#include "WipeTower.hpp" #include #include #include #include #include #include #include "GCodeProcessor.hpp" #include "BoundingBox.hpp" #include "LocalesUtils.hpp" #include "Triangulation.hpp" namespace Slic3r { bool flat_ironing = true; // Whether to enable flat ironing for the wipe tower float flat_iron_area = 4.f; constexpr float flat_iron_speed = 10.f * 60.f; static const double wipe_tower_wall_infill_overlap = 0.0; static constexpr double WIPE_TOWER_RESOLUTION = 0.1; static constexpr double WT_SIMPLIFY_TOLERANCE_SCALED = 0.001 / SCALING_FACTOR; static constexpr int arc_fit_size = 20; #define SCALED_WIPE_TOWER_RESOLUTION (WIPE_TOWER_RESOLUTION / SCALING_FACTOR) enum class LimitFlow { None, LimitPrintFlow, LimitRammingFlow }; inline float align_round(float value, float base) { return std::round(value / base) * base; } inline float align_ceil(float value, float base) { return std::ceil(value / base) * base; } inline float align_floor(float value, float base) { return std::floor((value) / base) * base; } static bool is_valid_gcode(const std::string &gcode) { int str_size = gcode.size(); int start_index = 0; int end_index = 0; bool is_valid = false; while (end_index < str_size) { if (gcode[end_index] != '\n') { end_index++; continue; } if (end_index > start_index) { std::string line_str = gcode.substr(start_index, end_index - start_index); line_str.erase(0, line_str.find_first_not_of(" ")); line_str.erase(line_str.find_last_not_of(" ") + 1); if (!line_str.empty() && line_str[0] != ';') { is_valid = true; break; } } start_index = end_index + 1; end_index = start_index; } return is_valid; } Polygon chamfer_polygon(Polygon &polygon, double chamfer_dis = 2., double angle_tol = 30. / 180. * PI) { if (polygon.points.size() < 3) return polygon; Polygon res; res.points.reserve(polygon.points.size() * 2); int mod = polygon.points.size(); double cos_angle_tol = abs(std::cos(angle_tol)); for (int i = 0; i < polygon.points.size(); i++) { Vec2d a = unscaled(polygon.points[(i - 1 + mod) % mod]); Vec2d b = unscaled(polygon.points[i]); Vec2d c = unscaled(polygon.points[(i + 1) % mod]); double ab_len = (a - b).norm(); double bc_len = (b - c).norm(); Vec2d ab = (b - a) / ab_len; Vec2d bc = (c - b) / bc_len; assert(ab_len != 0); assert(bc_len != 0); float cosangle = ab.dot(bc); //std::cout << " angle " << acos(cosangle) << " cosangle " << cosangle << std::endl; //std::cout << " ab_len " << ab_len << " bc_len " << bc_len << std::endl; if (abs(cosangle) < cos_angle_tol) { float real_chamfer_dis = std::min({chamfer_dis, ab_len / 2.1, bc_len / 2.1}); // 2.1 to ensure the points do not coincide Vec2d left = b - ab * real_chamfer_dis; Vec2d right = b + bc * real_chamfer_dis; res.points.push_back(scaled(left)); res.points.push_back(scaled(right)); } else res.points.push_back(polygon.points[i]); } res.points.shrink_to_fit(); return res; } Polygon WipeTower::rounding_polygon(Polygon &polygon, double rounding /*= 2.*/, double angle_tol/* = 30. / 180. * PI*/) { if (polygon.points.size() < 3) return polygon; Polygon res; res.points.reserve(polygon.points.size() * 2); int mod = polygon.points.size(); double cos_angle_tol = abs(std::cos(angle_tol)); for (int i = 0; i < polygon.points.size(); i++) { Vec2d a = unscaled(polygon.points[(i - 1 + mod) % mod]); Vec2d b = unscaled(polygon.points[i]); Vec2d c = unscaled(polygon.points[(i + 1) % mod]); double ab_len = (a - b).norm(); double bc_len = (b - c).norm(); Vec2d ab = (b - a) / ab_len; Vec2d bc = (c - b) / bc_len; assert(ab_len != 0); assert(bc_len != 0); float cosangle = ab.dot(bc); cosangle = std::clamp(cosangle, -1.f, 1.f); bool is_ccw = cross2(ab, bc) > 0; if (abs(cosangle) < cos_angle_tol) { float real_rounding_dis = std::min({rounding, ab_len / 2.1, bc_len / 2.1}); // 2.1 to ensure the points do not coincide Vec2d left = b - ab * real_rounding_dis; Vec2d right = b + bc * real_rounding_dis; //Point r_left = scaled(left); //Point r_right = scaled(right); // std::cout << " r_left " << r_left[0] << " " << r_left[1] << std::endl; //std::cout << " r_right " << r_right[0] << " " << r_right[1] << std::endl; { float half_angle = std::acos(cosangle)/2.f; //std::cout << " half_angle " << cos(half_angle) << std::endl; Vec2d dir = (right - left).normalized(); dir = Vec2d{-dir[1], dir[0]}; dir = is_ccw ? dir : -dir; double dis = real_rounding_dis / sin(half_angle); //std::cout << " dis " << dis << std::endl; Vec2d center = b + dir * dis; double radius = (left - center).norm(); ArcSegment arc(scaled(center), scaled(radius), scaled(left), scaled(right), is_ccw ? ArcDirection::Arc_Dir_CCW : ArcDirection::Arc_Dir_CW); int n = arc_fit_size; //std::cout << "start " << arc.start_point[0] << " " << arc.start_point[1] << std::endl; //std::cout << "end " << arc.end_point[0] << " " << arc.end_point[1] << std::endl; //std::cout << "start angle " << arc.polar_start_theta << " end angle " << arc.polar_end_theta << std::endl; for (int j = 0; j < n; j++) { float cur_angle = arc.polar_start_theta + (float)j/n * arc.angle_radians ; //std::cout << " cur_angle " << cur_angle << std::endl; if (cur_angle > 2 * PI) cur_angle -= 2 * PI; else if (cur_angle < 0) cur_angle += 2 * PI; Point tmp = arc.center + Point{arc.radius * std::cos(cur_angle), arc.radius *std::sin(cur_angle)}; //std::cout << "j = " << j << std::endl; //std::cout << "tmp = " << tmp[0]<<" "< 0; if (abs(cosangle) < cos_angle_tol) { float real_rounding_dis = std::min({rounding, ab_len / 2.1, bc_len / 2.1}); // 2.1 to ensure the points do not coincide Vec2d left = b - ab * real_rounding_dis; Vec2d right = b + bc * real_rounding_dis; //Point r_left = scaled(left); //Point r_right = scaled(right); // std::cout << " r_left " << r_left[0] << " " << r_left[1] << std::endl; // std::cout << " r_right " << r_right[0] << " " << r_right[1] << std::endl; { Vec2d center = b; double radius = real_rounding_dis; ArcSegment arc(scaled(center), scaled(radius), scaled(left), scaled(right), is_ccw ? ArcDirection::Arc_Dir_CCW : ArcDirection::Arc_Dir_CW); int n = arc_fit_size; // std::cout << "start " << arc.start_point[0] << " " << arc.start_point[1] << std::endl; // std::cout << "end " << arc.end_point[0] << " " << arc.end_point[1] << std::endl; // std::cout << "start angle " << arc.polar_start_theta << " end angle " << arc.polar_end_theta << std::endl; for (int j = 0; j < n; j++) { float cur_angle = arc.polar_start_theta + (float) j / n * arc.angle_radians; // std::cout << " cur_angle " << cur_angle << std::endl; if (cur_angle > 2 * PI) cur_angle -= 2 * PI; else if (cur_angle < 0) cur_angle += 2 * PI; Point tmp = arc.center + Point{arc.radius * std::cos(cur_angle), arc.radius * std::sin(cur_angle)}; // std::cout << "j = " << j << std::endl; // std::cout << "tmp = " << tmp[0]<<" "< ray_intersetion_line(const Vec2f &a, const Vec2f &v1, const Vec2f &b, const Vec2f &c) { const Vec2f v2 = c - b; double denom = cross2(v1, v2); if (fabs(denom) < EPSILON) return {false, Vec2f(0, 0)}; const Vec2f v12 = (a - b); double nume_a = cross2(v2, v12); double nume_b = cross2(v1, v12); double t1 = nume_a / denom; double t2 = nume_b / denom; if (t1 >= 0 && t2 >= 0 && t2 <= 1.) { // Get the intersection point. Vec2f res = a + t1 * v1; return std::pair(true, res); } return std::pair(false, Vec2f{0, 0}); } Polygon scale_polygon(const std::vector &points) { Polygon res; for (const auto &p : points) res.points.push_back(scaled(p)); return res; } std::vector unscale_polygon(const Polygon& polygon) { std::vector res; for (const auto &p : polygon.points) res.push_back(unscaled(p)); return res; } Polygon generate_rectange(const Line &line, coord_t offset) { Point p1 = line.a; Point p2 = line.b; double dx = p2.x() - p1.x(); double dy = p2.y() - p1.y(); double length = std::sqrt(dx * dx + dy * dy); double ux = dx / length; double uy = dy / length; double vx = -uy; double vy = ux; double ox = vx * offset; double oy = vy * offset; Points rect; rect.resize(4); rect[0] = {p1.x() + ox, p1.y() + oy}; rect[1] = {p1.x() - ox, p1.y() - oy}; rect[2] = {p2.x() - ox, p2.y() - oy}; rect[3] = {p2.x() + ox, p2.y() + oy}; Polygon poly(rect); return poly; }; struct Segment { Vec2f start; Vec2f end; bool is_arc = false; ArcSegment arcsegment; Segment(const Vec2f &s, const Vec2f &e) : start(s), end(e) {} bool is_valid() const { return start.y() < end.y(); } }; std::vector remove_points_from_segment(const Segment &segment, const std::vector &skip_points, double range) { std::vector result; result.push_back(segment); float x = segment.start.x(); for (const Vec2f &point : skip_points) { std::vector newResult; for (const auto &seg : result) { if (point.y() + range <= seg.start.y() || point.y() - range >= seg.end.y()) { newResult.push_back(seg); } else { if (point.y() - range > seg.start.y()) { newResult.push_back(Segment(Vec2f(x, seg.start.y()), Vec2f(x, point.y() - range))); } if (point.y() + range < seg.end.y()) { newResult.push_back(Segment(Vec2f(x, point.y() + range), Vec2f(x, seg.end.y()))); } } } result = newResult; } result.erase(std::remove_if(result.begin(), result.end(), [](const Segment &seg) { return !seg.is_valid(); }), result.end()); return result; } struct IntersectionInfo { Vec2f pos; int idx; int pair_idx; // gap_pair idx float dis_from_idx; bool is_forward; }; struct PointWithFlag { Vec2f pos; int pair_idx; // gap_pair idx bool is_forward; }; IntersectionInfo move_point_along_polygon(const std::vector &points, const Vec2f &startPoint, int startIdx, float offset, bool forward, int pair_idx) { float remainingDistance = offset; IntersectionInfo res; int mod = points.size(); if (forward) { int next = (startIdx + 1) % mod; remainingDistance -= (points[next] - startPoint).norm(); if (remainingDistance <= 0) { res.idx = startIdx; res.pos = startPoint + (points[next] - startPoint).normalized() * offset; res.pair_idx = pair_idx; res.dis_from_idx = (points[startIdx] - res.pos).norm(); return res; } else { for (int i = (startIdx + 1) % mod; i != startIdx; i = (i + 1) % mod) { float segmentLength = (points[(i + 1) % mod] - points[i]).norm(); if (remainingDistance <= segmentLength) { float ratio = remainingDistance / segmentLength; res.idx = i; res.pos = points[i] + ratio * (points[(i + 1) % mod] - points[i]); res.dis_from_idx = remainingDistance; res.pair_idx = pair_idx; return res; } remainingDistance -= segmentLength; } res.idx = (startIdx - 1 + mod) % mod; res.pos = points[startIdx]; res.pair_idx = pair_idx; res.dis_from_idx = (res.pos - points[res.idx]).norm(); } } else { int next = (startIdx + 1) % mod; remainingDistance -= (points[startIdx] - startPoint).norm(); if (remainingDistance <= 0) { res.idx = startIdx; res.pos = startPoint - (points[next] - points[startIdx]).normalized() * offset; res.dis_from_idx = (res.pos - points[startIdx]).norm(); res.pair_idx = pair_idx; return res; } for (int i = (startIdx - 1 + mod) % mod; i != startIdx; i = (i - 1 + mod) % mod) { float segmentLength = (points[(i + 1) % mod] - points[i]).norm(); if (remainingDistance <= segmentLength) { float ratio = remainingDistance / segmentLength; res.idx = i; res.pos = points[(i + 1) % mod] - ratio * (points[(i + 1) % mod] - points[i]); res.dis_from_idx = segmentLength - remainingDistance; res.pair_idx = pair_idx; return res; } remainingDistance -= segmentLength; } res.idx = startIdx; res.pos = points[res.idx]; res.pair_idx = pair_idx; res.dis_from_idx = 0; } return res; }; void insert_points(std::vector &pl, int idx, Vec2f pos, int pair_idx, bool is_forward) { int next = (idx + 1) % pl.size(); Vec2f pos1 = pl[idx].pos; Vec2f pos2 = pl[next].pos; if ((pos - pos1).squaredNorm() < EPSILON) { pl[idx].pair_idx = pair_idx; pl[idx].is_forward = is_forward; } else if ((pos - pos2).squaredNorm() < EPSILON) { pl[next].pair_idx = pair_idx; pl[next].is_forward = is_forward; } else { pl.insert(pl.begin() + idx + 1, PointWithFlag{pos, pair_idx, is_forward}); } } Polylines remove_points_from_polygon(const Polygon &polygon, const std::vector &skip_points, double range, bool is_left ,Polygon& insert_skip_pg) { Polylines result; std::vector new_pl; // add intersection points for gaps, where bool indicates whether it's a gap point. std::vector inter_info; Vec2f ray = is_left ? Vec2f(-1, 0) : Vec2f(1, 0); std::vector points; points.reserve(polygon.points.size()); for (auto &p : polygon.points) points.push_back(unscale(p).cast()); for (int i = 0; i < skip_points.size(); i++) { for (int j = 0; j < points.size(); j++) { Vec2f& p1 = points[j]; Vec2f& p2 = points[(j + 1) % points.size()]; auto [is_inter, inter_pos] = ray_intersetion_line(skip_points[i], ray, p1, p2); if (is_inter) { IntersectionInfo forward = move_point_along_polygon(points, inter_pos, j, range, true, i); IntersectionInfo backward = move_point_along_polygon(points, inter_pos, j, range, false, i); backward.is_forward = false; forward.is_forward = true; inter_info.push_back(backward); inter_info.push_back(forward); break; } } } // insert point to new_pl for (const auto &p : points) new_pl.push_back({p, -1}); std::sort(inter_info.begin(), inter_info.end(), [](const IntersectionInfo &lhs, const IntersectionInfo &rhs) { if (rhs.idx == lhs.idx) return lhs.dis_from_idx < rhs.dis_from_idx; return lhs.idx < rhs.idx; }); for (int i = inter_info.size() - 1; i >= 0; i--) { insert_points(new_pl, inter_info[i].idx, inter_info[i].pos, inter_info[i].pair_idx, inter_info[i].is_forward); } { //set insert_pg for wipe_path for (auto &p : new_pl) insert_skip_pg.points.push_back(scaled(p.pos)); } //assume that no interval is completely contained within another interval. int beg = -1; for (int i = 0; i < skip_points.size(); i++) { if (beg != -1) break; for (int j = 0; j < new_pl.size(); j++) { if (new_pl[j].pair_idx == i && !new_pl[j].is_forward) { bool is_include_pair = false; int k = (j + 1) % new_pl.size(); while (k != j) { if (new_pl[k].pair_idx == i && new_pl[k].is_forward) { break; } if (new_pl[k].pair_idx != -1 && new_pl[k].pair_idx != i && new_pl[k].is_forward) { is_include_pair = true; break; } k = (k + 1) % new_pl.size(); } if (!is_include_pair) { beg = k; break; } } } } if (beg == -1) beg = 0; bool skip = true; int i = beg; Polyline pl; do { if (skip || new_pl[i].pair_idx == -1) { pl.points.push_back(scaled(new_pl[i].pos)); i = (i + 1) % new_pl.size(); skip = false; } else { if (!pl.points.empty()) { pl.points.push_back(scaled(new_pl[i].pos)); result.push_back(pl); pl.points.clear(); } int left = new_pl[i].pair_idx; int j = (i + 1) % new_pl.size(); while (j != beg && new_pl[j].pair_idx != left) j = (j + 1) % new_pl.size(); i = j; skip = true; } } while (i != beg); if (!pl.points.empty()) { if (new_pl[i].pair_idx==-1) pl.points.push_back(scaled(new_pl[i].pos)); result.push_back(pl); } return result; } Polylines contrust_gap_for_skip_points(const Polygon &polygon, const std::vector & skip_points ,float wt_width,float gap_length,Polygon& insert_skip_polygon) { if (skip_points.empty()) { insert_skip_polygon = polygon; return Polylines{to_polyline(polygon)}; } bool is_left = false; const auto &pt = skip_points.front(); if (abs(pt.x()) < wt_width/2.f) { is_left = true; } return remove_points_from_polygon(polygon, skip_points, gap_length, is_left, insert_skip_polygon); }; Polygon generate_rectange_polygon(const Vec2f &wt_box_min ,const Vec2f & wt_box_max) { Polygon res; res.points.push_back(scaled(wt_box_min)); res.points.push_back(scaled(Vec2f{wt_box_max[0], wt_box_min[1]})); res.points.push_back(scaled(wt_box_max)); res.points.push_back(scaled(Vec2f{wt_box_min[0], wt_box_max[1]})); return res; } class WipeTowerWriter { public: WipeTowerWriter(float layer_height, float line_width, GCodeFlavor flavor, const std::vector& filament_parameters) : m_current_pos(std::numeric_limits::max(), std::numeric_limits::max()), m_current_z(0.f), m_current_feedrate(0.f), m_layer_height(layer_height), m_extrusion_flow(0.f), m_preview_suppressed(false), m_elapsed_time(0.f), #if ENABLE_GCODE_VIEWER_DATA_CHECKING m_default_analyzer_line_width(line_width), #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING m_gcode_flavor(flavor), m_filpar(filament_parameters) { // adds tag for analyzer: std::ostringstream str; str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) << std::to_string(m_layer_height) << "\n"; // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Role) << ExtrusionEntity::role_to_string(erWipeTower) << "\n"; m_gcode += str.str(); change_analyzer_line_width(line_width); } WipeTowerWriter& change_analyzer_line_width(float line_width) { // adds tag for analyzer: std::stringstream str; str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width) << std::to_string(line_width) << "\n"; m_gcode += str.str(); return *this; } #if ENABLE_GCODE_VIEWER_DATA_CHECKING WipeTowerWriter& change_analyzer_mm3_per_mm(float len, float e) { static const float area = float(M_PI) * 1.75f * 1.75f / 4.f; float mm3_per_mm = (len == 0.f ? 0.f : area * e / len); // adds tag for processor: std::stringstream str; str << ";" << GCodeProcessor::Mm3_Per_Mm_Tag << mm3_per_mm << "\n"; m_gcode += str.str(); return *this; } #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING WipeTowerWriter& set_initial_position(const Vec2f &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) { m_wipe_tower_width = width; m_wipe_tower_depth = depth; m_internal_angle = internal_angle; m_start_pos = this->rotate(pos); m_current_pos = pos; return *this; } WipeTowerWriter& set_initial_tool(size_t tool) { m_current_tool = tool; return *this; } WipeTowerWriter& set_z(float z) { m_current_z = z; return *this; } WipeTowerWriter& set_extrusion_flow(float flow) { m_extrusion_flow = flow; return *this; } WipeTowerWriter& set_y_shift(float shift) { m_current_pos.y() -= shift-m_y_shift; m_y_shift = shift; return (*this); } WipeTowerWriter& disable_linear_advance() { if (m_gcode_flavor == gcfKlipper) m_gcode += "SET_PRESSURE_ADVANCE ADVANCE=0\n"; else if (m_gcode_flavor == gcfRepRapFirmware) m_gcode += std::string("M572 D") + std::to_string(m_current_tool) + " S0\n"; else m_gcode += "M900 K0\n"; return *this; } // Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various // filament loading and cooling moves from normal extrusion moves. Therefore the writer // is asked to suppres output of some lines, which look like extrusions. #if ENABLE_GCODE_VIEWER_DATA_CHECKING WipeTowerWriter& suppress_preview() { change_analyzer_line_width(0.f); m_preview_suppressed = true; return *this; } WipeTowerWriter& resume_preview() { change_analyzer_line_width(m_default_analyzer_line_width); m_preview_suppressed = false; return *this; } #else WipeTowerWriter& suppress_preview() { m_preview_suppressed = true; return *this; } WipeTowerWriter& resume_preview() { m_preview_suppressed = false; return *this; } #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING WipeTowerWriter& feedrate(float f) { if (f != m_current_feedrate) { m_gcode += "G1" + set_format_F(f) + "\n"; m_current_feedrate = f; } return *this; } const std::string& gcode() const { return m_gcode; } const std::vector& extrusions() const { return m_extrusions; } float x() const { return m_current_pos.x(); } float y() const { return m_current_pos.y(); } const Vec2f& pos() const { return m_current_pos; } const Vec2f start_pos_rotated() const { return m_start_pos; } const Vec2f pos_rotated() const { return this->rotate(m_current_pos); } float elapsed_time() const { return m_elapsed_time; } float get_and_reset_used_filament_length() { float temp = m_used_filament_length; m_used_filament_length = 0.f; return temp; } // Extrude with an explicitely provided amount of extrusion. WipeTowerWriter &extrude_explicit(float x, float y, float e, float f = 0.f, bool record_length = false ,LimitFlow limit_flow = LimitFlow::LimitPrintFlow) { if ((std::abs(x - m_current_pos.x()) <= (float)EPSILON) && (std::abs(y - m_current_pos.y()) < (float)EPSILON) && e == 0.f && (f == 0.f || f == m_current_feedrate)) // Neither extrusion nor a travel move. return *this; float dx = x - m_current_pos.x(); float dy = y - m_current_pos.y(); float len = std::sqrt(dx*dx+dy*dy); if (record_length) m_used_filament_length += e; // Now do the "internal rotation" with respect to the wipe tower center Vec2f rotated_current_pos(this->pos_rotated()); Vec2f rot(this->rotate(Vec2f(x,y))); // this is where we want to go if (! m_preview_suppressed && e > 0.f && len > 0.f) { #if ENABLE_GCODE_VIEWER_DATA_CHECKING change_analyzer_mm3_per_mm(len, e); #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING // Width of a squished extrusion, corrected for the roundings of the squished extrusions. // This is left zero if it is a travel move. float width = e * m_filpar[0].filament_area / (len * m_layer_height); // Correct for the roundings of a squished extrusion. width += m_layer_height * float(1. - M_PI / 4.); if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos) m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool)); m_extrusions.emplace_back(WipeTower::Extrusion(rot, width, m_current_tool)); } m_gcode += "G1"; if (std::abs(rot.x() - rotated_current_pos.x()) > (float)EPSILON) m_gcode += set_format_X(rot.x()); if (std::abs(rot.y() - rotated_current_pos.y()) > (float)EPSILON) m_gcode += set_format_Y(rot.y()); if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) { if (limit_flow!= LimitFlow::None) { float e_speed = e / (((len == 0.f) ? std::abs(e) : len) / f * 60.f); float tmp = m_filpar[m_current_tool].max_e_speed; if (limit_flow == LimitFlow::LimitRammingFlow) tmp = m_filpar[m_current_tool].max_e_ramming_speed; f /= std::max(1.f, e_speed / tmp); } m_gcode += set_format_F(f); } m_current_pos.x() = x; m_current_pos.y() = y; // Update the elapsed time with a rough estimate. m_elapsed_time += ((len == 0.f) ? std::abs(e) : len) / m_current_feedrate * 60.f; m_gcode += "\n"; return *this; } // Extrude with an explicitely provided amount of extrusion. WipeTowerWriter &extrude_arc_explicit(ArcSegment &arc, float f = 0.f, bool record_length = false, LimitFlow limit_flow = LimitFlow::LimitPrintFlow) { float x = (float)unscale(arc.end_point).x(); float y = (float)unscale(arc.end_point).y(); float len = unscaled(arc.length); float e = len * m_extrusion_flow; if (len < (float) EPSILON && e == 0.f && (f == 0.f || f == m_current_feedrate)) // Neither extrusion nor a travel move. return *this; if (record_length) m_used_filament_length += e; // Now do the "internal rotation" with respect to the wipe tower center Vec2f rotated_current_pos(this->pos_rotated()); Vec2f rot(this->rotate(Vec2f(x, y))); // this is where we want to go if (!m_preview_suppressed && e > 0.f && len > 0.f) { #if ENABLE_GCODE_VIEWER_DATA_CHECKING change_analyzer_mm3_per_mm(len, e); #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING // Width of a squished extrusion, corrected for the roundings of the squished extrusions. // This is left zero if it is a travel move. float width = e * m_filpar[0].filament_area / (len * m_layer_height); // Correct for the roundings of a squished extrusion. width += m_layer_height * float(1. - M_PI / 4.); if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos) m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool)); { int n = arc_fit_size; for (int j = 0; j < n; j++) { float cur_angle = arc.polar_start_theta + (float) j / n * arc.angle_radians; if (cur_angle > 2 * PI) cur_angle -= 2 * PI; else if (cur_angle < 0) cur_angle += 2 * PI; Point tmp = arc.center + Point{arc.radius * std::cos(cur_angle), arc.radius * std::sin(cur_angle)}; m_extrusions.emplace_back(WipeTower::Extrusion(this->rotate(unscaled(tmp)), width, m_current_tool)); } m_extrusions.emplace_back(WipeTower::Extrusion(rot, width, m_current_tool)); } } m_gcode += arc.direction == ArcDirection::Arc_Dir_CCW ? "G3" : "G2"; const Vec2f center_offset = this->rotate(unscaled(arc.center)) - rotated_current_pos; m_gcode += set_format_X(rot.x()); m_gcode += set_format_Y(rot.y()); m_gcode += set_format_I(center_offset.x()); m_gcode += set_format_J(center_offset.y()); if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) { if (limit_flow != LimitFlow::None) { float e_speed = e / (((len == 0.f) ? std::abs(e) : len) / f * 60.f); float tmp = m_filpar[m_current_tool].max_e_speed; if (limit_flow == LimitFlow::LimitRammingFlow) tmp = m_filpar[m_current_tool].max_e_ramming_speed; f /= std::max(1.f, e_speed / tmp); } m_gcode += set_format_F(f); } m_current_pos.x() = x; m_current_pos.y() = y; // Update the elapsed time with a rough estimate. m_elapsed_time += ((len == 0.f) ? std::abs(e) : len) / m_current_feedrate * 60.f; m_gcode += "\n"; return *this; } WipeTowerWriter &extrude_explicit(const Vec2f &dest, float e, float f = 0.f, bool record_length = false, LimitFlow limit_flow = LimitFlow::LimitPrintFlow) { return extrude_explicit(dest.x(), dest.y(), e, f, record_length, limit_flow); } // Travel to a new XY position. f=0 means use the current value. WipeTowerWriter& travel(float x, float y, float f = 0.f) { return extrude_explicit(x, y, 0.f, f); } WipeTowerWriter& travel(const Vec2f &dest, float f = 0.f) { return extrude_explicit(dest.x(), dest.y(), 0.f, f); } // Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow. WipeTowerWriter &extrude(float x, float y, float f = 0.f, LimitFlow limit_flow = LimitFlow::LimitPrintFlow) { float dx = x - m_current_pos.x(); float dy = y - m_current_pos.y(); return extrude_explicit(x, y, std::sqrt(dx * dx + dy * dy) * m_extrusion_flow, f, false, limit_flow); } WipeTowerWriter &extrude_arc(ArcSegment &arc, float f = 0.f, LimitFlow limit_flow = LimitFlow::LimitPrintFlow) { return extrude_arc_explicit(arc, f, false , limit_flow); } WipeTowerWriter& extrude(const Vec2f &dest, const float f = 0.f) { return extrude(dest.x(), dest.y(), f); } WipeTowerWriter& rectangle(const Vec2f& ld,float width,float height,const float f = 0.f) { Vec2f corners[4]; corners[0] = ld; corners[1] = ld + Vec2f(width,0.f); corners[2] = ld + Vec2f(width,height); corners[3] = ld + Vec2f(0.f,height); int index_of_closest = 0; if (x()-ld.x() > ld.x()+width-x()) // closer to the right index_of_closest = 1; if (y()-ld.y() > ld.y()+height-y()) // closer to the top index_of_closest = (index_of_closest==0 ? 