8_t endtype,
int precision = 2, double miter_limit = 2.0,
double arc_tolerance = 0.0, bool reverse_solution = false);
// RectClip & RectClipLines:
EXTERN_DLL_EXPORT CPaths64 RectClip64(const CRect64& rect,
const CPaths64 paths);
EXTERN_DLL_EXPORT CPathsD RectClipD(const CRectD& rect,
const CPathsD paths, int precision = 2);
EXTERN_DLL_EXPORT CPaths64 RectClipLines64(const CRect64& rect,
const CPaths64 paths);
EXTERN_DLL_EXPORT CPathsD RectClipLinesD(const CRectD& rect,
const CPathsD paths, int precision = 2);
//////////////////////////////////////////////////////
// INTERNAL FUNCTIONS
//////////////////////////////////////////////////////
inline CPath64 CreateCPath64(size_t cnt1, size_t cnt2);
inline CPath64 CreateCPath64(const Path64& p);
inline CPaths64 CreateCPaths64(const Paths64& pp);
inline Path64 ConvertCPath64(const CPath64& p);
inline Paths64 ConvertCPaths64(const CPaths64& pp);
inline CPathD CreateCPathD(size_t cnt1, size_t cnt2);
inline CPathD CreateCPathD(const PathD& p);
inline CPathsD CreateCPathsD(const PathsD& pp);
inline PathD ConvertCPathD(const CPathD& p);
inline PathsD ConvertCPathsD(const CPathsD& pp);
// the following function avoid multiple conversions
inline CPathD CreateCPathD(const Path64& p, double scale);
inline CPathsD CreateCPathsD(const Paths64& pp, double scale);
inline Path64 ConvertCPathD(const CPathD& p, double scale);
inline Paths64 ConvertCPathsD(const CPathsD& pp, double scale);
inline CPolyTree64* CreateCPolyTree64(const PolyTree64& pt);
inline CPolyTreeD* CreateCPolyTreeD(const PolyTree64& pt, double scale);
EXTERN_DLL_EXPORT const char* Version()
{
return CLIPPER2_VERSION;
}
EXTERN_DLL_EXPORT void DisposeExportedCPath64(CPath64 p)
{
if (p) delete[] p;
}
EXTERN_DLL_EXPORT void DisposeExportedCPaths64(CPaths64& pp)
{
if (!pp) return;
CPaths64 v = pp;
CPath64 cnts = *v;
const size_t cnt = static_cast<size_t>(cnts[1]);
for (size_t i = 0; i <= cnt; ++i) //nb: cnt +1
DisposeExportedCPath64(*v++);
delete[] pp;
pp = nullptr;
}
EXTERN_DLL_EXPORT void DisposeExportedCPathD(CPathD p)
{
if (p) delete[] p;
}
EXTERN_DLL_EXPORT void DisposeExportedCPathsD(CPathsD& pp)
{
if (!pp) return;
CPathsD v = pp;
CPathD cnts = *v;
size_t cnt = static_cast<size_t>(cnts[1]);
for (size_t i = 0; i <= cnt; ++i) //nb: cnt +1
DisposeExportedCPathD(*v++);
delete[] pp;
pp = nullptr;
}
EXTERN_DLL_EXPORT int BooleanOp64(uint8_t cliptype,
uint8_t fillrule, const CPaths64 subjects,
const CPaths64 subjects_open, const CPaths64 clips,
CPaths64& solution, CPaths64& solution_open,
bool preserve_collinear, bool reverse_solution)
{
if (cliptype > static_cast<uint8_t>(ClipType::Xor)) return -4;
if (fillrule > static_cast<uint8_t>(FillRule::Negative)) return -3;
Paths64 sub, sub_open, clp, sol, sol_open;
sub = ConvertCPaths64(subjects);
sub_open = ConvertCPaths64(subjects_open);
clp = ConvertCPaths64(clips);
Clipper64 clipper;
clipper.PreserveCollinear = preserve_collinear;
clipper.ReverseSolution = reverse_solution;
if (sub.size() > 0) clipper.AddSubject(sub);
if (sub_open.size() > 0) clipper.AddOpenSubject(sub_open);
if (clp.size() > 0) clipper.AddClip(clp);
if (!clipper.Execute(ClipType(cliptype), FillRule(fillrule), sol, sol_open))
return -1; // clipping bug - should never happen :)
solution = CreateCPaths64(sol);
solution_open = CreateCPaths64(sol_open);
return 0; //success !!
}
EXTERN_DLL_EXPORT int BooleanOpPt64(uint8_t cliptype,
uint8_t fillrule, const CPaths64 subjects,
const CPaths64 subjects_open, const CPaths64 clips,
CPolyTree64*& solution, CPaths64& solution_open,
bool preserve_collinear, bool reverse_solution)
{
if (cliptype > static_cast<uint8_t>(ClipType::Xor)) return -4;
if (fillrule > static_cast<uint8_t>(FillRule::Negative)) return -3;
Paths64 sub, sub_open, clp, sol_open;
sub = ConvertCPaths64(subjects);
sub_open = ConvertCPaths64(subjects_open);
clp = ConvertCPaths64(clips);
PolyTree64 pt;
Clipper64 clipper;
clipper.PreserveCollinear = preserve_collinear;
clipper.ReverseSolution = reverse_solution;
if (sub.size() > 0) clipper.AddSubject(sub);
if (sub_open.size() > 0) clipper.AddOpenSubject(sub_open);
if (clp.size() > 0) clipper.AddClip(clp);
if (!clipper.Execute(ClipType(cliptype), FillRule(fillrule), pt, sol_open))
return -1; // clipping bug - should never happen :)
solution = CreateCPolyTree64(pt);
solution_open = CreateCPaths64(sol_open);
return 0; //success !!
}
EXTERN_DLL_EXPORT int BooleanOpD(uint8_t cliptype,
uint8_t fillrule, const CPathsD subjects,
const CPathsD subjects_open, const CPathsD clips,
CPathsD& solution, CPathsD& solution_open, int precision,
bool preserve_collinear, bool reverse_solution)
{
if (precision < -8 || precision > 8) return -5;
if (cliptype > static_cast<uint8_t>(ClipType::Xor)) return -4;
if (fillrule > static_cast<uint8_t>(FillRule::Negative)) return -3;
const double scale = std::pow(10, precision);
Paths64 sub, sub_open, clp, sol, sol_open;
sub = ConvertCPathsD(subjects, scale);
sub_open = ConvertCPathsD(subjects_open, scale);
clp = ConvertCPathsD(clips, scale);
Clipper64 clipper;
clipper.PreserveCollinear = preserve_collinear;
clipper.ReverseSolution = reverse_solution;
if (sub.size() > 0) clipper.AddSubject(sub);
if (sub_open.size() > 0)
clipper.AddOpenSubject(sub_open);
if (clp.size() > 0) clipper.AddClip(clp);
if (!clipper.Execute(ClipType(cliptype),
FillRule(fillrule), sol, sol_open)) return -1;
if (sol.size() > 0) solution = CreateCPathsD(sol, 1 / scale);
if (sol_open.size() > 0)
solution_open = CreateCPathsD(sol_open, 1 / scale);
return 0;
}
EXTERN_DLL_EXPORT int BooleanOpPtD(uint8_t cliptype,
uint8_t fillrule, const CPathsD subjects,
const CPathsD subjects_open, const CPathsD clips,
CPolyTreeD*& solution, CPathsD& solution_open, int precision,
bool preserve_collinear, bool reverse_solution)
{
if (precision < -8 || precision > 8) return -5;
if (cliptype > static_cast<uint8_t>(ClipType::Xor)) return -4;
if (fillrule > static_cast<uint8_t>(FillRule::Negative)) return -3;
const double scale = std::pow(10, precision);
Paths64 sub, sub_open, clp, sol_open;
sub = ConvertCPathsD(subjects, scale);
sub_open = ConvertCPathsD(subjects_open, scale);
clp = ConvertCPathsD(clips, scale);
PolyTree64 sol;
Clipper64 clipper;
clipper.PreserveCollinear = preserve_collinear;
clipper.ReverseSolution = reverse_solution;
if (sub.size() > 0) clipper.AddSubject(sub);
if (sub_open.size() > 0)
clipper.AddOpenSubject(sub_open);
if (clp.size() > 0) clipper.AddClip(clp);
if (!clipper.Execute(ClipType(cliptype),
FillRule(fillrule), sol, sol_open)) return -1;
solution = CreateCPolyTreeD(sol, 1 / scale);
if (sol_open.size() > 0)
solution_open = CreateCPathsD(sol_open, 1 / scale);
return 0;
}
EXTERN_DLL_EXPORT CPaths64 InflatePaths64(const CPaths64 paths,
double delta, uint8_t jointype, uint8_t endtype, double miter_limit,
double arc_tolerance, bool reverse_solution)
{
Paths64 pp;
pp = ConvertCPaths64(paths);
ClipperOffset clip_offset( miter_limit,
arc_tolerance, reverse_solution);
clip_offset.AddPaths(pp, JoinType(jointype), EndType(endtype));
Paths64 result = clip_offset.Execute(delta);
return CreateCPaths64(result);
}
EXTERN_DLL_EXPORT CPathsD InflatePathsD(const CPathsD paths,
double delta, uint8_t jointype, uint8_t endtype,
int precision, double miter_limit,
double arc_tolerance, bool reverse_solution)
{
if (precision < -8 || precision > 8 || !paths) return nullptr;
const double scale = std::pow(10, precision);
ClipperOffset clip_offset(miter_limit, arc_tolerance, reverse_solution);
Paths64 pp = ConvertCPathsD(paths, scale);
clip_offset.AddPaths(pp, JoinType(jointype), EndType(endtype));
Paths64 result = clip_offset.Execute(delta * scale);
return CreateCPathsD(result, 1/scale);
}
EXTERN_DLL_EXPORT CPaths64 RectClip64(const CRect64& rect,
const CPaths64 paths)
{
if (CRectIsEmpty(rect) || !paths) return nullptr;
Rect64 r64 = CRectToRect(rect);
class RectClip rc(r64);
Paths64 pp = ConvertCPaths64(paths);
Paths64 result;
result.reserve(pp.size());
for (const Path64& p : pp)
{
Rect64 pathRec = Bounds(p);
if (!r64.Intersects(pathRec)) continue;
if (r64.Contains(pathRec))
result.push_back(p);
else
{
Path64 p2 = rc.Execute(p);
if (!p2.empty()) result.push_back(std::move(p2));
}
}
return CreateCPaths64(result);
}
EXTERN_DLL_EXPORT CPathsD RectClipD(const CRectD& rect,
const CPathsD paths, int precision)
{
if (CRectIsEmpty(rect) || !paths) return nullptr;
if (precision < -8 || precision > 8) return nullptr;
const double scale = std::pow(10, precision);
Rect64 r = ScaleRect<int64_t, double>(CRectToRect(rect), scale);
Paths64 pp = ConvertCPathsD(paths, scale);
class RectClip rc(r);
Paths64 result;
result.reserve(pp.size());
for (const Path64& p : pp)
{
Rect64 pathRec = Bounds(p);
if (!r.Intersects(pathRec)) continue;
if (r.Contains(pathRec))
result.push_back(p);
else
{
Path64 p2 = rc.Execute(p);
if (!p2.empty()) result.push_back(std::move(p2));
}
}
return CreateCPathsD(result, 1/scale);
}
EXTERN_DLL_EXPORT CPaths64 RectClipLines64(const CRect64& rect,
const CPaths64 paths)
{
if (CRectIsEmpty(rect) || !paths) return nullptr;