3 : 2); travel(corners[index_of_closest].x(), y()); // travel to the closest corner travel(x(),corners[index_of_closest].y()); int i = index_of_closest; do { ++i; if (i==4) i=0; extrude(corners[i], f); } while (i != index_of_closest); return (*this); } WipeTowerWriter &rectangle_fill_box(const WipeTower* wipe_tower, const Vec2f &ld, float width, float height, const float f = 0.f) { bool need_change_flow = wipe_tower->need_thick_bridge_flow(ld.y()); Vec2f corners[4]; corners[0] = ld; corners[1] = ld + Vec2f(width, 0.f); corners[2] = ld + Vec2f(width, height); corners[3] = ld + Vec2f(0.f, height); int index_of_closest = 0; if (x() - ld.x() > ld.x() + width - x()) // closer to the right index_of_closest = 1; if (y() - ld.y() > ld.y() + height - y()) // closer to the top index_of_closest = (index_of_closest == 0 ? 3 : 2); travel(corners[index_of_closest].x(), y()); // travel to the closest corner travel(x(), corners[index_of_closest].y()); int i = index_of_closest; bool flow_changed = false; do { ++i; if (i == 4) i = 0; if (need_change_flow) { if (i == 1) { // using bridge flow in bridge area, and add notes for gcode-check when flow changed set_extrusion_flow(wipe_tower->extrusion_flow(0.2)); append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(0.2) + "\n"); flow_changed = true; } else if (i == 2 && flow_changed) { set_extrusion_flow(wipe_tower->get_extrusion_flow()); append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(m_layer_height) + "\n"); } } extrude(corners[i], f); } while (i != index_of_closest); return (*this); } WipeTowerWriter &line(const WipeTower *wipe_tower, Vec2f p0, Vec2f p1,const float f = 0.f) { bool need_change_flow = wipe_tower->need_thick_bridge_flow(p0.y()); if (need_change_flow) { set_extrusion_flow(wipe_tower->extrusion_flow(0.2)); append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(0.2) + "\n"); } if (abs(x() - p0.x()) > abs(x() - p1.x())) std::swap(p0, p1); travel(p0.x(), y()); travel(x(), p0.y()); extrude(p1, f); if (need_change_flow) { set_extrusion_flow(wipe_tower->get_extrusion_flow()); append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(m_layer_height) + "\n"); } return (*this); } WipeTowerWriter &rectangle_fill_box(const WipeTower *wipe_tower, const WipeTower::box_coordinates &fill_box, std::vector &finish_rect_wipe_path, const float f = 0.f) { float width = fill_box.rd.x() - fill_box.ld.x(); float height = fill_box.ru.y() - fill_box.rd.y(); if (height > wipe_tower->m_perimeter_width - wipe_tower->WT_EPSILON) { rectangle_fill_box(wipe_tower, fill_box.ld, width, height, f); Vec2f target = (pos() == fill_box.ld ? fill_box.rd : (pos() == fill_box.rd ? fill_box.ru : (pos() == fill_box.ru ? fill_box.lu : fill_box.ld))); finish_rect_wipe_path.emplace_back(pos()); finish_rect_wipe_path.emplace_back(target); } else if (height > wipe_tower->WT_EPSILON) { line(wipe_tower, fill_box.ld, fill_box.rd); Vec2f target = (pos() == fill_box.ld ? fill_box.rd : fill_box.ld); finish_rect_wipe_path.emplace_back(pos()); finish_rect_wipe_path.emplace_back(target); } return (*this); } WipeTowerWriter& rectangle(const WipeTower::box_coordinates& box, const float f = 0.f) { rectangle(Vec2f(box.ld.x(), box.ld.y()), box.ru.x() - box.lu.x(), box.ru.y() - box.rd.y(), f); return (*this); } WipeTowerWriter &polygon(const Polygon &wall_polygon, const float f = 0.f) { Polyline pl = to_polyline(wall_polygon); pl.simplify(WT_SIMPLIFY_TOLERANCE_SCALED); pl.simplify_by_fitting_arc(SCALED_WIPE_TOWER_RESOLUTION); auto get_closet_idx = [this](std::vector &corners) -> int { Vec2f anchor{this->m_current_pos.x(), this->m_current_pos.y()}; int closestIndex = -1; float minDistance = std::numeric_limits::max(); for (int i = 0; i < corners.size(); ++i) { float distance = (corners[i].start - anchor).squaredNorm(); if (distance < minDistance) { minDistance = distance; closestIndex = i; } } return closestIndex; }; std::vector segments; for (int i = 0; i < pl.fitting_result.size(); i++) { if (pl.fitting_result[i].path_type == EMovePathType::Linear_move) { for (int j = pl.fitting_result[i].start_point_index; j < pl.fitting_result[i].end_point_index; j++) segments.push_back({unscaled(pl.points[j]), unscaled(pl.points[j + 1])}); } else { int beg = pl.fitting_result[i].start_point_index; int end = pl.fitting_result[i].end_point_index; segments.push_back({unscaled(pl.points[beg]), unscaled(pl.points[end])}); segments.back().is_arc = true; segments.back().arcsegment = pl.fitting_result[i].arc_data; } } int index_of_closest = get_closet_idx(segments); int i = index_of_closest; travel(segments[i].start); // travel to the closest points segments[i].is_arc ? extrude_arc(segments[i].arcsegment, f) : extrude(segments[i].end, f); do { i = (i + 1) % segments.size(); if (i == index_of_closest) break; segments[i].is_arc ? extrude_arc(segments[i].arcsegment, f) : extrude(segments[i].end, f); } while (1); return (*this); } WipeTowerWriter& load(float e, float f = 0.f) { if (e == 0.f && (f == 0.f || f == m_current_feedrate)) return *this; m_gcode += "G1"; if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } WipeTowerWriter& retract(float e, float f = 0.f) { return load(-e, f); } // Loads filament while also moving towards given points in x-axis (x feedrate is limited by cutting the distance short if necessary) WipeTowerWriter& load_move_x_advanced(float farthest_x, float loading_dist, float loading_speed, float max_x_speed = 50.f) { float time = std::abs(loading_dist / loading_speed); // time that the move must take float x_distance = std::abs(farthest_x - x()); // max x-distance that we can travel float x_speed = x_distance / time; // x-speed to do it in that time if (x_speed > max_x_speed) { // Necessary x_speed is too high - we must shorten the distance to achieve max_x_speed and still respect the time. x_distance = max_x_speed * time; x_speed = max_x_speed; } float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_distance; return extrude_explicit(end_point, y(), loading_dist, x_speed * 60.f, false, LimitFlow::None); } // Elevate the extruder head above the current print_z position. WipeTowerWriter& z_hop(float hop, float f = 0.f) { m_gcode += std::string("G1") + set_format_Z(m_current_z + hop); if (f != 0 && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } // Lower the extruder head back to the current print_z position. WipeTowerWriter& z_hop_reset(float f = 0.f) { return z_hop(0, f); } // Move to x1, +y_increment, // extrude quickly amount e to x2 with feed f. WipeTowerWriter& ram(float x1, float x2, float dy, float e0, float e, float f) { extrude_explicit(x1, m_current_pos.y() + dy, e0, f, true, LimitFlow::None); extrude_explicit(x2, m_current_pos.y(), e, 0.f, true, LimitFlow::None); return *this; } // Let the end of the pulled out filament cool down in the cooling tube // by moving up and down and moving the print head left / right // at the current Y position to spread the leaking material. WipeTowerWriter& cool(float x1, float x2, float e1, float e2, float f) { extrude_explicit(x1, m_current_pos.y(), e1, f, false, LimitFlow::None); extrude_explicit(x2, m_current_pos.y(), e2, 0.f, false, LimitFlow::None); return *this; } WipeTowerWriter& set_tool(size_t tool) { m_current_tool = tool; return *this; } // Set extruder temperature, don't wait by default. WipeTowerWriter& set_extruder_temp(int temperature, bool wait = false) { m_gcode += "M" + std::to_string(wait ? 109 : 104) + " S" + std::to_string(temperature) + "\n"; return *this; } // Wait for a period of time (seconds). WipeTowerWriter& wait(float time) { if (time==0.f) return *this; m_gcode += "G4 S" + Slic3r::float_to_string_decimal_point(time, 3) + "\n"; return *this; } // Set speed factor override percentage. WipeTowerWriter& speed_override(int speed) { m_gcode += "M220 S" + std::to_string(speed) + "\n"; return *this; } // Let the firmware back up the active speed override value. WipeTowerWriter& speed_override_backup() { // BBS: BBL machine don't support speed backup if (m_gcode_flavor == gcfMarlinLegacy || m_gcode_flavor == gcfMarlinFirmware) m_gcode += "M220 B\n"; return *this; } // Let the firmware restore the active speed override value. WipeTowerWriter& speed_override_restore() { // BBS: BBL machine don't support speed restore if (m_gcode_flavor == gcfMarlinLegacy || m_gcode_flavor == gcfMarlinFirmware) m_gcode += "M220 R\n"; return *this; } // Set digital trimpot motor WipeTowerWriter& set_extruder_trimpot(int current) { // BBS: don't control trimpot #if 0 if (m_gcode_flavor == gcfRepRapSprinter || m_gcode_flavor == gcfRepRapFirmware) m_gcode += "M906 E"; else m_gcode += "M907 E"; m_gcode += std::to_string(current) + "\n"; #endif return *this; } WipeTowerWriter& flush_planner_queue() { m_gcode += "G4 S0\n"; return *this; } // Reset internal extruder counter. WipeTowerWriter& reset_extruder() { m_gcode += "G92 E0\n"; return *this; } WipeTowerWriter& comment_with_value(const char *comment, int value) { m_gcode += std::string(";") + comment + std::to_string(value) + "\n"; return *this; } WipeTowerWriter& set_fan(unsigned speed) { if (speed == m_last_fan_speed) return *this; if (speed == 0) m_gcode += "M107\n"; else m_gcode += "M106 S" + std::to_string(unsigned(255.0 * speed / 100.0)) + "\n"; m_last_fan_speed = speed; return *this; } WipeTowerWriter& append(const std::string& text) { m_gcode += text; return *this; } const std::vector& wipe_path() const { return m_wipe_path; } WipeTowerWriter& add_wipe_point(const Vec2f& pt) { m_wipe_path.push_back(rotate(pt)); return *this; } WipeTowerWriter& add_wipe_point(float x, float y) { return add_wipe_point(Vec2f(x, y)); } WipeTowerWriter &add_wipe_path(const Polygon & polygon,double wipe_dist) { int closest_idx = polygon.closest_point_index(scaled(m_current_pos)); Polyline wipe_path = polygon.split_at_index(closest_idx); wipe_path.reverse(); for (int i = 0; i < wipe_path.size(); ++i) { if (wipe_dist < EPSILON) break; add_wipe_point(unscaled(wipe_path[i])); if (i != 0) wipe_dist -= (unscaled(wipe_path[i]) - unscaled(wipe_path[i - 1])).norm(); } return *this; } void generate_path(Polylines &pls, float feedrate, float retract_length, float retract_speed, bool used_fillet) { auto get_closet_idx = [this](std::vector &corners) -> int { Vec2f anchor{this->m_current_pos.x(), this->m_current_pos.y()}; int closestIndex = -1; float minDistance = std::numeric_limits::max(); for (int i = 0; i < corners.size(); ++i) { float distance = (corners[i].start - anchor).squaredNorm(); if (distance < minDistance) { minDistance = distance; closestIndex = i; } } return closestIndex; }; for (auto &pl : pls) pl.simplify_by_fitting_arc(SCALED_WIPE_TOWER_RESOLUTION); std::vector segments; for (const auto &pl : pls) { if (pl.points.size()<2) continue; for (int i = 0; i < pl.fitting_result.size(); i++) { if (pl.fitting_result[i].path_type == EMovePathType::Linear_move) { for (int j = pl.fitting_result[i].start_point_index; j < pl.fitting_result[i].end_point_index; j++) segments.push_back({unscaled(pl.points[j]), unscaled(pl.points[j + 1])}); } else { int beg = pl.fitting_result[i].start_point_index; int end = pl.fitting_result[i].end_point_index; segments.push_back({unscaled(pl.points[beg]), unscaled(pl.points[end])}); segments.back().is_arc = true; segments.back().arcsegment = pl.fitting_result[i].arc_data; } } } int index_of_closest = get_closet_idx(segments); int i = index_of_closest; travel(segments[i].start); // travel to the closest points segments[i].is_arc? extrude_arc(segments[i].arcsegment,feedrate) : extrude(segments[i].end, feedrate); do { i = (i + 1) % segments.size(); if (i == index_of_closest) break; float dx = segments[i].start.x() - m_current_pos.x(); float dy = segments[i].start.y() - m_current_pos.y(); float len = std::sqrt(dx * dx + dy * dy); if (len > EPSILON) { retract(retract_length, retract_speed); travel(segments[i].start, 600.); retract(-retract_length, retract_speed); } segments[i].is_arc ? extrude_arc(segments[i].arcsegment, feedrate) : extrude(segments[i].end, feedrate); } while (1); } void spiral_flat_ironing(const Vec2f ¢er, float area, float step_length, float feedrate) { float edge_length = std::sqrt(area); Vec2f box_max = center + Vec2f{step_length, step_length}; Vec2f box_min = center - Vec2f{step_length, step_length}; int n = std::ceil(edge_length / step_length / 2.f); assert(n > 0); while (n--) { travel(box_max.x(), m_current_pos.y(), feedrate); travel(m_current_pos.x(), box_max.y(), feedrate); travel(box_min.x(), m_current_pos.y(), feedrate); travel(m_current_pos.x(), box_min.y(), feedrate); box_max += Vec2f{step_length, step_length}; box_min -= Vec2f{step_length, step_length}; } } private: Vec2f m_start_pos; Vec2f m_current_pos; std::vector m_wipe_path; float m_current_z; float m_current_feedrate; size_t m_current_tool; float m_layer_height; float m_extrusion_flow; bool m_preview_suppressed; std::string m_gcode; std::vector m_extrusions; float m_elapsed_time; float m_internal_angle = 0.f; float m_y_shift = 0.f; float m_wipe_tower_width = 0.f; float m_wipe_tower_depth = 0.f; unsigned m_last_fan_speed = 0; int current_temp = -1; #if ENABLE_GCODE_VIEWER_DATA_CHECKING const float m_default_analyzer_line_width; #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING float m_used_filament_length = 0.f; GCodeFlavor m_gcode_flavor; const std::vector& m_filpar; std::string set_format_X(float x) { m_current_pos.x() = x; return " X" + Slic3r::float_to_string_decimal_point(x, 3); } std::string set_format_Y(float y) { m_current_pos.y() = y; return " Y" + Slic3r::float_to_string_decimal_point(y, 3); } std::string set_format_Z(float z) { return " Z" + Slic3r::float_to_string_decimal_point(z, 3); } std::string set_format_E(float e) { return " E" + Slic3r::float_to_string_decimal_point(e, 4); } std::string set_format_F(float f) { char buf[64]; sprintf(buf, " F%d", int(floor(f + 0.5f))); m_current_feedrate = f; return buf; } std::string set_format_I(float i) { return " I" + Slic3r::float_to_string_decimal_point(i, 3); } std::string set_format_J(float j) { return " J" + Slic3r::float_to_string_decimal_point(j, 3); } WipeTowerWriter& operator=(const WipeTowerWriter &rhs); // Rotate the point around center of the wipe tower about given angle (in degrees) Vec2f rotate(Vec2f pt) const { pt.x() -= m_wipe_tower_width / 2.f; pt.y() += m_y_shift - m_wipe_tower_depth / 2.f; double angle = m_internal_angle * float(M_PI/180.); double c = cos(angle); double s = sin(angle); return Vec2f(float(pt.x() * c - pt.y() * s) + m_wipe_tower_width / 2.f, float(pt.x() * s + pt.y() * c) + m_wipe_tower_depth / 2.f); } }; // class WipeTowerWriter WipeTower::ToolChangeResult WipeTower::construct_tcr(WipeTowerWriter& writer, bool priming, size_t old_tool, bool is_finish, bool is_tool_change, float purge_volume) const { ToolChangeResult result; result.priming = priming; result.initial_tool = int(old_tool); result.new_tool = int(m_current_tool); result.print_z = m_z_pos; result.layer_height = m_layer_height; result.elapsed_time = writer.elapsed_time(); result.start_pos = writer.start_pos_rotated(); result.end_pos = priming ? writer.pos() : writer.pos_rotated(); result.gcode = std::move(writer.gcode()); result.extrusions = std::move(writer.extrusions()); result.wipe_path = std::move(writer.wipe_path()); result.is_finish_first = is_finish; result.nozzle_change_result = m_nozzle_change_result; result.is_tool_change = is_tool_change; result.tool_change_start_pos = is_tool_change ? result.start_pos : Vec2f(0, 0); // BBS result.purge_volume = purge_volume; return result; } WipeTower::ToolChangeResult WipeTower::construct_block_tcr(WipeTowerWriter &writer, bool priming, size_t filament_id, bool is_finish, float purge_volume) const { ToolChangeResult result; result.priming = priming; result.initial_tool = int(filament_id); result.new_tool = int(filament_id); result.print_z = m_z_pos; result.layer_height = m_layer_height; result.elapsed_time = writer.elapsed_time(); result.start_pos = writer.start_pos_rotated(); result.end_pos = priming ? writer.pos() : writer.pos_rotated(); result.gcode = std::move(writer.gcode()); result.extrusions = std::move(writer.extrusions()); result.wipe_path = std::move(writer.wipe_path()); result.is_finish_first = is_finish; result.is_tool_change = false; result.tool_change_start_pos = Vec2f(0, 0); // BBS result.purge_volume = purge_volume; return result; } // BBS const std::map WipeTower::min_depth_per_height = { {5.f,5.f}, {100.f, 20.f}, {250.f, 40.f}, {350.f, 60.f} }; float WipeTower::get_limit_depth_by_height(float max_height) { float min_wipe_tower_depth = 0.f; auto iter = WipeTower::min_depth_per_height.begin(); while (iter != WipeTower::min_depth_per_height.end()) { auto curr_height_to_depth = *iter; // This is the case that wipe tower height is lower than the first min_depth_to_height member. if (curr_height_to_depth.first >= max_height) { min_wipe_tower_depth = curr_height_to_depth.second; break; } iter++; // If curr_height_to_depth is the last member, use its min_depth. if (iter == WipeTower::min_depth_per_height.end()) { min_wipe_tower_depth = curr_height_to_depth.second; break; } // If wipe tower height is between the current and next member, set the min_depth as linear interpolation between them auto next_height_to_depth = *iter; if (next_height_to_depth.first > max_height) { float height_base = curr_height_to_depth.first; float height_diff = next_height_to_depth.first - curr_height_to_depth.first; float min_depth_base = curr_height_to_depth.second; float depth_diff = next_height_to_depth.second - curr_height_to_depth.second; min_wipe_tower_depth = min_depth_base + (max_height - curr_height_to_depth.first) / height_diff * depth_diff; break; } } return min_wipe_tower_depth; } float WipeTower::get_auto_brim_by_height(float max_height) { if (max_height < 100) return max_height/100.f * 8.f; return 8.f; } Vec2f WipeTower::move_box_inside_box(const BoundingBox &box1, const BoundingBox &box2,int scaled_offset) { Vec2f res{0, 0}; if (box1.size()[0] >= box2.size()[0]- 2*scaled_offset || box1.size()[1] >= box2.size()[1]-2*scaled_offset) return res; if (box1.max[0] > box2.max[0] - scaled_offset) { res[0] = unscaled((box2.max[0] - scaled_offset) - box1.max[0]); } else if (box1.min[0] < box2.min[0] + scaled_offset) { res[0] = unscaled((box2.min[0] + scaled_offset) - box1.min[0]); } if (box1.max[1] > box2.max[1] - scaled_offset) { res[1] = unscaled((box2.max[1] - scaled_offset) - box1.max[1]); } else if (box1.min[1] < box2.min[1] + scaled_offset) { res[1] = unscaled((box2.min[1] + scaled_offset) - box1.min[1]); } return res; } Polygon WipeTower::rib_section(float width, float depth, float rib_length, float rib_width,bool fillet_wall) { Polygon res; res.points.resize(16); float theta = std::atan(width / depth); float costheta = std::cos(theta); float sintheta = std::sin(theta); float w = rib_width / 2.f; float diag = std::sqrt(width * width + depth * depth); float l = (rib_length - diag) / 2; Vec2f diag_dir1 = Vec2f{width, depth}.normalized(); Vec2f diag_dir1_perp{-diag_dir1[1], diag_dir1[0]}; Vec2f diag_dir2 = Vec2f{-width, depth}.normalized(); Vec2f diag_dir2_perp{-diag_dir2[1], diag_dir2[0]}; std::vector p{{0, 0}, {width, 0}, {width, depth}, {0, depth}}; Polyline p_render; for (auto &x : p) p_render.points.push_back(scaled(x)); res.points[0] = scaled(Vec2f{p[0].x(), p[0].y() + w / sintheta}); res.points[1] = scaled(Vec2f{p[0] - diag_dir1 * l + diag_dir1_perp * w}); res.points[2] = scaled(Vec2f{p[0] - diag_dir1 * l - diag_dir1_perp * w}); res.points[3] = scaled(Vec2f{p[0].x() + w / costheta, p[0].y()}); res.points[4] = scaled(Vec2f{p[1].x() - w / costheta, p[1].y()}); res.points[5] = scaled(Vec2f{p[1] - diag_dir2 * l + diag_dir2_perp * w}); res.points[6] = scaled(Vec2f{p[1] - diag_dir2 * l - diag_dir2_perp * w}); res.points[7] = scaled(Vec2f{p[1].x(), p[1].y() + w / sintheta}); res.points[8] = scaled(Vec2f{p[2].x(), p[2].y() - w / sintheta}); res.points[9] = scaled(Vec2f{p[2] + diag_dir1 * l - diag_dir1_perp * w}); res.points[10] = scaled(Vec2f{p[2] + diag_dir1 * l + diag_dir1_perp * w}); res.points[11] = scaled(Vec2f{p[2].x() - w / costheta, p[2].y()}); res.points[12] = scaled(Vec2f{p[3].x() + w / costheta, p[3].y()}); res.points[13] = scaled(Vec2f{p[3] + diag_dir2 * l - diag_dir2_perp * w}); res.points[14] = scaled(Vec2f{p[3] + diag_dir2 * l + diag_dir2_perp * w}); res.points[15] = scaled(Vec2f{p[3].x(), p[3].y() - w / sintheta}); res.remove_duplicate_points(); if (fillet_wall) { res = rounding_polygon(res); } res.points.shrink_to_fit(); return res; } TriangleMesh WipeTower::its_make_rib_tower(float width, float depth, float height, float rib_length, float rib_width, bool fillet_wall) { TriangleMesh res; Polygon bottom = rib_section(width, depth, rib_length, rib_width, fillet_wall); Polygon top = rib_section(width, depth, std::sqrt(width * width + depth * depth), rib_width, fillet_wall); if (fillet_wall) assert(bottom.points.size() == top.points.size()); int offset = bottom.points.size(); res.its.vertices.reserve(offset * 2); auto faces_bottom = Triangulation::triangulate(bottom); auto faces_top = Triangulation::triangulate(top); res.its.indices.reserve(offset * 2 + faces_bottom.size() + faces_top.size()); for (auto &t : faces_bottom) res.its.indices.push_back({t[1], t[0], t[2]}); for (auto &t : faces_top) res.its.indices.push_back({t[0] + offset, t[1] + offset, t[2] + offset}); for (int i = 0; i < bottom.size(); i++) res.its.vertices.push_back({unscaled(bottom[i][0]), unscaled(bottom[i][1]), 0}); for (int i = 0; i < top.size(); i++) res.its.vertices.push_back({unscaled(top[i][0]), unscaled(top[i][1]), height}); for (int i = 0; i < offset; i++) { int a = i; int b = (i + 1) % offset; int c = i + offset; int d = b + offset; res.its.indices.push_back({a, b, c}); res.its.indices.push_back({d, c, b}); } return res; } TriangleMesh WipeTower::its_make_rib_brim(const Polygon& brim, float layer_height) { TriangleMesh res; int offset = brim.size(); res.its.vertices.reserve(brim.size() * 2); auto faces= Triangulation::triangulate(brim); res.its.indices.reserve(brim.size() * 2 + 2 * faces.size()); for (auto &t : faces) res.its.indices.push_back({t[1], t[0], t[2]}); for (auto &t : faces) res.its.indices.push_back({t[0] + offset, t[1] + offset, t[2] + offset}); for (int i = 0; i < brim.size(); i++) res.its.vertices.push_back({unscaled(brim[i][0]), unscaled(brim[i][1]), 0}); for (int i = 0; i < brim.size(); i++) res.its.vertices.push_back({unscaled(brim[i][0]), unscaled(brim[i][1]), layer_height}); for (int i = 0; i < offset; i++) { int a = i; int b = (i + 1) % offset; int c = i + offset; int d = b + offset; res.its.indices.push_back({a, b, c}); res.its.indices.push_back({d, c, b}); } return res; } WipeTower::WipeTower(const PrintConfig& config, int plate_idx, Vec3d plate_origin, size_t initial_tool, const float wipe_tower_height) : m_semm(config.single_extruder_multi_material.value), m_wipe_tower_pos(config.wipe_tower_x.get_at(plate_idx), config.wipe_tower_y.get_at(plate_idx)), m_wipe_tower_width(float(config.prime_tower_width)), // BBS m_wipe_tower_height(wipe_tower_height), m_wipe_tower_rotation_angle(float(config.wipe_tower_rotation_angle)), m_wipe_tower_brim_width(float(config.prime_tower_brim_width)), m_y_shift(0.f), m_z_pos(0.f), //m_bridging(float(config.wipe_tower_bridging)), m_bridging(10.f), m_no_sparse_layers(config.wipe_tower_no_sparse_layers), m_gcode_flavor(config.gcode_flavor), m_travel_speed(config.travel_speed.get_at(get_extruder_index(config, (unsigned int)initial_tool))), m_current_tool(initial_tool), //wipe_volumes(flush_matrix) m_enable_timelapse_print(config.timelapse_type.value == TimelapseType::tlSmooth), m_filaments_change_length(config.filament_change_length.values), m_is_multi_extruder(config.nozzle_diameter.size() > 1), m_use_gap_wall(config.prime_tower_skip_points.value), m_use_rib_wall(config.prime_tower_rib_wall.value), m_extra_rib_length((float)config.prime_tower_extra_rib_length.value), m_rib_width((float)config.prime_tower_rib_width.value), m_used_fillet(config.prime_tower_fillet_wall.value), m_extra_spacing((float)config.prime_tower_infill_gap.value/100.f), m_tower_framework(config.prime_tower_enable_framework.value), m_max_speed((float)config.prime_tower_max_speed.value*60.f), m_printable_height(config.extruder_printable_height.values) { // Read absolute value of first layer speed, if given as percentage, // it is taken over following default. Speeds from config are not // easily accessible here. const float default_speed = 60.f; m_first_layer_speed = config.initial_layer_speed.get_at(get_extruder_index(config, (unsigned int)initial_tool)); if (m_first_layer_speed == 0.f) // just to make sure autospeed doesn't break it. m_first_layer_speed = default_speed / 2.f; // If this is a single extruder MM printer, we will use all the SE-specific config values. // Otherwise, the defaults will be used to turn off the SE stuff. // BBS: remove useless config #if 0 if (m_semm) { m_cooling_tube_retraction = float(config.cooling_tube_retraction); m_cooling_tube_length = float(config.cooling_tube_length); m_parking_pos_retraction = float(config.parking_pos_retraction); m_extra_loading_move = float(config.extra_loading_move); m_set_extruder_trimpot = config.high_current_on_filament_swap; } #endif // Calculate where the priming lines should be - very naive test not detecting parallelograms etc. const std::vector& bed_points = config.printable_area.values; BoundingBoxf bb(bed_points); m_bed_width = float(bb.size().x()); m_bed_shape = (bed_points.size() == 4 ? RectangularBed : CircularBed); if (m_bed_shape == CircularBed) { // this may still be a custom bed, check that the points are roughly on a circle double r2 = std::pow(m_bed_width/2., 2.); double lim2 = std::pow(m_bed_width/10., 2.); Vec2d center = bb.center(); for (const Vec2d& pt : bed_points) if (std::abs(std::pow(pt.x()-center.x(), 2.) + std::pow(pt.y()-center.y(), 2.) - r2) > lim2) { m_bed_shape = CustomBed; break; } } m_bed_bottom_left = m_bed_shape == RectangularBed ? Vec2f(bed_points.front().x(), bed_points.front().y()) : Vec2f::Zero(); flat_ironing = config.nozzle_diameter.values.size() > 1;//Only used for dual extrusion m_last_layer_id.resize(config.nozzle_diameter.size(), -1); } void WipeTower::set_extruder(size_t idx, const PrintConfig& config) { //while (m_filpar.size() < idx+1) // makes sure the required element is in the vector m_filpar.push_back(FilamentParameters()); m_filpar[idx].material = config.filament_type.get_at(idx); m_filpar[idx].is_soluble = config.filament_soluble.get_at(idx); // BBS m_filpar[idx].is_support = config.filament_is_support.get_at(idx); m_filpar[idx].nozzle_temperature = config.nozzle_temperature.get_at(idx); m_filpar[idx].nozzle_temperature_initial_layer = config.nozzle_temperature_initial_layer.get_at(idx); m_filpar[idx].category = config.filament_adhesiveness_category.get_at(idx); // If this is a single extruder MM printer, we will use all the SE-specific config values. // Otherwise, the defaults will be used to turn off the SE stuff. // BBS: remove useless config #if 0 if (m_semm) { m_filpar[idx].loading_speed = float(config.filament_loading_speed.get_at(idx)); m_filpar[idx].loading_speed_start = float(config.filament_loading_speed_start.get_at(idx)); m_filpar[idx].unloading_speed = float(config.filament_unloading_speed.get_at(idx)); m_filpar[idx].unloading_speed_start = float(config.filament_unloading_speed_start.get_at(idx)); m_filpar[idx].delay = float(config.filament_toolchange_delay.get_at(idx)); m_filpar[idx].cooling_moves = config.filament_cooling_moves.get_at(idx); m_filpar[idx].cooling_initial_speed = float(config.filament_cooling_initial_speed.get_at(idx)); m_filpar[idx].cooling_final_speed = float(config.filament_cooling_final_speed.get_at(idx)); } #endif m_filpar[idx].filament_area = float((M_PI/4.f) * pow(config.filament_diameter.get_at(idx), 2)); // all extruders are assumed to have the same filament diameter at this point float nozzle_diameter = float(config.nozzle_diameter.get_at(idx)); m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM float max_vol_speed = float(config.filament_max_volumetric_speed.get_at(idx)); if (max_vol_speed!= 0.f) m_filpar[idx].max_e_speed = (max_vol_speed / filament_area()); float ramming_vol_speed = float(config.filament_ramming_volumetric_speed.get_at(idx)); if (config.filament_ramming_volumetric_speed.is_nil(idx) || is_approx(config.filament_ramming_volumetric_speed.get_at(idx),-1.)) ramming_vol_speed = max_vol_speed; m_filpar[idx].max_e_ramming_speed = (ramming_vol_speed / filament_area()); std::unordered_set uniqueElements(m_filament_map.begin(), m_filament_map.end()); m_filpar[idx].precool_t.resize(uniqueElements.size(), 0.f); m_filpar[idx].precool_t_first_layer.resize(uniqueElements.size(), 0.f); if (config.enable_pre_heating.value && !config.filament_pre_cooling_temperature.is_nil(idx) && config.filament_pre_cooling_temperature.get_at(idx) != 0) { for (int i = 0; i < m_filpar[idx].precool_t.size(); i++) { m_filpar[idx].precool_t[i] = std::max(0.f, float(config.nozzle_temperature.get_at(idx)) - float(config.filament_pre_cooling_temperature.get_at(idx))) / float(config.hotend_cooling_rate.values.at(i)); m_filpar[idx].precool_t_first_layer[i] = std::max(0.f, float(config.nozzle_temperature_initial_layer.get_at(idx)) - float(config.filament_pre_cooling_temperature.get_at(idx))) / float(config.hotend_cooling_rate.values.at(i)); } } if (!config.filament_ramming_travel_time.is_nil(idx)) m_filpar[idx].ramming_travel_time = float(config.filament_ramming_travel_time.get_at(idx)); m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter m_nozzle_change_perimeter_width = 2*m_perimeter_width; // BBS: remove useless config #if 0 if (m_semm) { std::istringstream stream{config.filament_ramming_parameters.get_at(idx)}; float speed = 0.f; stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator; m_filpar[idx].ramming_line_width_multiplicator /= 100; m_filpar[idx].ramming_step_multiplicator /= 100; while (stream >> speed) m_filpar[idx].ramming_speed.push_back(speed); } #endif m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later m_filpar[idx].retract_length = config.retraction_length.get_at(idx); m_filpar[idx].retract_speed = config.retraction_speed.get_at(idx); m_filpar[idx].wipe_dist = config.wipe_distance.get_at(idx); } // Returns gcode to prime the nozzles at the front edge of the print bed. std::vector WipeTower::prime( // print_z of the first layer. float initial_layer_print_height, // Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object. const std::vector &tools, // If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower. // If false, the last priming are will be large enough to wipe the last extruder sufficiently. bool /*last_wipe_inside_wipe_tower*/) { return std::vector(); } Vec2f WipeTower::get_next_pos(const WipeTower::box_coordinates &cleaning_box, float wipe_length) { const float &xl = cleaning_box.ld.x(); const float &xr = cleaning_box.rd.x(); int line_count = wipe_length / (xr - xl); float dy = m_layer_info->extra_spacing * m_perimeter_width; float y_offset = float(line_count) * dy; const Vec2f pos_offset = Vec2f(0.f, m_depth_traversed); Vec2f res; int index = m_cur_layer_id % 4; //Vec2f offset = m_use_gap_wall ? Vec2f(5 * m_perimeter_width, 0) : Vec2f{0, 0}; Vec2f offset = Vec2f{0, 0}; switch (index % 4) { case 0: res = offset +cleaning_box.ld + pos_offset; break; case 1: res = -offset +cleaning_box.rd + pos_offset + Vec2f(0, y_offset); break; case 2: res = -offset+ cleaning_box.rd + pos_offset; break; case 3: res = offset+cleaning_box.ld + pos_offset + Vec2f(0, y_offset); break; default: break; } return res; } WipeTower::ToolChangeResult WipeTower::tool_change(size_t tool, bool extrude_perimeter, bool first_toolchange_to_nonsoluble) { m_nozzle_change_result.gcode.clear(); if (!m_filament_map.empty() && tool < m_filament_map.size() && m_filament_map[m_current_tool] != m_filament_map[tool]) { m_nozzle_change_result = nozzle_change(m_current_tool, tool); } size_t old_tool = m_current_tool; float wipe_depth = 0.f; float wipe_length = 0.f; float purge_volume = 0.f; float nozzle_change_depth = 0.f; // Finds this toolchange info if (tool != (unsigned int)(-1)) { for (const auto &b : m_layer_info->tool_changes) if ( b.new_tool == tool ) { wipe_length = b.wipe_length; wipe_depth = b.required_depth; purge_volume = b.purge_volume; nozzle_change_depth = b.nozzle_change_depth; break; } } else { // Otherwise we are going to Unload only. And m_layer_info would be invalid. } box_coordinates cleaning_box( Vec2f(m_perimeter_width, m_perimeter_width), m_wipe_tower_width - 2 * m_perimeter_width, (tool != (unsigned int)(-1) ? wipe_depth + m_depth_traversed - m_perimeter_width : m_wipe_tower_depth - m_perimeter_width)); WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift + (tool!=(unsigned int)(-1) && (m_current_shape == SHAPE_REVERSED) ? m_layer_info->depth - m_layer_info->toolchanges_depth(): 0.f)) .append(";--------------------\n" "; CP TOOLCHANGE START\n") .comment_with_value(" toolchange #", m_num_tool_changes + 1); // the number is zero-based if (tool != (unsigned)(-1)) writer.append(std::string("; material : " + (m_current_tool < m_filpar.size() ? m_filpar[m_current_tool].material : "(NONE)") + " -> " + m_filpar[tool].material + "\n").c_str()) .append(";--------------------\n"); writer.speed_override_backup(); writer.speed_override(100); float feedrate = is_first_layer() ? std::min(m_first_layer_speed * 60.f, 5400.f) : std::min(60.0f * m_filpar[m_current_tool].max_e_speed / m_extrusion_flow, 5400.f); // Increase the extruder driver current to allow fast ramming. //BBS //if (m_set_extruder_trimpot) // writer.set_extruder_trimpot(750); // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. if (tool != (unsigned int)-1){ // This is not the last change. writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, is_first_layer() ? m_filpar[tool].nozzle_temperature_initial_layer : m_filpar[tool].nozzle_temperature); toolchange_Change(writer, tool, m_filpar[tool].material); // Change the tool, set a speed override for soluble and flex materials. toolchange_Load(writer, cleaning_box); // BBS //writer.travel(writer.x(), writer.y()-m_perimeter_width); // cooling and loading were done a bit down the road if (m_is_multi_extruder && is_tpu_filament(tool)) { float dy = 2 * m_perimeter_width; float nozzle_change_speed = 60.0f * m_filpar[tool].max_e_speed / m_extrusion_flow; nozzle_change_speed *= 0.25; const float &xl = cleaning_box.ld.x(); const float &xr = cleaning_box.rd.x(); Vec2f start_pos = m_nozzle_change_result.start_pos + Vec2f(0, m_perimeter_width); bool left_to_right = true; double tpu_travel_length = 5; double e_flow = extrusion_flow(m_layer_height); double length = tpu_travel_length / e_flow; int tpu_line_count = length / (m_wipe_tower_width - 2 * m_perimeter_width) + 1; writer.travel(start_pos); for (int i = 0; true; ++i) { if (left_to_right) writer.travel(xr - m_perimeter_width, writer.y(), nozzle_change_speed); else writer.travel(xl + m_perimeter_width, writer.y(), nozzle_change_speed); if (i == tpu_line_count - 1) break; writer.travel(writer.x(), writer.y() + dy); left_to_right = !left_to_right; } } Vec2f initial_position = get_next_pos(cleaning_box, wipe_length); writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); if (extrude_perimeter) { box_coordinates wt_box(Vec2f(0.f, (m_current_shape == SHAPE_REVERSED) ? m_layer_info->toolchanges_depth() - m_layer_info->depth : 0.f), m_wipe_tower_width, m_layer_info->depth + m_perimeter_width); // align the perimeter Vec2f pos = initial_position; switch (m_cur_layer_id % 4){ case 0: pos = wt_box.ld; break; case 1: pos = wt_box.rd; break; case 2: pos = wt_box.ru; break; case 3: pos = wt_box.lu; break; default: break; } writer.set_initial_position(pos, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); wt_box = align_perimeter(wt_box); writer.rectangle(wt_box, feedrate); } writer.travel(initial_position); toolchange_Wipe(writer, cleaning_box, wipe_length); // Wipe the newly loaded filament until the end of the assigned wipe area. writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); ++ m_num_tool_changes; } else toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, m_filpar[m_current_tool].nozzle_temperature); m_depth_traversed += (wipe_depth - nozzle_change_depth); //BBS //if (m_set_extruder_trimpot) // writer.set_extruder_trimpot(550); // Reset the extruder current to a normal value. writer.speed_override_restore(); writer.feedrate(m_travel_speed * 60.f) .flush_planner_queue() .reset_extruder() .append("; CP TOOLCHANGE END\n" ";------------------\n" "\n\n"); // Ask our writer about how much material was consumed: if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); return construct_tcr(writer, false, old_tool, false, true, purge_volume); } WipeTower::NozzleChangeResult WipeTower::nozzle_change(int old_filament_id, int new_filament_id) { float wipe_depth = 0.f; float wipe_length = 0.f; float purge_volume = 0.f; int nozzle_change_line_count = 0; // Finds this toolchange info if (new_filament_id != (unsigned int) (-1)) { for (const auto &b : m_layer_info->tool_changes) if (b.new_tool == new_filament_id) { wipe_length = b.wipe_length; wipe_depth = b.required_depth; purge_volume = b.purge_volume; if (has_tpu_filament()) nozzle_change_line_count = ((b.nozzle_change_depth + WT_EPSILON) / m_nozzle_change_perimeter_width) / 2; else nozzle_change_line_count = (b.nozzle_change_depth + WT_EPSILON) / m_nozzle_change_perimeter_width; break; } } else { // Otherwise we are going to Unload only. And m_layer_info would be invalid. } auto format_nozzle_change_line = [](bool start, int old_filament_id, int new_filament_id)->std::string { char buff[64]; std::string tag = start ? GCodeProcessor::reserved_tag(GCodeProcessor::ETags::NozzleChangeStart) : GCodeProcessor::reserved_tag(GCodeProcessor::ETags::NozzleChangeEnd); snprintf(buff, sizeof(buff), ";%s OF%d NF%d\n", tag.c_str(), old_filament_id, new_filament_id); return std::string(buff); }; float nozzle_change_speed = 60.0f * m_filpar[m_current_tool].max_e_speed / m_extrusion_flow; if (is_tpu_filament(m_current_tool)) { nozzle_change_speed *= 0.25; } WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_extrusion_flow(m_extrusion_flow) .set_y_shift(m_y_shift + (new_filament_id != (unsigned int) (-1) && (m_current_shape == SHAPE_REVERSED) ? m_layer_info->depth - m_layer_info->toolchanges_depth() : 0.f)) .append(format_nozzle_change_line(true,old_filament_id,new_filament_id)); box_coordinates cleaning_box(Vec2f(m_perimeter_width, m_perimeter_width), m_wipe_tower_width - 2 * m_perimeter_width, (new_filament_id != (unsigned int) (-1) ? wipe_depth + m_depth_traversed - m_perimeter_width : m_wipe_tower_depth - m_perimeter_width)); Vec2f initial_position = cleaning_box.ld + Vec2f(0.f, m_depth_traversed); writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); const float &xl = cleaning_box.ld.x(); const float &xr = cleaning_box.rd.x(); float dy = m_layer_info->extra_spacing * m_perimeter_width; if (has_tpu_filament()) dy = 2 * m_perimeter_width; float start_y = writer.y(); m_left_to_right = true; bool need_change_flow = false; // now the wiping itself: for (int i = 0; true; ++i) { if (m_left_to_right) writer.extrude(xr + wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), nozzle_change_speed); else writer.extrude(xl - wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), nozzle_change_speed); if (writer.y() - float(EPSILON) > cleaning_box.lu.y()) break; // in case next line would not fit if (i == nozzle_change_line_count - 1) break; // stepping to the next line: writer.extrude(writer.x(), writer.y() + dy); m_left_to_right = !m_left_to_right; } writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow. m_depth_traversed += nozzle_change_line_count * dy; NozzleChangeResult result; if (is_tpu_filament(m_current_tool)) { bool left_to_right = !m_left_to_right; double tpu_travel_length = 5; double e_flow = extrusion_flow(m_layer_height); double length = tpu_travel_length / e_flow; int tpu_line_count = length / (m_wipe_tower_width - 2 * m_perimeter_width) + 1; writer.travel(writer.x(), writer.y() - m_perimeter_width); for (int i = 0; true; ++i) { if (left_to_right) writer.travel(xr - m_perimeter_width, writer.y(), nozzle_change_speed); else writer.travel(xl + m_perimeter_width, writer.y(), nozzle_change_speed); if (i == tpu_line_count - 1) break; writer.travel(writer.x(), writer.y() - dy); left_to_right = !left_to_right; } } else { result.wipe_path.push_back(writer.pos()); if (m_left_to_right) { result.wipe_path.push_back(Vec2f(0, writer.y())); } else { result.wipe_path.push_back(Vec2f(m_wipe_tower_width, writer.y())); } } writer.append(format_nozzle_change_line(false, old_filament_id, new_filament_id)); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos(); result.gcode = writer.gcode(); return result; } // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. void WipeTower::toolchange_Unload( WipeTowerWriter &writer, const box_coordinates &cleaning_box, const std::string& current_material, const int new_temperature) { // BBS: toolchange unload is done in change_filament_gcode #if 0 float xl = cleaning_box.ld.x() + 1.f * m_perimeter_width; float xr = cleaning_box.rd.x() - 1.f * m_perimeter_width; const float line_width = m_perimeter_width * m_filpar[m_current_tool].ramming_line_width_multiplicator; // desired ramming line thickness const float y_step = line_width * m_filpar[m_current_tool].ramming_step_multiplicator * m_extra_spacing; // spacing between lines in mm writer.append("; CP TOOLCHANGE UNLOAD\n") .change_analyzer_line_width(line_width); unsigned i = 0; // iterates through ramming_speed m_left_to_right = true; // current direction of ramming float remaining = xr - xl ; // keeps track of distance to the next turnaround float e_done = 0; // measures E move done from each segment writer.travel(xl, cleaning_box.ld.y() + m_depth_traversed + y_step/2.f ); // move to starting position // if the ending point of the ram would end up in mid air, align it with the end of the wipe tower: if (m_layer_info > m_plan.begin() && m_layer_info < m_plan.end() && (m_layer_info-1!=m_plan.begin() || !m_adhesion )) { // this is y of the center of previous sparse infill border float sparse_beginning_y = 0.f; if (m_current_shape == SHAPE_REVERSED) sparse_beginning_y += ((m_layer_info-1)->depth - (m_layer_info-1)->toolchanges_depth()) - ((m_layer_info)->depth-(m_layer_info)->toolchanges_depth()) ; else sparse_beginning_y += (m_layer_info-1)->toolchanges_depth() + m_perimeter_width; float sum_of_depths = 0.f; for (const auto& tch : m_layer_info->tool_changes) { // let's find this toolchange if (tch.old_tool == m_current_tool) { sum_of_depths += tch.ramming_depth; float ramming_end_y = sum_of_depths; ramming_end_y -= (y_step/m_extra_spacing-m_perimeter_width) / 2.f; // center of final ramming line if ( (m_current_shape == SHAPE_REVERSED && ramming_end_y < sparse_beginning_y - 0.5f*m_perimeter_width ) || (m_current_shape == SHAPE_NORMAL && ramming_end_y > sparse_beginning_y + 0.5f*m_perimeter_width ) ) { writer.extrude(xl + tch.first_wipe_line-1.f*m_perimeter_width,writer.y()); remaining -= tch.first_wipe_line-1.f*m_perimeter_width; } break; } sum_of_depths += tch.required_depth; } } writer.disable_linear_advance(); // now the ramming itself: while (i < m_filpar[m_current_tool].ramming_speed.size()) { const float x = volume_to_length(m_filpar[m_current_tool].ramming_speed[i] * 0.25f, line_width, m_layer_height); const float e = m_filpar[m_current_tool].ramming_speed[i] * 0.25f / filament_area(); // transform volume per sec to E move; const float dist = std::min(x - e_done, remaining); // distance to travel for either the next 0.25s, or to the next turnaround const float actual_time = dist/x * 0.25f; writer.ram(writer.x(), writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, 0.f, 0.f, e * (dist / x), dist / (actual_time / 60.f)); remaining -= dist; if (remaining < WT_EPSILON) { // we reached a turning point writer.travel(writer.x(), writer.y() + y_step, 7200); m_left_to_right = !m_left_to_right; remaining = xr - xl; } e_done += dist; // subtract what was actually done if (e_done > x - WT_EPSILON) { // current segment finished ++i; e_done = 0; } } Vec2f end_of_ramming(writer.x(),writer.y()); writer.change_analyzer_line_width(m_perimeter_width); // so the next lines are not affected by ramming_line_width_multiplier // Retraction: float old_x = writer.x(); float turning_point = (!m_left_to_right ? xl : xr ); if (m_semm && (m_cooling_tube_retraction != 0 || m_cooling_tube_length != 0)) { float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length/2.f - 15.f; // the 15mm is reserved for the first part after ramming writer.suppress_preview() .retract(15.f, m_filpar[m_current_tool].unloading_speed_start * 60.f) // feedrate 5000mm/min = 83mm/s .retract(0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed * 60.f) .retract(0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed * 60.f) .retract(0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed * 60.f) .resume_preview(); } // Wipe tower should only change temperature with single extruder MM. Otherwise, all temperatures should // be already set and there is no need to change anything. Also, the temperature could be changed // for wrong extruder. if (m_semm) { if (new_temperature != 0 && (new_temperature != m_old_temperature || is_first_layer()) ) { // Set the extruder temperature, but don't wait. // If the required temperature is the same as last time, don't emit the M104 again (if user adjusted the value, it would be reset) // However, always change temperatures on the first layer (this is to avoid issues with priming lines turned off). writer.set_extruder_temp(new_temperature, false); m_old_temperature = new_temperature; } } // Cooling: const int& number_of_moves = m_filpar[m_current_tool].cooling_moves; if (number_of_moves > 0) { const float& initial_speed = m_filpar[m_current_tool].cooling_initial_speed; const float& final_speed = m_filpar[m_current_tool].cooling_final_speed; float speed_inc = (final_speed - initial_speed) / (2.f * number_of_moves - 1.f); writer.suppress_preview() .travel(writer.x(), writer.y() + y_step); old_x = writer.x(); turning_point = xr-old_x > old_x-xl ? xr : xl; for (int i=0; iextra_spacing * m_perimeter_width; const float target_speed = is_first_layer() ? std::min(m_first_layer_speed * 60.f, 4800.f) : 4800.f; float wipe_speed = 0.33f * target_speed; float start_y = writer.y(); #if 0 // if there is less than 2.5*m_perimeter_width to the edge, advance straightaway (there is likely a blob anyway) if ((m_left_to_right ? xr-writer.x() : writer.x()-xl) < 2.5f*m_perimeter_width) { writer.travel((m_left_to_right ? xr-m_perimeter_width : xl+m_perimeter_width),writer.y()+dy); m_left_to_right = !m_left_to_right; } #endif m_left_to_right = ((m_cur_layer_id + 3) % 4 >= 2); bool is_from_up = (m_cur_layer_id % 2 == 1); // BBS: do not need to move dy #if 0 if (m_depth_traversed != 0) writer.travel(xl, writer.y() + dy); #endif bool need_change_flow = false; // now the wiping itself: for (int i = 0; true; ++i) { if (i!