Rect64 r = CRectToRect(rect);
class RectClipLines rcl (r);
Paths64 pp = ConvertCPaths64(paths);
Paths64 result;
result.reserve(pp.size());
for (const Path64& p : pp)
{
Rect64 pathRec = Bounds(p);
if (!r.Intersects(pathRec)) continue;
if (r.Contains(pathRec))
result.push_back(p);
else
{
Paths64 pp2 = rcl.Execute(p);
if (!pp2.empty())
result.insert(result.end(), pp2.begin(), pp2.end());
}
}
return CreateCPaths64(result);
}
EXTERN_DLL_EXPORT CPathsD RectClipLinesD(const CRectD& rect,
const CPathsD paths, int precision)
{
Paths64 result;
if (CRectIsEmpty(rect) || !paths) return nullptr;
if (precision < -8 || precision > 8) return nullptr;
const double scale = std::pow(10, precision);
Rect64 r = ScaleRect<int64_t, double>(CRectToRect(rect), scale);
class RectClipLines rcl(r);
Paths64 pp = ConvertCPathsD(paths, scale);
result.reserve(pp.size());
for (const Path64& p : pp)
{
Rect64 pathRec = Bounds(p);
if (!r.Intersects(pathRec)) continue;
if (r.Contains(pathRec))
result.push_back(p);
else
{
Paths64 pp2 = rcl.Execute(p);
if (pp2.empty()) continue;
result.insert(result.end(), pp2.begin(), pp2.end());
}
}
return CreateCPathsD(result, 1/scale);
}
inline CPath64 CreateCPath64(size_t cnt1, size_t cnt2)
{
// allocates memory for CPath64, fills in the counter, and
// returns the structure ready to be filled with path data
CPath64 result = new int64_t[2 + cnt1 *2];
result[0] = cnt1;
result[1] = cnt2;
return result;
}
inline CPath64 CreateCPath64(const Path64& p)
{
// allocates memory for CPath64, fills the counter
// and returns the memory filled with path data
size_t cnt = p.size();
if (!cnt) return nullptr;
CPath64 result = CreateCPath64(cnt, 0);
CPath64 v = result;
v += 2; // skip counters
for (const Point64& pt : p)
{
*v++ = pt.x;
*v++ = pt.y;
}
return result;
}
inline Path64 ConvertCPath64(const CPath64& p)
{
Path64 result;
if (p && *p)
{
CPath64 v = p;
const size_t cnt = static_cast<size_t>(p[0]);
v += 2; // skip counters
result.reserve(cnt);
for (size_t i = 0; i < cnt; ++i)
{
// x,y here avoids right to left function evaluation
// result.push_back(Point64(*v++, *v++));
int64_t x = *v++;
int64_t y = *v++;
result.push_back(Point64(x, y));
}
}
return result;
}
inline CPaths64 CreateCPaths64(const Paths64& pp)
{
// allocates memory for multiple CPath64 and
// and returns this memory filled with path data
size_t cnt = pp.size(), cnt2 = cnt;
// don't allocate space for empty paths
for (size_t i = 0; i < cnt; ++i)
if (!pp[i].size()) --cnt2;
if (!cnt2) return nullptr;
CPaths64 result = new int64_t* [cnt2 + 1];
CPaths64 v = result;
*v++ = CreateCPath64(0, cnt2); // assign a counter path
for (const Path64& p : pp)
{
*v = CreateCPath64(p);
if (*v) ++v;
}
return result;
}
inline Paths64 ConvertCPaths64(const CPaths64& pp)
{
Paths64 result;
if (pp)
{
CPaths64 v = pp;
CPath64 cnts = pp[0];
const size_t cnt = static_cast<size_t>(cnts[1]); // nb 2nd cnt
++v; // skip cnts
result.reserve(cnt);
for (size_t i = 0; i < cnt; ++i)
result.push_back(ConvertCPath64(*v++));
}
return result;
}
inline CPathD CreateCPathD(size_t cnt1, size_t cnt2)
{
// allocates memory for CPathD, fills in the counter, and
// returns the structure ready to be filled with path data
CPathD result = new double[2 + cnt1 * 2];
result[0] = static_cast<double>(cnt1);
result[1] = static_cast<double>(cnt2);
return result;
}
inline CPathD CreateCPathD(const PathD& p)
{
// allocates memory for CPath, fills the counter
// and returns the memory fills with path data
size_t cnt = p.size();
if (!cnt) return nullptr;
CPathD result = CreateCPathD(cnt, 0);
CPathD v = result;
v += 2; // skip counters
for (const PointD& pt : p)
{
*v++ = pt.x;
*v++ = pt.y;
}
return result;
}
inline PathD ConvertCPathD(const CPathD& p)
{
PathD result;
if (p)
{
CPathD v = p;
size_t cnt = static_cast<size_t>(v[0]);
v += 2; // skip counters
result.reserve(cnt);
for (size_t i = 0; i < cnt; ++i)
{
// x,y here avoids right to left function evaluation
// result.push_back(PointD(*v++, *v++));
double x = *v++;
double y = *v++;
result.push_back(PointD(x, y));
}
}
return result;
}
inline CPathsD CreateCPathsD(const PathsD& pp)
{
size_t cnt = pp.size(), cnt2 = cnt;
// don't allocate space for empty paths
for (size_t i = 0; i < cnt; ++i)
if (!pp[i].size()) --cnt2;
if (!cnt2) return nullptr;
CPathsD result = new double * [cnt2 + 1];
CPathsD v = result;
*v++ = CreateCPathD(0, cnt2); // assign counter path
for (const PathD& p : pp)
{
*v = CreateCPathD(p);
if (*v) { ++v; }
}
return result;
}
inline PathsD ConvertCPathsD(const CPathsD& pp)
{
PathsD result;
if (pp)
{
CPathsD v = pp;
CPathD cnts = v[0];
size_t cnt = static_cast<size_t>(cnts[1]);
++v; // skip cnts path
result.reserve(cnt);
for (size_t i = 0; i < cnt; ++i)
result.push_back(ConvertCPathD(*v++));
}
return result;
}
inline Path64 ConvertCPathD(const CPathD& p, double scale)
{
Path64 result;
if (p)
{
CPathD v = p;
size_t cnt = static_cast<size_t>(*v);
v += 2; // skip counters
result.reserve(cnt);
for (size_t i = 0; i < cnt; ++i)
{
// x,y here avoids right to left function evaluation
// result.push_back(PointD(*v++, *v++));
double x = *v++ * scale;
double y = *v++ * scale;
result.push_back(Point64(x, y));
}
}
return result;
}
inline Paths64 ConvertCPathsD(const CPathsD& pp, double scale)
{
Paths64 result;
if (pp)
{
CPathsD v = pp;
CPathD cnts = v[0];
size_t cnt = static_cast<size_t>(cnts[1]);
result.reserve(cnt);
++v; // skip cnts path
for (size_t i = 0; i < cnt; ++i)
result.push_back(ConvertCPathD(*v++, scale));
}
return result;
}
inline CPathD CreateCPathD(const Path64& p, double scale)
{
// allocates memory for CPathD, fills in the counter, and
// returns the structure filled with *scaled* path data
size_t cnt = p.size();
if (!cnt) return nullptr;
CPathD result = CreateCPathD(cnt, 0);
CPathD v = result;
v += 2; // skip cnts
for (const Point64& pt : p)
{
*v++ = pt.x * scale;
*v++ = pt.y * scale;
}
return result;
}
inline CPathsD CreateCPathsD(const Paths64& pp, double scale)
{
// allocates memory for *multiple* CPathD, and
// returns the structure filled with scaled path data
size_t cnt = pp.size(), cnt2 = cnt;
// don't allocate space for empty paths
for (size_t i = 0; i < cnt; ++i)
if (!pp[i].size()) --cnt2;
if (!cnt2) return nullptr;
CPathsD result = new double* [cnt2 + 1];
CPathsD v = result;
*v++ = CreateCPathD(0, cnt2);
for (const Path64& p : pp)
{
*v = CreateCPathD(p, scale);
if (*v) ++v;
}
return result;
}
inline void InitCPolyPath64(CPolyTree64* cpt,
bool is_hole, const PolyPath64* pp)
{
cpt->polygon = CreateCPath64(pp->Polygon());
cpt->is_hole = is_hole;
size_t child_cnt = pp->Count();
cpt->child_count = static_cast<uint32_t>(child_cnt);
cpt->childs = nullptr;
if (!child_cnt) return;
cpt->childs = new CPolyPath64[child_cnt];
CPolyPath64* child = cpt->childs;
for (const PolyPath64* pp_child : *pp)
InitCPolyPath64(child++, !is_hole, pp_child);
}
inline CPolyTree64* CreateCPolyTree64(const PolyTree64& pt)
{
CPolyTree64* result = new CPolyTree64();
result->polygon = nullptr;
result->is_hole = false;
size_t child_cnt = pt.Count();
result->childs = nullptr;
result->child_count = static_cast<uint32_t>(child_cnt);
if (!child_cnt) return result;
result->childs = new CPolyPath64[child_cnt];
CPolyPath64* child = result->childs;
for (const PolyPath64* pp : pt)
InitCPolyPath64(child++, true, pp);
return result;
}
inline void DisposeCPolyPath64(CPolyPath64* cpp)
{
if (!cpp->child_count) return;
CPolyPath64* child = cpp->childs;
for (size_t i = 0; i < cpp->child_count; ++i)
DisposeCPolyPath64(child);
delete[] cpp->childs;
}
EXTERN_DLL_EXPORT void DisposeExportedCPolyTree64(CPolyTree64*& cpt)
{
if (!cpt) return;
DisposeCPolyPath64(cpt);
delete cpt;
cpt = nullptr;
}
inline void InitCPolyPathD(CPolyTreeD* cpt,
bool is_hole, const PolyPath64* pp, double scale)
{
cpt->polygon = CreateCPathD(pp->Polygon(), scale);
cpt->is_hole = is_hole;
size_t child_cnt = pp->Count();
cpt->child_count = static_cast<uint32_t>(child_cnt);
cpt->childs = nullptr;
if (!child_cnt) return;
cpt->childs = new CPolyPathD[child_cnt];
CPolyPathD* child = cpt->childs;
for (const PolyPath64* pp_child : *pp)
InitCPolyPathD(child++, !is_hole, pp_child, scale);
}
inline CPolyTreeD* CreateCPolyTreeD(const PolyTree64& pt, double scale)
{
CPolyTreeD* result = new CPolyTreeD();
result->polygon = nullptr;
result->is_hole = false;
size_t child_cnt = pt.Count();
result->child_count = static_cast<uint32_t>(child_cnt);
result->childs = nullptr;
if (!child_cnt) return result;
result->childs = new CPolyPathD[child_cnt];
CPolyPathD* child = result->childs;
for (const PolyPath64* pp : pt)
InitCPolyPathD(child++, true, pp, scale);
return result;
}
inline void DisposeCPolyPathD(CPolyPathD* cpp)
{
if (!cpp->child_count) return;
CPolyPathD* child = cpp->childs;
for (size_t i = 0; i < cpp->child_count; ++i)
DisposeCPolyPathD(child++);
delete[] cpp->childs;
}
EXTERN_DLL_EXPORT void DisposeExportedCPolyTreeD(CPolyTreeD*& cpt)
{
if (!cpt) return;
DisposeCPolyPathD(cpt);
delete cpt;
cpt = nullptr;
}
} // end Clipper2Lib namespace
#endif // CLIPPER2_EXPORT_H

View File

@ -0,0 +1,762 @@
/*******************************************************************************
* Author : Angus Johnson *
* Date : 29 October 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : This module provides a simple interface to the Clipper Library *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#ifndef CLIPPER_H
#define CLIPPER_H
#include <cstdlib>
#include <vector>
#include "clipper.core.h"
#include "clipper.engine.h"
#include "clipper.offset.h"
#include "clipper.minkowski.h"
#include "clipper.rectclip.h"
namespace Clipper2Lib {
static const Rect64 MaxInvalidRect64 = Rect64(
(std::numeric_limits<int64_t>::max)(),
(std::numeric_limits<int64_t>::max)(),
(std::numeric_limits<int64_t>::lowest)(),
(std::numeric_limits<int64_t>::lowest)());
static const RectD MaxInvalidRectD = RectD(
(std::numeric_limits<double>::max)(),
(std::numeric_limits<double>::max)(),
(std::numeric_limits<double>::lowest)(),
(std::numeric_limits<double>::lowest)());
inline Paths64 BooleanOp(ClipType cliptype, FillRule fillrule,
const Paths64& subjects, const Paths64& clips)
{
Paths64 result;
Clipper64 clipper;
clipper.AddSubject(subjects);
clipper.AddClip(clips);
clipper.Execute(cliptype, fillrule, result);
return result;
}
inline void BooleanOp(ClipType cliptype, FillRule fillrule,
const Paths64& subjects, const Paths64& clips, PolyTree64& solution)
{
Paths64 sol_open;
Clipper64 clipper;
clipper.AddSubject(subjects);
clipper.AddClip(clips);
clipper.Execute(cliptype, fillrule, solution, sol_open);
}
inline PathsD BooleanOp(ClipType cliptype, FillRule fillrule,
const PathsD& subjects, const PathsD& clips, int decimal_prec = 2)
{
CheckPrecision(decimal_prec);
PathsD result;
ClipperD clipper(decimal_prec);
clipper.AddSubject(subjects);
clipper.AddClip(clips);
clipper.Execute(cliptype, fillrule, result);
return result;
}
inline void BooleanOp(ClipType cliptype, FillRule fillrule,
const PathsD& subjects, const PathsD& clips,
PolyTreeD& polytree, int decimal_prec = 2)
{
CheckPrecision(decimal_prec);
PathsD result;
ClipperD clipper(decimal_prec);
clipper.AddSubject(subjects);
clipper.AddClip(clips);
clipper.Execute(cliptype, fillrule, polytree);
}
inline Paths64 Intersect(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
{
return BooleanOp(ClipType::Intersection, fillrule, subjects, clips);
}
inline PathsD Intersect(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
{
return BooleanOp(ClipType::Intersection, fillrule, subjects, clips, decimal_prec);
}
inline Paths64 Union(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
{
return BooleanOp(ClipType::Union, fillrule, subjects, clips);
}
inline PathsD Union(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
{
return BooleanOp(ClipType::Union, fillrule, subjects, clips, decimal_prec);
}
inline Paths64 Union(const Paths64& subjects, FillRule fillrule)
{
Paths64 result;
Clipper64 clipper;
clipper.AddSubject(subjects);
clipper.Execute(ClipType::Union, fillrule, result);
return result;
}
inline PathsD Union(const PathsD& subjects, FillRule fillrule, int decimal_prec = 2)
{
CheckPrecision(decimal_prec);
PathsD result;
ClipperD clipper(decimal_prec);
clipper.AddSubject(subjects);
clipper.Execute(ClipType::Union, fillrule, result);
return result;
}
inline Paths64 Difference(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
{
return BooleanOp(ClipType::Difference, fillrule, subjects, clips);
}
inline PathsD Difference(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
{
return BooleanOp(ClipType::Difference, fillrule, subjects, clips, decimal_prec);
}
inline Paths64 Xor(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
{
return BooleanOp(ClipType::Xor, fillrule, subjects, clips);
}
inline PathsD Xor(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
{
return BooleanOp(ClipType::Xor, fillrule, subjects, clips, decimal_prec);
}
inline Paths64 InflatePaths(const Paths64& paths, double delta,
JoinType jt, EndType et, double miter_limit = 2.0)
{
ClipperOffset clip_offset(miter_limit);
clip_offset.AddPaths(paths, jt, et);
return clip_offset.Execute(delta);
}
inline PathsD InflatePaths(const PathsD& paths, double delta,
JoinType jt, EndType et, double miter_limit = 2.0, int precision = 2)
{
CheckPrecision(precision);
const double scale = std::pow(10, precision);
ClipperOffset clip_offset(miter_limit);
clip_offset.AddPaths(ScalePaths<int64_t,double>(paths, scale), jt, et);
Paths64 tmp = clip_offset.Execute(delta * scale);
return ScalePaths<double, int64_t>(tmp, 1 / scale);
}
inline Path64 TranslatePath(const Path64& path, int64_t dx, int64_t dy)
{
Path64 result;
result.reserve(path.size());
for (const Point64& pt : path)
result.push_back(Point64(pt.x + dx, pt.y + dy));
return result;
}
inline PathD TranslatePath(const PathD& path, double dx, double dy)
{
PathD result;
result.reserve(path.size());
for (const PointD& pt : path)
result.push_back(PointD(pt.x + dx, pt.y + dy));
return result;
}
inline Paths64 TranslatePaths(const Paths64& paths, int64_t dx, int64_t dy)
{
Paths64 result;
result.reserve(paths.size());
for (const Path64& path : paths)
result.push_back(TranslatePath(path, dx, dy));
return result;
}
inline PathsD TranslatePaths(const PathsD& paths, double dx, double dy)
{
PathsD result;
result.reserve(paths.size());
for (const PathD& path : paths)
result.push_back(TranslatePath(path, dx, dy));
return result;
}
inline Rect64 Bounds(const Path64& path)
{
Rect64 rec = MaxInvalidRect64;
for (const Point64& pt : path)
{
if (pt.x < rec.left) rec.left = pt.x;
if (pt.x > rec.right) rec.right = pt.x;
if (pt.y < rec.top) rec.top = pt.y;
if (pt.y > rec.bottom) rec.bottom = pt.y;
}
if (rec.IsEmpty()) return Rect64();
return rec;
}
inline Rect64 Bounds(const Paths64& paths)
{
Rect64 rec = MaxInvalidRect64;
for (const Path64& path : paths)
for (const Point64& pt : path)
{
if (pt.x < rec.left) rec.left = pt.x;
if (pt.x > rec.right) rec.right = pt.x;
if (pt.y < rec.top) rec.top = pt.y;
if (pt.y > rec.bottom) rec.bottom = pt.y;
}
if (rec.IsEmpty()) return Rect64();
return rec;
}
inline RectD Bounds(const PathD& path)
{
RectD rec = MaxInvalidRectD;
for (const PointD& pt : path)
{
if (pt.x < rec.left) rec.left = pt.x;
if (pt.x > rec.right) rec.right = pt.x;
if (pt.y < rec.top) rec.top = pt.y;
if (pt.y > rec.bottom) rec.bottom = pt.y;
}
if (rec.IsEmpty()) return RectD();
return rec;
}
inline RectD Bounds(const PathsD& paths)
{
RectD rec = MaxInvalidRectD;
for (const PathD& path : paths)
for (const PointD& pt : path)
{
if (pt.x < rec.left) rec.left = pt.x;
if (pt.x > rec.right) rec.right = pt.x;
if (pt.y < rec.top) rec.top = pt.y;
if (pt.y > rec.bottom) rec.bottom = pt.y;
}
if (rec.IsEmpty()) return RectD();
return rec;
}
inline Path64 RectClip(const Rect64& rect, const Path64& path)
{
if (rect.IsEmpty() || path.empty()) return Path64();
Rect64 pathRec = Bounds(path);
if (!rect.Intersects(pathRec)) return Path64();
if (rect.Contains(pathRec)) return path;
class RectClip rc(rect);
return rc.Execute(path);
}
inline Paths64 RectClip(const Rect64& rect, const Paths64& paths)
{
if (rect.IsEmpty() || paths.empty()) return Paths64();
class RectClip rc(rect);
Paths64 result;
result.reserve(paths.size());
for (const Path64& p : paths)
{
Rect64 pathRec = Bounds(p);
if (!rect.Intersects(pathRec))
continue;
else if (rect.Contains(pathRec))
result.push_back(p);
else
{
Path64 p2 = rc.Execute(p);
if (!p2.empty()) result.push_back(std::move(p2));
}
}
return result;
}
inline PathD RectClip(const RectD& rect, const PathD& path, int precision = 2)
{
if (rect.IsEmpty() || path.empty() ||
!rect.Contains(Bounds(path))) return PathD();
CheckPrecision(precision);
const double scale = std::pow(10, precision);
Rect64 r = ScaleRect<int64_t, double>(rect, scale);
class RectClip rc(r);
Path64 p = ScalePath<int64_t, double>(path, scale);
return ScalePath<double, int64_t>(rc.Execute(p), 1 / scale);
}
inline PathsD RectClip(const RectD& rect, const PathsD& paths, int precision = 2)
{
if (rect.IsEmpty() || paths.empty()) return PathsD();
CheckPrecision(precision);
const double scale = std::pow(10, precision);
Rect64 r = ScaleRect<int64_t, double>(rect, scale);
class RectClip rc(r);
PathsD result;
result.reserve(paths.size());
for (const PathD& path : paths)
{
RectD pathRec = Bounds(path);
if (!rect.Intersects(pathRec))
continue;
else if (rect.Contains(pathRec))
result.push_back(path);
else
{
Path64 p = ScalePath<int64_t, double>(path, scale);
p = rc.Execute(p);
if (!p.empty())
result.push_back(ScalePath<double, int64_t>(p, 1 / scale));
}
}
return result;
}
inline Paths64 RectClipLines(const Rect64& rect, const Path64& path)
{
Paths64 result;
if (rect.IsEmpty() || path.empty()) return result;
Rect64 pathRec = Bounds(path);
if (!rect.Intersects(pathRec)) return result;
if (rect.Contains(pathRec))
{
result.push_back(path);
return result;
}
class RectClipLines rcl(rect);
return rcl.Execute(path);
}
inline Paths64 RectClipLines(const Rect64& rect, const Paths64& paths)
{
Paths64 result;
if (rect.IsEmpty() || paths.empty()) return result;
class RectClipLines rcl(rect);
for (const Path64& p : paths)
{
Rect64 pathRec = Bounds(p);
if (!rect.Intersects(pathRec))
continue;
else if (rect.Contains(pathRec))
result.push_back(p);
else
{
Paths64 pp = rcl.Execute(p);
if (!pp.empty())
result.insert(result.end(), pp.begin(), pp.end());
}
}
return result;
}
inline PathsD RectClipLines(const RectD& rect, const PathD& path, int precision = 2)
{
if (rect.IsEmpty() || path.empty() ||
!rect.Contains(Bounds(path))) return PathsD();
CheckPrecision(precision);
const double scale = std::pow(10, precision);
Rect64 r = ScaleRect<int64_t, double>(rect, scale);
class RectClipLines rcl(r);
Path64 p = ScalePath<int64_t, double>(path, scale);
return ScalePaths<double, int64_t>(rcl.Execute(p), 1 / scale);
}
inline PathsD RectClipLines(const RectD& rect, const PathsD& paths, int precision = 2)
{
PathsD result;
if (rect.IsEmpty() || paths.empty()) return result;
CheckPrecision(precision);
const double scale = std::pow(10, precision);
Rect64 r = ScaleRect<int64_t, double>(rect, scale);
class RectClipLines rcl(r);
result.reserve(paths.size());
for (const PathD& path : paths)
{
RectD pathRec = Bounds(path);
if (!rect.Intersects(pathRec))
continue;
else if (rect.Contains(pathRec))
result.push_back(path);
else
{
Path64 p = ScalePath<int64_t, double>(path, scale);
Paths64 pp = rcl.Execute(p);
if (pp.empty()) continue;
PathsD ppd = ScalePaths<double, int64_t>(pp, 1 / scale);
result.insert(result.end(), ppd.begin(), ppd.end());
}
}
return result;
}
namespace details
{
inline void PolyPathToPaths64(const PolyPath64& polypath, Paths64& paths)
{
paths.push_back(polypath.Polygon());
for (const PolyPath* child : polypath)
PolyPathToPaths64(*(PolyPath64*)(child), paths);
}
inline void PolyPathToPathsD(const PolyPathD& polypath, PathsD& paths)
{
paths.push_back(polypath.Polygon());
for (const PolyPath* child : polypath)
PolyPathToPathsD(*(PolyPathD*)(child), paths);
}
inline bool PolyPath64ContainsChildren(const PolyPath64& pp)
{
for (auto ch : pp)
{
PolyPath64* child = (PolyPath64*)ch;
for (const Point64& pt : child->Polygon())
if (PointInPolygon(pt, pp.Polygon()) == PointInPolygonResult::IsOutside)
return false;
if (child->Count() > 0 && !PolyPath64ContainsChildren(*child))
return false;
}
return true;
}
inline bool GetInt(std::string::const_iterator& iter, const
std::string::const_iterator& end_iter, int64_t& val)
{
val = 0;
bool is_neg = *iter == '-';
if (is_neg) ++iter;
std::string::const_iterator start_iter = iter;
while (iter != end_iter &&
((*iter >= '0') && (*iter <= '9')))
{
val = val * 10 + (static_cast<int64_t>(*iter++) - '0');
}
if (is_neg) val = -val;
return (iter != start_iter);
}
inline bool GetFloat(std::string::const_iterator& iter, const
std::string::const_iterator& end_iter, double& val)
{
val = 0;
bool is_neg = *iter == '-';
if (is_neg) ++iter;
int dec_pos = 1;
const std::string::const_iterator start_iter = iter;
while (iter != end_iter && (*iter == '.' ||
((*iter >= '0') && (*iter <= '9'))))
{
if (*iter == '.')
{
if (dec_pos != 1) break;
dec_pos = 0;
++iter;
continue;
}
if (dec_pos != 1) --dec_pos;
val = val * 10 + ((int64_t)(*iter++) - '0');
}
if (iter == start_iter || dec_pos == 0) return false;
if (dec_pos < 0)
val *= std::pow(10, dec_pos);
if (is_neg)
val *= -1;
return true;
}
inline void SkipWhiteSpace(std::string::const_iterator& iter,
const std::string::const_iterator& end_iter)
{
while (iter != end_iter && *iter <= ' ') ++iter;
}
inline void SkipSpacesWithOptionalComma(std::string::const_iterator& iter,
const std::string::const_iterator& end_iter)
{
bool comma_seen = false;
while (iter != end_iter)
{
if (*iter == ' ') ++iter;
else if (*iter == ',')
{
if (comma_seen) return; // don't skip 2 commas!
comma_seen = true;
++iter;
}
else return;
}
}
inline bool has_one_match(const char c, char* chrs)
{
while (*chrs > 0 && c != *chrs) ++chrs;
if (!*chrs) return false;
*chrs = ' '; // only match once per char
return true;
}
inline void SkipUserDefinedChars(std::string::const_iterator& iter,
const std::string::const_iterator& end_iter, const std::string& skip_chars)
{
const size_t MAX_CHARS = 16;
char buff[MAX_CHARS] = {0};
std::copy(skip_chars.cbegin(), skip_chars.cend(), &buff[0]);
while (iter != end_iter &&
(*iter <= ' ' || has_one_match(*iter, buff))) ++iter;
return;
}
} // end details namespace
inline Paths64 PolyTreeToPaths64(const PolyTree64& polytree)
{
Paths64 result;
for (auto child : polytree)
details::PolyPathToPaths64(*(PolyPath64*)(child), result);
return result;
}
inline PathsD PolyTreeToPathsD(const PolyTreeD& polytree)
{
PathsD result;
for (auto child : polytree)
details::PolyPathToPathsD(*(PolyPathD*)(child), result);
return result;
}
inline bool CheckPolytreeFullyContainsChildren(const PolyTree64& polytree)
{
for (auto child : polytree)
if (child->Count() > 0 &&
!details::PolyPath64ContainsChildren(*(PolyPath64*)(child)))
return false;
return true;
}
inline Path64 MakePath(const std::string& s)
{
const std::string skip_chars = " ,(){}[]";
Path64 result;
std::string::const_iterator s_iter = s.cbegin();
details::SkipUserDefinedChars(s_iter, s.cend(), skip_chars);
while (s_iter != s.cend())
{
int64_t y = 0, x = 0;
if (!details::GetInt(s_iter, s.cend(), x)) break;
details::SkipSpacesWithOptionalComma(s_iter, s.cend());
if (!details::GetInt(s_iter, s.cend(), y)) break;
result.push_back(Point64(x, y));
details::SkipUserDefinedChars(s_iter, s.cend(), skip_chars);
}
return result;
}
inline PathD MakePathD(const std::string& s)
{
const std::string skip_chars = " ,(){}[]";
PathD result;
std::string::const_iterator s_iter = s.cbegin();
details::SkipUserDefinedChars(s_iter, s.cend(), skip_chars);
while (s_iter != s.cend())
{
double y = 0, x = 0;
if (!details::GetFloat(s_iter, s.cend(), x)) break;
details::SkipSpacesWithOptionalComma(s_iter, s.cend());
if (!details::GetFloat(s_iter, s.cend(), y)) break;
result.push_back(PointD(x, y));
details::SkipUserDefinedChars(s_iter, s.cend(), skip_chars);
}
return result;
}
inline Path64 TrimCollinear(const Path64& p, bool is_open_path = false)
{
size_t len = p.size();
if (len < 3)
{
if (!is_open_path || len < 2 || p[0] == p[1]) return Path64();
else return p;
}
Path64 dst;
dst.reserve(len);
Path64::const_iterator srcIt = p.cbegin(), prevIt, stop = p.cend() - 1;
if (!is_open_path)
{
while (srcIt != stop && !CrossProduct(*stop, *srcIt, *(srcIt + 1)))
++srcIt;
while (srcIt != stop && !CrossProduct(*(stop - 1), *stop, *srcIt))
--stop;
if (srcIt == stop) return Path64();
}
prevIt = srcIt++;
dst.push_back(*prevIt);
for (; srcIt != stop; ++srcIt)
{
if (CrossProduct(*prevIt, *srcIt, *(srcIt + 1)))
{
prevIt = srcIt;
dst.push_back(*prevIt);
}
}
if (is_open_path)
dst.push_back(*srcIt);
else if (CrossProduct(*prevIt, *stop, dst[0]))
dst.push_back(*stop);
else
{
while (dst.size() > 2 &&
!CrossProduct(dst[dst.size() - 1], dst[dst.size() - 2], dst[0]))
dst.pop_back();
if (dst.size() < 3) return Path64();
}
return dst;
}
inline PathD TrimCollinear(const PathD& path, int precision, bool is_open_path = false)
{
CheckPrecision(precision);
const double scale = std::pow(10, precision);
Path64 p = ScalePath<int64_t, double>(path, scale);
p = TrimCollinear(p, is_open_path);
return ScalePath<double, int64_t>(p, 1/scale);
}
template <typename T>
inline double Distance(const Point<T> pt1, const Point<T> pt2)
{
return std::sqrt(DistanceSqr(pt1, pt2));
}
template <typename T>
inline double Length(const Path<T>& path, bool is_closed_path = false)
{
double result = 0.0;
if (path.size() < 2) return result;
auto it = path.cbegin(), stop = path.end() - 1;
for (; it != stop; ++it)
result += Distance(*it, *(it + 1));
if (is_closed_path)
result += Distance(*stop, *path.cbegin());
return result;
}
template <typename T>
inline bool NearCollinear(const Point<T>& pt1, const Point<T>& pt2, const Point<T>& pt3, double sin_sqrd_min_angle_rads)
{
double cp = std::abs(CrossProduct(pt1, pt2, pt3));
return (cp * cp) / (DistanceSqr(pt1, pt2) * DistanceSqr(pt2, pt3)) < sin_sqrd_min_angle_rads;
}
template <typename T>
inline Path<T> Ellipse(const Rect<T>& rect, int steps = 0)
{
return Ellipse(rect.MidPoint(),
static_cast<double>(rect.Width()) *0.5,
static_cast<double>(rect.Height()) * 0.5, steps);
}
template <typename T>
inline Path<T> Ellipse(const Point<T>& center,
double radiusX, double radiusY = 0, int steps = 0)
{
if (radiusX <= 0) return Path<T>();
if (radiusY <= 0) radiusY = radiusX;
if (steps <= 2)
steps = static_cast<int>(PI * sqrt((radiusX + radiusY) / 2));
double si = std::sin(2 * PI / steps);
double co = std::cos(2 * PI / steps);
double dx = co, dy = si;
Path<T> result;
result.reserve(steps);
result.push_back(Point<T>(center.x + radiusX, static_cast<double>(center.y)));
for (int i = 1; i < steps; ++i)
{
result.push_back(Point<T>(center.x + radiusX * dx, center.y + radiusY * dy));
double x = dx * co - dy * si;
dy = dy * co + dx * si;
dx = x;
}
return result;
}
template <typename T>
inline double PerpendicDistFromLineSqrd(const Point<T>& pt,
const Point<T>& line1, const Point<T>& line2)
{
double a = static_cast<double>(pt.x - line1.x);
double b = static_cast<double>(pt.y - line1.y);
double c = static_cast<double>(line2.x - line1.x);
double d = static_cast<double>(line2.y - line1.y);
if (c == 0 && d == 0) return 0;
return Sqr(a * d - c * b) / (c * c + d * d);
}
template <typename T>
inline void RDP(const Path<T> path, std::size_t begin,
std::size_t end, double epsSqrd, std::vector<bool>& flags)
{
typename Path<T>::size_type idx = 0;
double max_d = 0;
while (end > begin && path[begin] == path[end]) flags[end--] = false;
for (typename Path<T>::size_type i = begin + 1; i < end; ++i)
{
// PerpendicDistFromLineSqrd - avoids expensive Sqrt()
double d = PerpendicDistFromLineSqrd(path[i], path[begin], path[end]);
if (d <= max_d) continue;
max_d = d;
idx = i;
}
if (max_d <= epsSqrd) return;
flags[idx] = true;
if (idx > begin + 1) RDP(path, begin, idx, epsSqrd, flags);
if (idx < end - 1) RDP(path, idx, end, epsSqrd, flags);
}
template <typename T>
inline Path<T> RamerDouglasPeucker(const Path<T>& path, double epsilon)
{
const typename Path<T>::size_type len = path.size();
if (len < 5) return Path<T>(path);
std::vector<bool> flags(len);
flags[0] = true;
flags[len - 1] = true;
RDP(path, 0, len - 1, Sqr(epsilon), flags);
Path<T> result;
result.reserve(len);
for (typename Path<T>::size_type i = 0; i < len; ++i)
if (flags[i])
result.push_back(path[i]);
return result;
}
template <typename T>
inline Paths<T> RamerDouglasPeucker(const Paths<T>& paths, double epsilon)
{
Paths<T> result;
result.reserve(paths.size());
for (const Path<T>& path : paths)
result.push_back(RamerDouglasPeucker<T>(path, epsilon));
return result;
}
} // end Clipper2Lib namespace
#endif // CLIPPER_H

View File

@ -0,0 +1,118 @@
/*******************************************************************************
* Author : Angus Johnson *
* Date : 15 October 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : Minkowski Sum and Difference *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#ifndef CLIPPER_MINKOWSKI_H
#define CLIPPER_MINKOWSKI_H
#include <cstdlib>
#include <vector>
#include <string>
#include "clipper.core.h"
namespace Clipper2Lib
{
namespace detail
{
inline Paths64 Minkowski(const Path64& pattern, const Path64& path, bool isSum, bool isClosed)
{
size_t delta = isClosed ? 0 : 1;
size_t patLen = pattern.size(), pathLen = path.size();
if (patLen == 0 || pathLen == 0) return Paths64();
Paths64 tmp;
tmp.reserve(pathLen);
if (isSum)
{
for (const Point64& p : path)
{
Path64 path2(pattern.size());
std::transform(pattern.cbegin(), pattern.cend(),
path2.begin(), [p](const Point64& pt2) {return p + pt2; });
tmp.push_back(path2);
}
}
else
{
for (const Point64& p : path)
{
Path64 path2(pattern.size());
std::transform(pattern.cbegin(), pattern.cend(),
path2.begin(), [p](const Point64& pt2) {return p - pt2; });
tmp.push_back(path2);
}
}
Paths64 result;
result.reserve((pathLen - delta) * patLen);
size_t g = isClosed ? pathLen - 1 : 0;
for (size_t h = patLen - 1, i = delta; i < pathLen; ++i)
{
for (size_t j = 0; j < patLen; j++)
{
Path64 quad;
quad.reserve(4);
{
quad.push_back(tmp[g][h]);
quad.push_back(tmp[i][h]);
quad.push_back(tmp[i][j]);
quad.push_back(tmp[g][j]);
};
if (!IsPositive(quad))
std::reverse(quad.begin(), quad.end());
result.push_back(quad);
h = j;
}
g = i;
}
return result;
}
inline Paths64 Union(const Paths64& subjects, FillRule fillrule)
{
Paths64 result;
Clipper64 clipper;
clipper.AddSubject(subjects);
clipper.Execute(ClipType::Union, fillrule, result);
return result;
}
} // namespace internal
inline Paths64 MinkowskiSum(const Path64& pattern, const Path64& path, bool isClosed)
{
return detail::Union(detail::Minkowski(pattern, path, true, isClosed), FillRule::NonZero);
}
inline PathsD MinkowskiSum(const PathD& pattern, const PathD& path, bool isClosed, int decimalPlaces = 2)
{
double scale = pow(10, decimalPlaces);
Path64 pat64 = ScalePath<int64_t, double>(pattern, scale);
Path64 path64 = ScalePath<int64_t, double>(path, scale);
Paths64 tmp = detail::Union(detail::Minkowski(pat64, path64, true, isClosed), FillRule::NonZero);
return ScalePaths<double, int64_t>(tmp, 1 / scale);
}
inline Paths64 MinkowskiDiff(const Path64& pattern, const Path64& path, bool isClosed)
{
return detail::Union(detail::Minkowski(pattern, path, false, isClosed), FillRule::NonZero);
}
inline PathsD MinkowskiDiff(const PathD& pattern, const PathD& path, bool isClosed, int decimalPlaces = 2)
{
double scale = pow(10, decimalPlaces);
Path64 pat64 = ScalePath<int64_t, double>(pattern, scale);
Path64 path64 = ScalePath<int64_t, double>(path, scale);
Paths64 tmp = detail::Union(detail::Minkowski(pat64, path64, false, isClosed), FillRule::NonZero);
return ScalePaths<double, int64_t>(tmp, 1 / scale);
}
} // Clipper2Lib namespace
#endif // CLIPPER_MINKOWSKI_H

View File

@ -0,0 +1,107 @@
/*******************************************************************************
* Author : Angus Johnson *
* Date : 15 October 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : Path Offset (Inflate/Shrink) *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#ifndef CLIPPER_OFFSET_H_
#define CLIPPER_OFFSET_H_
#include "clipper.core.h"
namespace Clipper2Lib {
enum class JoinType { Square, Round, Miter };
enum class EndType {Polygon, Joined, Butt, Square, Round};
//Butt : offsets both sides of a path, with square blunt ends
//Square : offsets both sides of a path, with square extended ends
//Round : offsets both sides of a path, with round extended ends
//Joined : offsets both sides of a path, with joined ends
//Polygon: offsets only one side of a closed path
class ClipperOffset {
private:
class Group {
public:
Paths64 paths_in_;
Paths64 paths_out_;
Path64 path_;
bool is_reversed_ = false;
JoinType join_type_;
EndType end_type_;
Group(const Paths64& paths, JoinType join_type, EndType end_type) :
paths_in_(paths), join_type_(join_type), end_type_(end_type) {}
};
double group_delta_ = 0.0;
double abs_group_delta_ = 0.0;
double temp_lim_ = 0.0;
double steps_per_rad_ = 0.0;
PathD norms;
Paths64 solution;
std::vector<Group> groups_;
JoinType join_type_ = JoinType::Square;
double miter_limit_ = 0.0;
double arc_tolerance_ = 0.0;
bool merge_groups_ = true;
bool preserve_collinear_ = false;
bool reverse_solution_ = false;
void DoSquare(Group& group, const Path64& path, size_t j, size_t k);
void DoMiter(Group& group, const Path64& path, size_t j, size_t k, double cos_a);
void DoRound(Group& group, const Path64& path, size_t j, size_t k, double angle);
void BuildNormals(const Path64& path);
void OffsetPolygon(Group& group, Path64& path);
void OffsetOpenJoined(Group& group, Path64& path);
void OffsetOpenPath(Group& group, Path64& path, EndType endType);
void OffsetPoint(Group& group, Path64& path, size_t j, size_t& k);
void DoGroupOffset(Group &group, double delta);
public:
ClipperOffset(double miter_limit = 2.0,
double arc_tolerance = 0.0,
bool preserve_collinear = false,
bool reverse_solution = false) :
miter_limit_(miter_limit), arc_tolerance_(arc_tolerance),
preserve_collinear_(preserve_collinear),
reverse_solution_(reverse_solution) { };
~ClipperOffset() { Clear(); };
void AddPath(const Path64& path, JoinType jt_, EndType et_);
void AddPaths(const Paths64& paths, JoinType jt_, EndType et_);
void AddPath(const PathD &p, JoinType jt_, EndType et_);
void AddPaths(const PathsD &p, JoinType jt_, EndType et_);
void Clear() { groups_.clear(); norms.clear(); };
Paths64 Execute(double delta);
double MiterLimit() const { return miter_limit_; }
void MiterLimit(double miter_limit) { miter_limit_ = miter_limit; }
//ArcTolerance: needed for rounded offsets (See offset_triginometry2.svg)
double ArcTolerance() const { return arc_tolerance_; }
void ArcTolerance(double arc_tolerance) { arc_tolerance_ = arc_tolerance; }
//MergeGroups: A path group is one or more paths added via the AddPath or
//AddPaths methods. By default these path groups will be offset
//independently of other groups and this may cause overlaps (intersections).
//However, when MergeGroups is enabled, any overlapping offsets will be
//merged (via a clipping union operation) to remove overlaps.
bool MergeGroups() const { return merge_groups_; }
void MergeGroups(bool merge_groups) { merge_groups_ = merge_groups; }
bool PreserveCollinear() const { return preserve_collinear_; }
void PreserveCollinear(bool preserve_collinear){preserve_collinear_ = preserve_collinear;}
bool ReverseSolution() const { return reverse_solution_; }
void ReverseSolution(bool reverse_solution) {reverse_solution_ = reverse_solution;}
};
}
#endif /* CLIPPER_OFFSET_H_ */

View File

@ -0,0 +1,50 @@
/*******************************************************************************
* Author : Angus Johnson *
* Date : 26 October 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : FAST rectangular clipping *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#ifndef CLIPPER_RECTCLIP_H
#define CLIPPER_RECTCLIP_H
#include <cstdlib>
#include <vector>
#include "clipper.h"
#include "clipper.core.h"
namespace Clipper2Lib
{
enum class Location { Left, Top, Right, Bottom, Inside };
class RectClip {
protected:
const Rect64 rect_;
const Point64 mp_;
const Path64 rectPath_;
Path64 result_;
std::vector<Location> start_locs_;
void GetNextLocation(const Path64& path,
Location& loc, int& i, int highI);
void AddCorner(Location prev, Location curr);
void AddCorner(Location& loc, bool isClockwise);
public:
RectClip(const Rect64& rect) :
rect_(rect),
mp_(rect.MidPoint()),
rectPath_(rect.AsPath()) {}
Path64 Execute(const Path64& path);
};
class RectClipLines : public RectClip {
public:
RectClipLines(const Rect64& rect) : RectClip(rect) {};
Paths64 Execute(const Path64& path);
};
} // Clipper2Lib namespace
#endif // CLIPPER_RECTCLIP_H

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,485 @@
/*******************************************************************************
* Author : Angus Johnson *
* Date : 15 October 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : Path Offset (Inflate/Shrink) *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#include <cmath>
#include "clipper2/clipper.h"
#include "clipper2/clipper.offset.h"
namespace Clipper2Lib {
const double default_arc_tolerance = 0.25;
const double floating_point_tolerance = 1e-12;
//------------------------------------------------------------------------------
// Miscellaneous methods
//------------------------------------------------------------------------------
Paths64::size_type GetLowestPolygonIdx(const Paths64& paths)
{
Paths64::size_type result = 0;
Point64 lp = Point64(static_cast<int64_t>(0),
std::numeric_limits<int64_t>::min());
for (Paths64::size_type i = 0 ; i < paths.size(); ++i)
for (const Point64& p : paths[i])
{
if (p.y < lp.y || (p.y == lp.y && p.x >= lp.x)) continue;
result = i;
lp = p;
}
return result;
}
PointD GetUnitNormal(const Point64& pt1, const Point64& pt2)
{
double dx, dy, inverse_hypot;
if (pt1 == pt2) return PointD(0.0, 0.0);
dx = static_cast<double>(pt2.x - pt1.x);
dy = static_cast<double>(pt2.y - pt1.y);
inverse_hypot = 1.0 / hypot(dx, dy);
dx *= inverse_hypot;
dy *= inverse_hypot;
return PointD(dy, -dx);
}
inline bool AlmostZero(double value, double epsilon = 0.001)
{
return std::fabs(value) < epsilon;
}
inline double Hypot(double x, double y)
{
//see https://stackoverflow.com/a/32436148/359538
return std::sqrt(x * x + y * y);
}
inline PointD NormalizeVector(const PointD& vec)
{
double h = Hypot(vec.x, vec.y);
if (AlmostZero(h)) return PointD(0,0);
double inverseHypot = 1 / h;
return PointD(vec.x * inverseHypot, vec.y * inverseHypot);
}
inline PointD GetAvgUnitVector(const PointD& vec1, const PointD& vec2)
{
return NormalizeVector(PointD(vec1.x + vec2.x, vec1.y + vec2.y));
}
inline bool IsClosedPath(EndType et)
{
return et == EndType::Polygon || et == EndType::Joined;
}
inline Point64 GetPerpendic(const Point64& pt, const PointD& norm, double delta)
{
return Point64(pt.x + norm.x * delta, pt.y + norm.y * delta);
}
inline PointD GetPerpendicD(const Point64& pt, const PointD& norm, double delta)
{
return PointD(pt.x + norm.x * delta, pt.y + norm.y * delta);
}
//------------------------------------------------------------------------------
// ClipperOffset methods
//------------------------------------------------------------------------------
void ClipperOffset::AddPath(const Path64& path, JoinType jt_, EndType et_)
{
Paths64 paths;
paths.push_back(path);
AddPaths(paths, jt_, et_);
}
void ClipperOffset::AddPaths(const Paths64 &paths, JoinType jt_, EndType et_)
{
if (paths.size() == 0) return;
groups_.push_back(Group(paths, jt_, et_));
}
void ClipperOffset::AddPath(const Clipper2Lib::PathD& path, JoinType jt_, EndType et_)
{
PathsD paths;
paths.push_back(path);
AddPaths(paths, jt_, et_);
}
void ClipperOffset::AddPaths(const PathsD& paths, JoinType jt_, EndType et_)
{
if (paths.size() == 0) return;
groups_.push_back(Group(PathsDToPaths64(paths), jt_, et_));
}
void ClipperOffset::BuildNormals(const Path64& path)
{
norms.clear();
norms.reserve(path.size());
if (path.size() == 0) return;
Path64::const_iterator path_iter, path_last_iter = --path.cend();
for (path_iter = path.cbegin(); path_iter != path_last_iter; ++path_iter)
norms.push_back(GetUnitNormal(*path_iter,*(path_iter +1)));
norms.push_back(GetUnitNormal(*path_last_iter, *(path.cbegin())));
}
inline PointD TranslatePoint(const PointD& pt, double dx, double dy)
{
return PointD(pt.x + dx, pt.y + dy);
}
inline PointD ReflectPoint(const PointD& pt, const PointD& pivot)
{
return PointD(pivot.x + (pivot.x - pt.x), pivot.y + (pivot.y - pt.y));
}
PointD IntersectPoint(const PointD& pt1a, const PointD& pt1b,
const PointD& pt2a, const PointD& pt2b)
{
if (pt1a.x == pt1b.x) //vertical
{
if (pt2a.x == pt2b.x) return PointD(0, 0);
double m2 = (pt2b.y - pt2a.y) / (pt2b.x - pt2a.x);
double b2 = pt2a.y - m2 * pt2a.x;
return PointD(pt1a.x, m2 * pt1a.x + b2);
}
else if (pt2a.x == pt2b.x) //vertical
{
double m1 = (pt1b.y - pt1a.y) / (pt1b.x - pt1a.x);
double b1 = pt1a.y - m1 * pt1a.x;
return PointD(pt2a.x, m1 * pt2a.x + b1);
}
else
{
double m1 = (pt1b.y - pt1a.y) / (pt1b.x - pt1a.x);
double b1 = pt1a.y - m1 * pt1a.x;
double m2 = (pt2b.y - pt2a.y) / (pt2b.x - pt2a.x);
double b2 = pt2a.y - m2 * pt2a.x;
if (m1 == m2) return PointD(0, 0);
double x = (b2 - b1) / (m1 - m2);
return PointD(x, m1 * x + b1);
}
}
void ClipperOffset::DoSquare(Group& group, const Path64& path, size_t j, size_t k)
{
PointD vec;
if (j == k)
vec = PointD(norms[0].y, -norms[0].x);
else
vec = GetAvgUnitVector(
PointD(-norms[k].y, norms[k].x),
PointD(norms[j].y, -norms[j].x));
// now offset the original vertex delta units along unit vector
PointD ptQ = PointD(path[j]);
ptQ = TranslatePoint(ptQ, abs_group_delta_ * vec.x, abs_group_delta_ * vec.y);
// get perpendicular vertices
PointD pt1 = TranslatePoint(ptQ, group_delta_ * vec.y, group_delta_ * -vec.x);
PointD pt2 = TranslatePoint(ptQ, group_delta_ * -vec.y, group_delta_ * vec.x);
// get 2 vertices along one edge offset
PointD pt3 = GetPerpendicD(path[k], norms[k], group_delta_);
if (j == k)
{
PointD pt4 = PointD(pt3.x + vec.x * group_delta_, pt3.y + vec.y * group_delta_);
PointD pt = IntersectPoint(pt1, pt2, pt3, pt4);
//get the second intersect point through reflecion
group.path_.push_back(Point64(ReflectPoint(pt, ptQ)));
group.path_.push_back(Point64(pt));
}
else
{
PointD pt4 = GetPerpendicD(path[j], norms[k], group_delta_);
PointD pt = IntersectPoint(pt1, pt2, pt3, pt4);
group.path_.push_back(Point64(pt));
//get the second intersect point through reflecion
group.path_.push_back(Point64(ReflectPoint(pt, ptQ)));
}
}
void ClipperOffset::DoMiter(Group& group, const Path64& path, size_t j, size_t k, double cos_a)
{
double q = group_delta_ / (cos_a + 1);
group.path_.push_back(Point64(
path[j].x + (norms[k].x + norms[j].x) * q,
path[j].y + (norms[k].y + norms[j].y) * q));
}
void ClipperOffset::DoRound(Group& group, const Path64& path, size_t j, size_t k, double angle)
{
//even though angle may be negative this is a convex join
Point64 pt = path[j];
int steps = static_cast<int>(std::ceil(steps_per_rad_ * std::abs(angle)));
double step_sin = std::sin(angle / steps);
double step_cos = std::cos(angle / steps);
PointD pt2 = PointD(norms[k].x * group_delta_, norms[k].y * group_delta_);
if (j == k) pt2.Negate();
group.path_.push_back(Point64(pt.x + pt2.x, pt.y + pt2.y));
for (int i = 0; i < steps; i++)
{
pt2 = PointD(pt2.x * step_cos - step_sin * pt2.y,
pt2.x * step_sin + pt2.y * step_cos);
group.path_.push_back(Point64(pt.x + pt2.x, pt.y + pt2.y));
}
group.path_.push_back(GetPerpendic(path[j], norms[j], group_delta_));
}
void ClipperOffset::OffsetPoint(Group& group, Path64& path, size_t j, size_t& k)
{
// Let A = change in angle where edges join
// A == 0: ie no change in angle (flat join)
// A == PI: edges 'spike'
// sin(A) < 0: right turning
// cos(A) < 0: change in angle is more than 90 degree
if (path[j] == path[k]) { k = j; return; }
double sin_a = CrossProduct(norms[j], norms[k]);
double cos_a = DotProduct(norms[j], norms[k]);
if (sin_a > 1.0) sin_a = 1.0;
else if (sin_a < -1.0) sin_a = -1.0;
bool almostNoAngle = AlmostZero(sin_a) && cos_a > 0;
// when there's almost no angle of deviation or it's concave
if (almostNoAngle || (sin_a * group_delta_ < 0))
{
Point64 p1 = Point64(
path[j].x + norms[k].x * group_delta_,
path[j].y + norms[k].y * group_delta_);
Point64 p2 = Point64(
path[j].x + norms[j].x * group_delta_,
path[j].y + norms[j].y * group_delta_);
group.path_.push_back(p1);
if (p1 != p2)
{
// when concave add an extra vertex to ensure neat clipping
if (!almostNoAngle) group.path_.push_back(path[j]);
group.path_.push_back(p2);
}
}
else // it's convex
{
if (join_type_ == JoinType::Round)
DoRound(group, path, j, k, std::atan2(sin_a, cos_a));
else if (join_type_ == JoinType::Miter)
{
// miter unless the angle is so acute the miter would exceeds ML
if (cos_a > temp_lim_ - 1) DoMiter(group, path, j, k, cos_a);
else DoSquare(group, path, j, k);
}
// don't bother squaring angles that deviate < ~20 degrees because
// squaring will be indistinguishable from mitering and just be a lot slower
else if (cos_a > 0.9)
DoMiter(group, path, j, k, cos_a);
else
DoSquare(group, path, j, k);
}
k = j;
}
void ClipperOffset::OffsetPolygon(Group& group, Path64& path)
{
group.path_.clear();
for (Path64::size_type i = 0, j = path.size() -1; i < path.size(); j = i, ++i)
OffsetPoint(group, path, i, j);
group.paths_out_.push_back(group.path_);
}
void ClipperOffset::OffsetOpenJoined(Group& group, Path64& path)
{
OffsetPolygon(group, path);
std::reverse(path.begin(), path.end());
BuildNormals(path);
OffsetPolygon(group, path);
}
void ClipperOffset::OffsetOpenPath(Group& group, Path64& path, EndType end_type)
{
group.path_.clear();
// do the line start cap
switch (end_type)
{
case EndType::Butt:
group.path_.push_back(Point64(
path[0].x - norms[0].x * group_delta_,
path[0].y - norms[0].y * group_delta_));
group.path_.push_back(GetPerpendic(path[0], norms[0], group_delta_));
break;
case EndType::Round:
DoRound(group, path, 0,0, PI);
break;
default:
DoSquare(group, path, 0, 0);
break;
}
size_t highI = path.size() - 1;
// offset the left side going forward
for (Path64::size_type i = 1, k = 0; i < highI; ++i)
OffsetPoint(group, path, i, k);
// reverse normals
for (size_t i = highI; i > 0; --i)
norms[i] = PointD(-norms[i - 1].x, -norms[i - 1].y);
norms[0] = norms[highI];
// do the line end cap
switch (end_type)
{
case EndType::Butt:
group.path_.push_back(Point64(
path[highI].x - norms[highI].x * group_delta_,
path[highI].y - norms[highI].y * group_delta_));
group.path_.push_back(GetPerpendic(path[highI], norms[highI], group_delta_));
break;
case EndType::Round:
DoRound(group, path, highI, highI, PI);
break;
default:
DoSquare(group, path, highI, highI);
break;
}
for (size_t i = highI, k = 0; i > 0; --i)
OffsetPoint(group, path, i, k);
group.paths_out_.push_back(group.path_);
}
void ClipperOffset::DoGroupOffset(Group& group, double delta)
{
if (group.end_type_ != EndType::Polygon) delta = std::abs(delta) * 0.5;
bool isClosedPaths = IsClosedPath(group.end_type_);
if (isClosedPaths)
{
//the lowermost polygon must be an outer polygon. So we can use that as the
//designated orientation for outer polygons (needed for tidy-up clipping)
Paths64::size_type lowestIdx = GetLowestPolygonIdx(group.paths_in_);
// nb: don't use the default orientation here ...
double area = Area(group.paths_in_[lowestIdx]);
if (area == 0) return;
group.is_reversed_ = (area < 0);
if (group.is_reversed_) delta = -delta;
}
else
group.is_reversed_ = false;
group_delta_ = delta;
abs_group_delta_ = std::abs(group_delta_);
join_type_ = group.join_type_;
double arcTol = (arc_tolerance_ > floating_point_tolerance ? arc_tolerance_
: std::log10(2 + abs_group_delta_) * default_arc_tolerance); // empirically derived
//calculate a sensible number of steps (for 360 deg for the given offset
if (group.join_type_ == JoinType::Round || group.end_type_ == EndType::Round)
{
steps_per_rad_ = PI / std::acos(1 - arcTol / abs_group_delta_) / (PI *2);
}
bool is_closed_path = IsClosedPath(group.end_type_);
Paths64::const_iterator path_iter;
for(path_iter = group.paths_in_.cbegin(); path_iter != group.paths_in_.cend(); ++path_iter)
{
Path64 path = StripDuplicates(*path_iter, is_closed_path);
Path64::size_type cnt = path.size();
if (cnt == 0) continue;
if (cnt == 1) // single point - only valid with open paths
{
group.path_ = Path64();
//single vertex so build a circle or square ...
if (group.join_type_ == JoinType::Round)
{
double radius = abs_group_delta_;
group.path_ = Ellipse(path[0], radius, radius);
}
else
{
int d = (int)std::ceil(abs_group_delta_);
Rect64 r = Rect64(path[0].x - d, path[0].y - d, path[0].x + d, path[0].y + d);
group.path_ = r.AsPath();
}
group.paths_out_.push_back(group.path_);
}
else
{
BuildNormals(path);
if (group.end_type_ == EndType::Polygon) OffsetPolygon(group, path);
else if (group.end_type_ == EndType::Joined) OffsetOpenJoined(group, path);
else OffsetOpenPath(group, path, group.end_type_);
}
}
if (!merge_groups_)
{
//clean up self-intersections ...
Clipper64 c;
c.PreserveCollinear = false;
//the solution should retain the orientation of the input
c.ReverseSolution = reverse_solution_ != group.is_reversed_;
c.AddSubject(group.paths_out_);
if (group.is_reversed_)
c.Execute(ClipType::Union, FillRule::Negative, group.paths_out_);
else
c.Execute(ClipType::Union, FillRule::Positive, group.paths_out_);
}
solution.reserve(solution.size() + group.paths_out_.size());
copy(group.paths_out_.begin(), group.paths_out_.end(), back_inserter(solution));
group.paths_out_.clear();
}
Paths64 ClipperOffset::Execute(double delta)
{
solution.clear();
if (std::abs(delta) < default_arc_tolerance)
{
for (const Group& group : groups_)
{
solution.reserve(solution.size() + group.paths_in_.size());
copy(group.paths_in_.begin(), group.paths_in_.end(), back_inserter(solution));
}
return solution;
}
temp_lim_ = (miter_limit_ <= 1) ?
2.0 :
2.0 / (miter_limit_ * miter_limit_);
std::vector<Group>::iterator groups_iter;
for (groups_iter = groups_.begin();
groups_iter != groups_.end(); ++groups_iter)
{
DoGroupOffset(*groups_iter, delta);
}
if (merge_groups_ && groups_.size() > 0)
{
//clean up self-intersections ...
Clipper64 c;
c.PreserveCollinear = false;
//the solution should retain the orientation of the input
c.ReverseSolution = reverse_solution_ != groups_[0].is_reversed_;
c.AddSubject(solution);
if (groups_[0].is_reversed_)
c.Execute(ClipType::Union, FillRule::Negative, solution);
else
c.Execute(ClipType::Union, FillRule::Positive, solution);
}
return solution;
}
} // namespace

View File

@ -0,0 +1,547 @@
/*******************************************************************************
* Author : Angus Johnson *
* Date : 26 October 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : FAST rectangular clipping *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#include <cmath>
#include "clipper2/clipper.h"
#include "clipper2/clipper.rectclip.h"
namespace Clipper2Lib {
//------------------------------------------------------------------------------
// Miscellaneous methods
//------------------------------------------------------------------------------
inline PointInPolygonResult Path1ContainsPath2(Path64 path1, Path64 path2)
{
PointInPolygonResult result = PointInPolygonResult::IsOn;
for(const Point64& pt : path2)
{
result = PointInPolygon(pt, path1);
if (result != PointInPolygonResult::IsOn) break;
}
return result;
}
inline bool GetLocation(const Rect64& rec,
const Point64& pt, Location& loc)
{
if (pt.x == rec.left && pt.y >= rec.top && pt.y <= rec.bottom)
{
loc = Location::Left;
return false;
}
else if (pt.x == rec.right && pt.y >= rec.top && pt.y <= rec.bottom)
{
loc = Location::Right;
return false;
}
else if (pt.y == rec.top && pt.x >= rec.left && pt.x <= rec.right)
{
loc = Location::Top;
return false;
}
else if (pt.y == rec.bottom && pt.x >= rec.left && pt.x <= rec.right)
{
loc = Location::Bottom;
return false;
}
else if (pt.x < rec.left) loc = Location::Left;
else if (pt.x > rec.right) loc = Location::Right;
else if (pt.y < rec.top) loc = Location::Top;
else if (pt.y > rec.bottom) loc = Location::Bottom;
else loc = Location::Inside;
return true;
}
Point64 GetIntersectPoint64(const Point64& ln1a, const Point64& ln1b,
const Point64& ln2a, const Point64& ln2b)
{
// see http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
if (ln1b.x == ln1a.x)
{
if (ln2b.x == ln2a.x) return Point64(); // parallel lines
double m2 = static_cast<double>(ln2b.y - ln2a.y) / (ln2b.x - ln2a.x);
double b2 = ln2a.y - m2 * ln2a.x;
return Point64(ln1a.x, static_cast<int64_t>(std::round(m2 * ln1a.x + b2)));
}
else if (ln2b.x == ln2a.x)
{
double m1 = static_cast<double>(ln1b.y - ln1a.y) / (ln1b.x - ln1a.x);
double b1 = ln1a.y - m1 * ln1a.x;
return Point64(ln2a.x, static_cast<int64_t>(std::round(m1 * ln2a.x + b1)));
}
else
{
double m1 = static_cast<double>(ln1b.y - ln1a.y) / (ln1b.x - ln1a.x);
double b1 = ln1a.y - m1 * ln1a.x;
double m2 = static_cast<double>(ln2b.y - ln2a.y) / (ln2b.x - ln2a.x);
double b2 = ln2a.y - m2 * ln2a.x;
if (std::fabs(m1 - m2) > 1.0E-15)
{
double x = (b2 - b1) / (m1 - m2);
return Point64(x, m1 * x + b1);
}
else
return Point64((ln1a.x + ln1b.x) * 0.5, (ln1a.y + ln1b.y) * 0.5);
}
}
inline bool GetIntersection(const Path64& rectPath,
const Point64& p, const Point64& p2, Location& loc, Point64& ip)
{
// gets the intersection closest to 'p'
// when Result = false, loc will remain unchanged
switch (loc)
{
case Location::Left:
if (SegmentsIntersect(p, p2, rectPath[0], rectPath[3], true))
ip = GetIntersectPoint64(p, p2, rectPath[0], rectPath[3]);
else if (p.y < rectPath[0].y &&
SegmentsIntersect(p, p2, rectPath[0], rectPath[1], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[0], rectPath[1]);
loc = Location::Top;
}
else if (SegmentsIntersect(p, p2, rectPath[2], rectPath[3], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[2], rectPath[3]);
loc = Location::Bottom;
}
else return false;
break;
case Location::Top:
if (SegmentsIntersect(p, p2, rectPath[0], rectPath[1], true))
ip = GetIntersectPoint64(p, p2, rectPath[0], rectPath[1]);
else if (p.x < rectPath[0].x &&
SegmentsIntersect(p, p2, rectPath[0], rectPath[3], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[0], rectPath[3]);
loc = Location::Left;
}
else if (p.x > rectPath[1].x &&
SegmentsIntersect(p, p2, rectPath[1], rectPath[2], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[1], rectPath[2]);
loc = Location::Right;
}
else return false;
break;
case Location::Right:
if (SegmentsIntersect(p, p2, rectPath[1], rectPath[2], true))
ip = GetIntersectPoint64(p, p2, rectPath[1], rectPath[2]);
else if (p.y < rectPath[0].y &&
SegmentsIntersect(p, p2, rectPath[0], rectPath[1], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[0], rectPath[1]);
loc = Location::Top;
}
else if (SegmentsIntersect(p, p2, rectPath[2], rectPath[3], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[2], rectPath[3]);
loc = Location::Bottom;
}
else return false;
break;
case Location::Bottom:
if (SegmentsIntersect(p, p2, rectPath[2], rectPath[3], true))
ip = GetIntersectPoint64(p, p2, rectPath[2], rectPath[3]);
else if (p.x < rectPath[3].x &&
SegmentsIntersect(p, p2, rectPath[0], rectPath[3], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[0], rectPath[3]);
loc = Location::Left;
}
else if (p.x > rectPath[2].x &&
SegmentsIntersect(p, p2, rectPath[1], rectPath[2], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[1], rectPath[2]);
loc = Location::Right;
}
else return false;
break;
default: // loc == rInside
if (SegmentsIntersect(p, p2, rectPath[0], rectPath[3], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[0], rectPath[3]);
loc = Location::Left;
}
else if (SegmentsIntersect(p, p2, rectPath[0], rectPath[1], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[0], rectPath[1]);
loc = Location::Top;
}
else if (SegmentsIntersect(p, p2, rectPath[1], rectPath[2], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[1], rectPath[2]);
loc = Location::Right;
}
else if (SegmentsIntersect(p, p2, rectPath[2], rectPath[3], true))
{
ip = GetIntersectPoint64(p, p2, rectPath[2], rectPath[3]);
loc = Location::Bottom;
}
else return false;
break;
}
return true;
}
inline Location GetAdjacentLocation(Location loc, bool isClockwise)
{
int delta = (isClockwise) ? 1 : 3;
return static_cast<Location>((static_cast<int>(loc) + delta) % 4);
}
inline bool HeadingClockwise(Location prev, Location curr)
{
return (static_cast<int>(prev) + 1) % 4 == static_cast<int>(curr);
}
inline bool AreOpposites(Location prev, Location curr)
{
return abs(static_cast<int>(prev) - static_cast<int>(curr)) == 2;
}
inline bool IsClockwise(Location prev, Location curr,
Point64 prev_pt, Point64 curr_pt, Point64 rect_mp)
{
if (AreOpposites(prev, curr))
return CrossProduct(prev_pt, rect_mp, curr_pt) < 0;
else
return HeadingClockwise(prev, curr);
}
//----------------------------------------------------------------------------
// RectClip64
//----------------------------------------------------------------------------
void RectClip::AddCorner(Location prev, Location curr)
{
if (HeadingClockwise(prev, curr))
result_.push_back(rectPath_[static_cast<int>(prev)]);
else
result_.push_back(rectPath_[static_cast<int>(curr)]);
}
void RectClip::AddCorner(Location& loc, bool isClockwise)
{
if (isClockwise)
{
result_.push_back(rectPath_[static_cast<int>(loc)]);
loc = GetAdjacentLocation(loc, true);
}
else
{
loc = GetAdjacentLocation(loc, false);
result_.push_back(rectPath_[static_cast<int>(loc)]);
}
}
void RectClip::GetNextLocation(const Path64& path,
Location& loc, int& i, int highI)
{
switch (loc)
{
case Location::Left:
while (i <= highI && path[i].x <= rect_.left) ++i;
if (i > highI) break;
else if (path[i].x >= rect_.right) loc = Location::Right;
else if (path[i].y <= rect_.top) loc = Location::Top;
else if (path[i].y >= rect_.bottom) loc = Location::Bottom;
else loc = Location::Inside;
break;
case Location::Top:
while (i <= highI && path[i].y <= rect_.top) ++i;
if (i > highI) break;
else if (path[i].y >= rect_.bottom) loc = Location::Bottom;
else if (path[i].x <= rect_.left) loc = Location::Left;
else if (path[i].x >= rect_.right) loc = Location::Right;
else loc = Location::Inside;
break;
case Location::Right:
while (i <= highI && path[i].x >= rect_.right) ++i;
if (i > highI) break;
else if (path[i].x <= rect_.left) loc = Location::Left;
else if (path[i].y <= rect_.top) loc = Location::Top;
else if (path[i].y >= rect_.bottom) loc = Location::Bottom;
else loc = Location::Inside;
break;
case Location::Bottom:
while (i <= highI && path[i].y >= rect_.bottom) ++i;
if (i > highI) break;
else if (path[i].y <= rect_.top) loc = Location::Top;
else if (path[i].x <= rect_.left) loc = Location::Left;
else if (path[i].x >= rect_.right) loc = Location::Right;
else loc = Location::Inside;
break;
case Location::Inside:
while (i <= highI)
{
if (path[i].x < rect_.left) loc = Location::Left;
else if (path[i].x > rect_.right) loc = Location::Right;
else if (path[i].y > rect_.bottom) loc = Location::Bottom;
else if (path[i].y < rect_.top) loc = Location::Top;
else { result_.push_back(path[i]); ++i; continue; }
break; //inner loop
}
break;
} //switch
}
Path64 RectClip::Execute(const Path64& path)
{
if (rect_.IsEmpty() || path.size() < 3) return Path64();
result_.clear();
start_locs_.clear();
int i = 0, highI = static_cast<int>(path.size()) - 1;
Location prev = Location::Inside, loc;
Location crossing_loc = Location::Inside;
Location first_cross_ = Location::Inside;
if (!GetLocation(rect_, path[highI], loc))
{
i = highI - 1;
while (i >= 0 && !GetLocation(rect_, path[i], prev)) --i;
if (i < 0) return path;
if (prev == Location::Inside) loc = Location::Inside;
i = 0;
}
Location starting_loc = loc;
///////////////////////////////////////////////////
while (i <= highI)
{
prev = loc;
Location crossing_prev = crossing_loc;
GetNextLocation(path, loc, i, highI);
if (i > highI) break;
Point64 ip, ip2;
Point64 prev_pt = (i) ? path[static_cast<size_t>(i - 1)] : path[highI];
crossing_loc = loc;
if (!GetIntersection(rectPath_, path[i], prev_pt, crossing_loc, ip))
{
// ie remaining outside
if (crossing_prev == Location::Inside)
{
bool isClockw = IsClockwise(prev, loc, prev_pt, path[i], mp_);
do {
start_locs_.push_back(prev);
prev = GetAdjacentLocation(prev, isClockw);
} while (prev != loc);
crossing_loc = crossing_prev; // still not crossed
}
else if (prev != Location::Inside && prev != loc)
{
bool isClockw = IsClockwise(prev, loc, prev_pt, path[i], mp_);
do {
AddCorner(prev, isClockw);
} while (prev != loc);
}
++i;
continue;
}
////////////////////////////////////////////////////
// we must be crossing the rect boundary to get here
////////////////////////////////////////////////////
if (loc == Location::Inside) // path must be entering rect
{
if (first_cross_ == Location::Inside)
{
first_cross_ = crossing_loc;
start_locs_.push_back(prev);
}
else if (prev != crossing_loc)
{
bool isClockw = IsClockwise(prev, crossing_loc, prev_pt, path[i], mp_);
do {
AddCorner(prev, isClockw);
} while (prev != crossing_loc);
}
}
else if (prev != Location::Inside)
{
// passing right through rect. 'ip' here will be the second
// intersect pt but we'll also need the first intersect pt (ip2)
loc = prev;
GetIntersection(rectPath_, prev_pt, path[i], loc, ip2);
if (crossing_prev != Location::Inside)
AddCorner(crossing_prev, loc);
if (first_cross_ == Location::Inside)
{
first_cross_ = loc;
start_locs_.push_back(prev);
}
loc = crossing_loc;
result_.push_back(ip2);
if (ip == ip2)
{
// it's very likely that path[i] is on rect
GetLocation(rect_, path[i], loc);
AddCorner(crossing_loc, loc);
crossing_loc = loc;
continue;
}
}
else // path must be exiting rect
{
loc = crossing_loc;
if (first_cross_ == Location::Inside)
first_cross_ = crossing_loc;
}
result_.push_back(ip);
} //while i <= highI
///////////////////////////////////////////////////
if (first_cross_ == Location::Inside)
{
if (starting_loc == Location::Inside) return path;
Rect64 tmp_rect = Bounds(path);
if (tmp_rect.Contains(rect_) &&
Path1ContainsPath2(path, rectPath_) !=
PointInPolygonResult::IsOutside) return rectPath_;
else
return Path64();
}
if (loc != Location::Inside &&
(loc != first_cross_ || start_locs_.size() > 2))
{
if (start_locs_.size() > 0)
{
prev = loc;
for (auto loc2 : start_locs_)
{
if (prev == loc2) continue;
AddCorner(prev, HeadingClockwise(prev, loc2));
prev = loc2;
}
loc = prev;
}
if (loc != first_cross_)
AddCorner(loc, HeadingClockwise(loc, first_cross_));
}
if (result_.size() < 3) return Path64();
// tidy up duplicates and collinear segments
Path64 res;
res.reserve(result_.size());
size_t k = 0; highI = static_cast<int>(result_.size()) - 1;
Point64 prev_pt = result_[highI];
res.push_back(result_[0]);
Path64::const_iterator cit;
for (cit = result_.cbegin() + 1; cit != result_.cend(); ++cit)
{
if (CrossProduct(prev_pt, res[k], *cit))
{
prev_pt = res[k++];
res.push_back(*cit);
}
else
res[k] = *cit;
}
if (k < 2) return Path64();
// and a final check for collinearity
else if (!CrossProduct(res[0], res[k - 1], res[k])) res.pop_back();
return res;
}
Paths64 RectClipLines::Execute(const Path64& path)
{
result_.clear();
Paths64 result;
if (rect_.IsEmpty() || path.size() == 0) return result;
int i = 1, highI = static_cast<int>(path.size()) - 1;
Location prev = Location::Inside, loc;
Location crossing_loc = Location::Inside;
if (!GetLocation(rect_, path[0], loc))
{
while (i <= highI && !GetLocation(rect_, path[i], prev)) ++i;
if (i > highI) {
result.push_back(path);
return result;
}
if (prev == Location::Inside) loc = Location::Inside;
i = 1;
}
if (loc == Location::Inside) result_.push_back(path[0]);
///////////////////////////////////////////////////
while (i <= highI)
{
prev = loc;
GetNextLocation(path, loc, i, highI);
if (i > highI) break;
Point64 ip, ip2;
Point64 prev_pt = path[static_cast<size_t>(i - 1)];
crossing_loc = loc;
if (!GetIntersection(rectPath_, path[i], prev_pt, crossing_loc, ip))
{
// ie remaining outside
++i;
continue;
}
////////////////////////////////////////////////////
// we must be crossing the rect boundary to get here
////////////////////////////////////////////////////
if (loc == Location::Inside) // path must be entering rect
{
result_.push_back(ip);
}
else if (prev != Location::Inside)
{
// passing right through rect. 'ip' here will be the second
// intersect pt but we'll also need the first intersect pt (ip2)
crossing_loc = prev;
GetIntersection(rectPath_, prev_pt, path[i], crossing_loc, ip2);
result_.push_back(ip2);
result_.push_back(ip);
result.push_back(result_);
result_.clear();
}
else // path must be exiting rect
{
result_.push_back(ip);
result.push_back(result_);
result_.clear();
}
} //while i <= highI
///////////////////////////////////////////////////
if (result_.size() > 1)
result.push_back(result_);
return result;
}
} // namespace

View File

@ -35,6 +35,8 @@ set(lisbslic3r_sources
clipper.hpp
ClipperUtils.cpp
ClipperUtils.hpp
Clipper2Utils.cpp
Clipper2Utils.hpp
Config.cpp
Config.hpp
CurveAnalyzer.cpp
@ -476,6 +478,7 @@ target_link_libraries(libslic3r
PNG::PNG
ZLIB::ZLIB
${OCCT_LIBS}
Clipper2
)
if(NOT WIN32)

View File

@ -0,0 +1,60 @@
#include "Clipper2Utils.hpp"
namespace Slic3r {
//BBS: FIXME
Slic3r::Polylines Paths64_to_polylines(const Clipper2Lib::Paths64& in)
{
Slic3r::Polylines out;
out.reserve(in.size());
for (const Clipper2Lib::Path64& path64 : in) {
Slic3r::Points points;
points.reserve(path64.size());
for (const Clipper2Lib::Point64& point64 : path64)
points.emplace_back(std::move(Slic3r::Point(point64.x, point64.y)));
out.emplace_back(std::move(Slic3r::Polyline(points)));
}
return out;
}
//BBS: FIXME
template <typename T>
Clipper2Lib::Paths64 Slic3rPoints_to_Paths64(const std::vector<T>& in)
{
Clipper2Lib::Paths64 out;
out.reserve(in.size());
for (const T item: in) {
Clipper2Lib::Path64 path;
path.reserve(item.size());
for (const Slic3r::Point& point : item.points)
path.emplace_back(std::move(Clipper2Lib::Point64(point.x(), point.y())));
out.emplace_back(std::move(path));
}
return out;
}
Polylines _clipper2_pl_open(Clipper2Lib::ClipType clipType, const Slic3r::Polylines& subject, const Slic3r::Polygons& clip)
{
Clipper2Lib::Clipper64 c;
c.AddOpenSubject(Slic3rPoints_to_Paths64(subject));
c.AddClip(Slic3rPoints_to_Paths64(clip));
Clipper2Lib::ClipType ct = clipType;
Clipper2Lib::FillRule fr = Clipper2Lib::FillRule::NonZero;
Clipper2Lib::Paths64 solution, solution_open;
c.Execute(ct, fr, solution, solution_open);
Slic3r::Polylines out;
out.reserve(solution.size() + solution_open.size());
polylines_append(out, std::move(Paths64_to_polylines(solution)));
polylines_append(out, std::move(Paths64_to_polylines(solution_open)));
return out;
}
Slic3r::Polylines intersection_pl_2(const Slic3r::Polylines& subject, const Slic3r::Polygons& clip)
{ return _clipper2_pl_open(Clipper2Lib::ClipType::Intersection, subject, clip); }
Slic3r::Polylines diff_pl_2(const Slic3r::Polylines& subject, const Slic3r::Polygons& clip)
{ return _clipper2_pl_open(Clipper2Lib::ClipType::Difference, subject, clip); }
}

View File

@ -0,0 +1,17 @@
#ifndef slic3r_Clipper2Utils_hpp_
#define slic3r_Clipper2Utils_hpp_
#include "libslic3r.h"
#include "clipper2/clipper.h"
#include "Polygon.hpp"
#include "Polyline.hpp"
namespace Slic3r {
Slic3r::Polylines intersection_pl_2(const Slic3r::Polylines& subject, const Slic3r::Polygons& clip);
Slic3r::Polylines diff_pl_2(const Slic3r::Polylines& subject, const Slic3r::Polygons& clip);
}
#endif

View File

@ -4,6 +4,7 @@
#include "ShortestPath.hpp"
#include "VariableWidth.hpp"
#include "CurveAnalyzer.hpp"
#include "Clipper2Utils.hpp"
#include <cmath>
#include <cassert>
@ -230,7 +231,7 @@ static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perime
Polylines inside_polines = (it == lower_polygons_series->begin()) ?
intersection_pl({ polygon }, it->second) :
intersection_pl(remain_polines, it->second);
intersection_pl_2(remain_polines, it->second);
extrusion_paths_append(
paths,
std::move(inside_polines),
@ -243,7 +244,7 @@ static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perime
remain_polines = (it == lower_polygons_series->begin()) ?
diff_pl({ polygon }, it->second) :
diff_pl(remain_polines, it->second);
diff_pl_2(remain_polines, it->second);
if (remain_polines.size() == 0)
break;