=0) { if (wipe_speed < 0.34f * target_speed) wipe_speed = 0.375f * target_speed; else if (wipe_speed < 0.377 * target_speed) wipe_speed = 0.458f * target_speed; else if (wipe_speed < 0.46f * target_speed) wipe_speed = 0.875f * target_speed; else wipe_speed = std::min(target_speed, wipe_speed + 50.f); } // BBS: check the bridging area and use the bridge flow if (need_change_flow || need_thick_bridge_flow(writer.y())) { writer.set_extrusion_flow(extrusion_flow(0.2)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(0.2) + "\n"); need_change_flow = true; } if (m_left_to_right) writer.extrude(xr + wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), wipe_speed); else writer.extrude(xl - wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), wipe_speed); // BBS: recover the flow in non-bridging area if (need_change_flow) { writer.set_extrusion_flow(m_extrusion_flow); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(m_layer_height) + "\n"); } if (!is_from_up && (writer.y() - float(EPSILON) > cleaning_box.lu.y())) break; // in case next line would not fit if (is_from_up && (writer.y() + float(EPSILON) < cleaning_box.ld.y())) break; x_to_wipe -= (xr - xl); if (x_to_wipe < WT_EPSILON) { // BBS: Delete some unnecessary travel //writer.travel(m_left_to_right ? xl + 1.5f*m_perimeter_width : xr - 1.5f*m_perimeter_width, writer.y(), 7200); break; } // stepping to the next line: if (is_from_up) writer.extrude(writer.x(), writer.y() - dy); else writer.extrude(writer.x(), writer.y() + dy); m_left_to_right = !m_left_to_right; } float end_y = writer.y(); // We may be going back to the model - wipe the nozzle. If this is followed // by finish_layer, this wipe path will be overwritten. //writer.add_wipe_point(writer.x(), writer.y()) // .add_wipe_point(writer.x(), writer.y() - dy) // .add_wipe_point(! m_left_to_right ? m_wipe_tower_width : 0.f, writer.y() - dy); // BBS: modify the wipe_path after toolchange writer.add_wipe_point(writer.x(), writer.y()) .add_wipe_point(! m_left_to_right ? m_wipe_tower_width : 0.f, writer.y()); if (m_layer_info != m_plan.end() && m_current_tool != m_layer_info->tool_changes.back().new_tool) m_left_to_right = !m_left_to_right; writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow. // BBS: add the note for gcode-check when the flow changed if (is_first_layer()) { writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width) + std::to_string(m_perimeter_width) + "\n"); } } // BBS WipeTower::box_coordinates WipeTower::align_perimeter(const WipeTower::box_coordinates& perimeter_box) { box_coordinates aligned_box = perimeter_box; float spacing = m_extra_spacing * m_perimeter_width; float up = perimeter_box.lu(1) - m_perimeter_width - EPSILON; up = align_ceil(up, spacing); up += m_perimeter_width; up = std::min(up, m_wipe_tower_depth); float down = perimeter_box.ld(1) - m_perimeter_width + EPSILON; down = align_floor(down, spacing); down += m_perimeter_width; down = std::max(down, -m_y_shift); aligned_box.lu(1) = aligned_box.ru(1) = up; aligned_box.ld(1) = aligned_box.rd(1) = down; return aligned_box; } WipeTower::ToolChangeResult WipeTower::finish_layer(bool extrude_perimeter, bool extruder_fill) { assert(! this->layer_finished()); m_current_layer_finished = true; size_t old_tool = m_current_tool; WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); // Slow down on the 1st layer. bool first_layer = is_first_layer(); // BBS: speed up perimeter speed to 90mm/s for non-first layer float feedrate = first_layer ? std::min(m_first_layer_speed * 60.f, 5400.f) : std::min(60.0f * m_filpar[m_current_tool].max_e_speed / m_extrusion_flow, 5400.f); float fill_box_y = m_layer_info->toolchanges_depth() + m_perimeter_width; box_coordinates fill_box(Vec2f(m_perimeter_width, fill_box_y), m_wipe_tower_width - 2 * m_perimeter_width, m_layer_info->depth - fill_box_y); writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON; // inner perimeter of the sparse section, if there is space for it: if (fill_box.ru.y() - fill_box.rd.y() > m_perimeter_width - WT_EPSILON) writer.rectangle_fill_box(this, fill_box.ld, fill_box.rd.x() - fill_box.ld.x(), fill_box.ru.y() - fill_box.rd.y(), feedrate); // we are in one of the corners, travel to ld along the perimeter: // BBS: Delete some unnecessary travel //if (writer.x() > fill_box.ld.x() + EPSILON) writer.travel(fill_box.ld.x(), writer.y()); //if (writer.y() > fill_box.ld.y() + EPSILON) writer.travel(writer.x(), fill_box.ld.y()); // Extrude infill to support the material to be printed above. const float dy = (fill_box.lu.y() - fill_box.ld.y() - m_perimeter_width); float left = fill_box.lu.x() + 2*m_perimeter_width; float right = fill_box.ru.x() - 2 * m_perimeter_width; std::vector finish_rect_wipe_path; if (extruder_fill && dy > m_perimeter_width) { writer.travel(fill_box.ld + Vec2f(m_perimeter_width * 2, 0.f)) .append(";--------------------\n" "; CP EMPTY GRID START\n") .comment_with_value(" layer #", m_num_layer_changes + 1); // Is there a soluble filament wiped/rammed at the next layer? // If so, the infill should not be sparse. bool solid_infill = m_layer_info+1 == m_plan.end() ? false : std::any_of((m_layer_info+1)->tool_changes.begin(), (m_layer_info+1)->tool_changes.end(), [this](const WipeTowerInfo::ToolChange& tch) { return m_filpar[tch.new_tool].is_soluble || m_filpar[tch.old_tool].is_soluble; }); solid_infill |= first_layer && m_adhesion; if (solid_infill) { float sparse_factor = 1.5f; // 1=solid, 2=every other line, etc. if (first_layer) { // the infill should touch perimeters left -= m_perimeter_width; right += m_perimeter_width; sparse_factor = 1.f; } float y = fill_box.ld.y() + m_perimeter_width; int n = dy / (m_perimeter_width * sparse_factor); float spacing = (dy-m_perimeter_width)/(n-1); int i=0; for (i=0; itoolchanges_depth() : 0.f)), m_wipe_tower_width, m_layer_info->depth + m_perimeter_width); wt_box = align_perimeter(wt_box); if (extrude_perimeter) { writer.rectangle(wt_box, feedrate); } // brim chamfer float spacing = m_perimeter_width - m_layer_height * float(1. - M_PI_4); // How many perimeters shall the brim have? int loops_num = (m_wipe_tower_brim_width + spacing / 2.f) / spacing; const float max_chamfer_width = 3.f; if (!first_layer) { // stop print chamfer if depth changes if (m_layer_info->depth != m_plan.front().depth) { loops_num = 0; } else { // limit max chamfer width to 3 mm int chamfer_loops_num = (int)(max_chamfer_width / spacing); int dist_to_1st = m_layer_info - m_plan.begin() - m_first_layer_idx; loops_num = std::min(loops_num, chamfer_loops_num) - dist_to_1st; } } if (loops_num > 0) { box_coordinates box = wt_box; for (size_t i = 0; i < loops_num; ++i) { box.expand(spacing); writer.rectangle(box, feedrate); } if (first_layer) { // Save actual brim width to be later passed to the Print object, which will use it // for skirt calculation and pass it to GLCanvas for precise preview box m_wipe_tower_brim_width_real = wt_box.ld.x() - box.ld.x() + spacing / 2.f; } wt_box = box; } // Now prepare future wipe. box contains rectangle that was extruded last (ccw). Vec2f target = (writer.pos() == wt_box.ld ? wt_box.rd : (writer.pos() == wt_box.rd ? wt_box.ru : (writer.pos() == wt_box.ru ? wt_box.lu : wt_box.ld))); // BBS: add wipe_path for this case: only with finish rectangle if (finish_rect_wipe_path.size() == 2 && finish_rect_wipe_path[0] == writer.pos()) target = finish_rect_wipe_path[1]; writer.add_wipe_point(writer.pos()) .add_wipe_point(target); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); // Ask our writer about how much material was consumed. // Skip this in case the layer is sparse and config option to not print sparse layers is enabled. if (! m_no_sparse_layers || toolchanges_on_layer) if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); return construct_tcr(writer, false, old_tool, true, false, 0.f); } // Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box void WipeTower::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, float wipe_volume, float purge_volume) { assert(m_plan.empty() || m_plan.back().z <= z_par + WT_EPSILON); // refuses to add a layer below the last one if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan first m_plan.push_back(WipeTowerInfo(z_par, layer_height_par)); if (m_first_layer_idx == size_t(-1) && (! m_no_sparse_layers || old_tool != new_tool)) m_first_layer_idx = m_plan.size() - 1; if (old_tool == new_tool) // new layer without toolchanges - we are done return; // this is an actual toolchange - let's calculate depth to reserve on the wipe tower float depth = 0.f; float width = m_wipe_tower_width - 2 * m_perimeter_width; // BBS: if the wipe tower width is too small, the depth will be infinity if (width <= EPSILON) return; // BBS: remove old filament ramming and first line #if 0 float length_to_extrude = volume_to_length(0.25f * std::accumulate(m_filpar[old_tool].ramming_speed.begin(), m_filpar[old_tool].ramming_speed.end(), 0.f), m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator, layer_height_par); depth = (int(length_to_extrude / width) + 1) * (m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator * m_filpar[old_tool].ramming_step_multiplicator); float ramming_depth = depth; length_to_extrude = width*((length_to_extrude / width)-int(length_to_extrude / width)) - width; float first_wipe_line = -length_to_extrude; length_to_extrude += volume_to_length(wipe_volume, m_perimeter_width, layer_height_par); length_to_extrude = std::max(length_to_extrude,0.f); depth += (int(length_to_extrude / width) + 1) * m_perimeter_width; depth *= m_extra_spacing; m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth, ramming_depth, first_wipe_line, wipe_volume)); #else float length_to_extrude = volume_to_length(wipe_volume, m_perimeter_width, layer_height_par); depth += std::ceil(length_to_extrude / width) * m_perimeter_width; //depth *= m_extra_spacing; float nozzle_change_depth = 0; if (!m_filament_map.empty() && m_filament_map[old_tool] != m_filament_map[new_tool]) { double e_flow = nozzle_change_extrusion_flow(layer_height_par); double length = m_filaments_change_length[old_tool] / e_flow; int nozzle_change_line_count = length / (m_wipe_tower_width - 2*m_nozzle_change_perimeter_width) + 1; if (m_need_reverse_travel) nozzle_change_depth = m_tpu_fixed_spacing * nozzle_change_line_count * m_nozzle_change_perimeter_width; else nozzle_change_depth = nozzle_change_line_count * m_nozzle_change_perimeter_width; depth += nozzle_change_depth; } WipeTowerInfo::ToolChange tool_change = WipeTowerInfo::ToolChange(old_tool, new_tool, depth, 0.f, 0.f, wipe_volume, length_to_extrude, purge_volume); tool_change.nozzle_change_depth = nozzle_change_depth; m_plan.back().tool_changes.push_back(tool_change); #endif } void WipeTower::plan_tower() { // BBS // calculate extra spacing float max_depth = 0.f; for (auto& info : m_plan) max_depth = std::max(max_depth, info.toolchanges_depth()); float min_wipe_tower_depth = WipeTower::get_limit_depth_by_height(m_wipe_tower_height); { if (m_enable_timelapse_print && max_depth < EPSILON) max_depth = min_wipe_tower_depth; if (max_depth + EPSILON < min_wipe_tower_depth && !has_tpu_filament()) m_extra_spacing = min_wipe_tower_depth / max_depth; else m_extra_spacing = 1.f; for (int idx = 0; idx < m_plan.size(); idx++) { auto& info = m_plan[idx]; if (idx == 0 && m_extra_spacing > 1.f + EPSILON) { // apply solid fill for the first layer info.extra_spacing = 1.f; for (auto& toolchange : info.tool_changes) { float x_to_wipe = volume_to_length(toolchange.wipe_volume, m_perimeter_width, info.height); float line_len = m_wipe_tower_width - 2 * m_perimeter_width; float x_to_wipe_new = x_to_wipe * m_extra_spacing; x_to_wipe_new = std::floor(x_to_wipe_new / line_len) * line_len; x_to_wipe_new = std::max(x_to_wipe_new, x_to_wipe); int line_count = std::ceil((x_to_wipe_new - WT_EPSILON) / line_len); { // nozzle change length int nozzle_change_line_count = (toolchange.nozzle_change_depth + WT_EPSILON) / m_perimeter_width; line_count += nozzle_change_line_count; } toolchange.required_depth = line_count * m_perimeter_width; toolchange.wipe_volume = x_to_wipe_new / x_to_wipe * toolchange.wipe_volume; toolchange.wipe_length = x_to_wipe_new; } } else { info.extra_spacing = m_extra_spacing; for (auto& toolchange : info.tool_changes) { toolchange.required_depth *= m_extra_spacing; toolchange.wipe_length = volume_to_length(toolchange.wipe_volume, m_perimeter_width, info.height); } } } } // Calculate m_wipe_tower_depth (maximum depth for all the layers) and propagate depths downwards m_wipe_tower_depth = 0.f; for (auto& layer : m_plan) layer.depth = 0.f; float max_depth_for_all = 0; for (int layer_index = int(m_plan.size()) - 1; layer_index >= 0; --layer_index) { float this_layer_depth = std::max(m_plan[layer_index].depth, m_plan[layer_index].toolchanges_depth()); if (m_enable_timelapse_print && this_layer_depth < EPSILON) this_layer_depth = min_wipe_tower_depth; m_plan[layer_index].depth = this_layer_depth; if (this_layer_depth > m_wipe_tower_depth - m_perimeter_width) m_wipe_tower_depth = this_layer_depth + m_perimeter_width; for (int i = layer_index - 1; i >= 0 ; i--) { if (m_plan[i].depth - this_layer_depth < 2*m_perimeter_width ) m_plan[i].depth = this_layer_depth; } if (m_enable_timelapse_print && layer_index == 0) max_depth_for_all = m_plan[0].depth; } if (m_enable_timelapse_print) { for (int i = int(m_plan.size()) - 1; i >= 0; i--) { m_plan[i].depth = max_depth_for_all; } } } void WipeTower::save_on_last_wipe() { for (m_layer_info=m_plan.begin();m_layer_infoz, m_layer_info->height, 0, m_layer_info->z == m_plan.front().z, m_layer_info->z == m_plan.back().z); if (m_layer_info->tool_changes.size()==0) // we have no way to save anything on an empty layer continue; // Which toolchange will finish_layer extrusions be subtracted from? // BBS: consider both soluable and support properties int idx = first_toolchange_to_nonsoluble_nonsupport(m_layer_info->tool_changes); for (int i=0; itool_changes.size()); ++i) { auto& toolchange = m_layer_info->tool_changes[i]; tool_change(toolchange.new_tool); if (i == idx) { float width = m_wipe_tower_width - 3*m_perimeter_width; // width we draw into float length_to_save = finish_layer().total_extrusion_length_in_plane(); float length_to_wipe = volume_to_length(toolchange.wipe_volume, m_perimeter_width, m_layer_info->height) - toolchange.first_wipe_line - length_to_save; length_to_wipe = std::max(length_to_wipe,0.f); float depth_to_wipe = m_perimeter_width * (std::floor(length_to_wipe/width) + ( length_to_wipe > 0.f ? 1.f : 0.f ) ) * m_extra_spacing; toolchange.required_depth = toolchange.ramming_depth + depth_to_wipe; } } } } bool WipeTower::is_tpu_filament(int filament_id) const { return m_filpar[filament_id].material == "TPU"; } bool WipeTower::is_need_reverse_travel(int filament_id) const { return m_filpar[filament_id].ramming_travel_time > EPSILON; } // BBS: consider both soluable and support properties // Return index of first toolchange that switches to non-soluble and non-support extruder // ot -1 if there is no such toolchange. int WipeTower::first_toolchange_to_nonsoluble_nonsupport( const std::vector& tool_changes) const { for (size_t idx=0; idx (float)EPSILON) { std::string travel_gcode = "G1 X" + Slic3r::float_to_string_decimal_point(second.start_pos.x(), 3) + " Y" + Slic3r::float_to_string_decimal_point(second.start_pos.y(), 3) + "F" + std::to_string(m_max_speed) + "\n"; bool need_insert_travel = true; if (second.is_tool_change && is_approx(second.start_pos.x(), second.tool_change_start_pos.x()) && is_approx(second.start_pos.y(), second.tool_change_start_pos.y())) { // will insert travel in gcode.cpp need_insert_travel = false; } if (need_insert_travel) out.gcode += travel_gcode; } out.gcode += second.gcode; out.extrusions.insert(out.extrusions.end(), second.extrusions.begin(), second.extrusions.end()); out.end_pos = second.end_pos; out.wipe_path = second.wipe_path; out.initial_tool = first.initial_tool; out.new_tool = second.new_tool; if (!first.nozzle_change_result.gcode.empty()) out.nozzle_change_result = first.nozzle_change_result; else if (!second.nozzle_change_result.gcode.empty()) out.nozzle_change_result = second.nozzle_change_result; if (first.is_tool_change) { out.is_tool_change = true; out.tool_change_start_pos = first.tool_change_start_pos; } else if (second.is_tool_change) { out.is_tool_change = true; out.tool_change_start_pos = second.tool_change_start_pos; } else { out.is_tool_change = false; } // BBS out.purge_volume += second.purge_volume; return out; } void WipeTower::get_wall_skip_points(const WipeTowerInfo &layer) { m_wall_skip_points.clear(); std::unordered_map cur_block_depth; for (int i = 0; i < int(layer.tool_changes.size()); ++i) { const WipeTowerInfo::ToolChange &tool_change = layer.tool_changes[i]; size_t old_filament = tool_change.old_tool; size_t new_filament = tool_change.new_tool; float spacing = m_layer_info->extra_spacing; if (m_need_reverse_travel && m_layer_info->extra_spacing < m_tpu_fixed_spacing) spacing = 1; float nozzle_change_depth = tool_change.nozzle_change_depth * spacing; //float nozzle_change_depth = tool_change.nozzle_change_depth * (has_tpu_filament() ? m_tpu_fixed_spacing : layer.extra_spacing); auto* block = get_block_by_category(m_filpar[new_filament].category, false); if (!block) continue; //float wipe_depth = tool_change.required_depth - nozzle_change_depth; float wipe_depth = ceil(tool_change.wipe_length / (m_wipe_tower_width - 2 * m_perimeter_width)) * m_perimeter_width*layer.extra_spacing; float process_depth = 0.f; if (!cur_block_depth.count(m_filpar[new_filament].category)) cur_block_depth[m_filpar[new_filament].category] = block->start_depth; process_depth = cur_block_depth[m_filpar[new_filament].category]; if (!m_filament_map.empty() && new_filament < m_filament_map.size() && m_filament_map[old_filament] != m_filament_map[new_filament]) { if (m_filament_categories[new_filament] == m_filament_categories[old_filament]) process_depth += nozzle_change_depth; else { if (!cur_block_depth.count(m_filpar[old_filament].category)) { auto* old_block = get_block_by_category(m_filpar[old_filament].category, false); if (!old_block) continue; cur_block_depth[m_filpar[old_filament].category] = old_block->start_depth; } cur_block_depth[m_filpar[old_filament].category] += nozzle_change_depth; } } { Vec2f res; int index = m_cur_layer_id % 4; switch (index % 4) { case 0: res = Vec2f(0, process_depth); break; case 1: res = Vec2f(m_wipe_tower_width, process_depth + wipe_depth - layer.extra_spacing*m_perimeter_width); break; case 2: res = Vec2f(m_wipe_tower_width, process_depth); break; case 3: res = Vec2f(0, process_depth + wipe_depth - layer.extra_spacing * m_perimeter_width); break; default: break; } m_wall_skip_points.emplace_back(res); } cur_block_depth[m_filpar[new_filament].category] = process_depth + tool_change.required_depth - tool_change.nozzle_change_depth * layer.extra_spacing; } } WipeTower::ToolChangeResult WipeTower::tool_change_new(size_t new_tool, bool solid_toolchange,bool solid_nozzlechange) { m_nozzle_change_result.gcode.clear(); if (!m_filament_map.empty() && new_tool < m_filament_map.size() && m_filament_map[m_current_tool] != m_filament_map[new_tool]) { //If it is the last layer and exceeds the printable height, cancel ramming if (is_valid_last_layer(m_current_tool)) m_nozzle_change_result = nozzle_change_new(m_current_tool, new_tool, solid_nozzlechange); } size_t old_tool = m_current_tool; float wipe_depth = 0.f; float wipe_length = 0.f; float purge_volume = 0.f; float nozzle_change_depth = 0.f; int nozzle_change_line_count = 0; if (new_tool != (unsigned int) (-1)) { for (const auto &b : m_layer_info->tool_changes) if (b.new_tool == new_tool) { wipe_length = b.wipe_length; wipe_depth = b.required_depth; purge_volume = b.purge_volume; nozzle_change_depth = b.nozzle_change_depth; if (m_need_reverse_travel) nozzle_change_line_count = ((b.nozzle_change_depth + WT_EPSILON) / m_nozzle_change_perimeter_width) / 2; else nozzle_change_line_count = (b.nozzle_change_depth + WT_EPSILON) / m_nozzle_change_perimeter_width; break; } } WipeTowerBlock* block = get_block_by_category(m_filpar[new_tool].category, false); if (!block) { assert(block != nullptr); return WipeTower::ToolChangeResult(); } m_cur_block = block; box_coordinates cleaning_box(Vec2f(m_perimeter_width, block->cur_depth), m_wipe_tower_width - 2 * m_perimeter_width, wipe_depth-m_layer_info->extra_spacing*nozzle_change_depth); WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift + (new_tool != (unsigned int) (-1) && (m_current_shape == SHAPE_REVERSED) ? m_layer_info->depth - m_layer_info->toolchanges_depth() : 0.f)) .append(";--------------------\n" "; CP TOOLCHANGE START\n") .comment_with_value(" toolchange #", m_num_tool_changes + 1); // the number is zero-based if (new_tool != (unsigned) (-1)) writer.append( std::string("; material : " + (m_current_tool < m_filpar.size() ? m_filpar[m_current_tool].material : "(NONE)") + " -> " + m_filpar[new_tool].material + "\n").c_str()) .append(";--------------------\n"); writer.speed_override_backup(); writer.speed_override(100); // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. if (new_tool != (unsigned int) -1) { // This is not the last change. Vec2f initial_position = get_next_pos(cleaning_box, wipe_length); writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, is_first_layer() ? m_filpar[new_tool].nozzle_temperature_initial_layer : m_filpar[new_tool].nozzle_temperature); toolchange_Change(writer, new_tool, m_filpar[new_tool].material); // Change the tool, set a speed override for soluble and flex materials. toolchange_Load(writer, cleaning_box); # if 0 if (m_is_multi_extruder && is_need_reverse_travel(new_tool)) { float dy = m_layer_info->extra_spacing * m_nozzle_change_perimeter_width; if (m_layer_info->extra_spacing < m_tpu_fixed_spacing) { dy = m_tpu_fixed_spacing * m_nozzle_change_perimeter_width; } float nozzle_change_speed = 60.0f * m_filpar[new_tool].max_e_speed / m_extrusion_flow; nozzle_change_speed *= 0.25; const float &xl = cleaning_box.ld.x(); const float &xr = cleaning_box.rd.x(); Vec2f start_pos = m_nozzle_change_result.origin_start_pos + Vec2f(0, m_nozzle_change_perimeter_width); bool left_to_right = true; int tpu_line_count = (nozzle_change_line_count + 2 - 1) / 2; // nozzle_change_line_count / 2 round up writer.travel(start_pos); for (int i = 0; true; ++i) { if (left_to_right) writer.travel(xr - m_perimeter_width, writer.y(), nozzle_change_speed); else writer.travel(xl + m_perimeter_width, writer.y(), nozzle_change_speed); if (i == tpu_line_count - 1) break; writer.travel(writer.x(), writer.y() + dy); left_to_right = !left_to_right; } writer.travel(initial_position); } #endif toolchange_wipe_new(writer, cleaning_box, wipe_length, solid_toolchange); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); ++m_num_tool_changes; } else toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, m_filpar[m_current_tool].nozzle_temperature); block->cur_depth += (wipe_depth - nozzle_change_depth * m_layer_info->extra_spacing); block->last_filament_change_id = new_tool; // BBS writer.speed_override_restore(); writer.feedrate(m_travel_speed * 60.f) .flush_planner_queue() .reset_extruder() .append("; CP TOOLCHANGE END\n" ";------------------\n" "\n\n"); // Ask our writer about how much material was consumed: if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); return construct_tcr(writer, false, old_tool, false, true, purge_volume); } WipeTower::NozzleChangeResult WipeTower::nozzle_change_new(int old_filament_id, int new_filament_id, bool solid_infill) { int nozzle_change_line_count = 0; if (new_filament_id != (unsigned int) (-1)) { for (const auto &b : m_layer_info->tool_changes) if (b.new_tool == new_filament_id) { if (m_need_reverse_travel) nozzle_change_line_count = ((b.nozzle_change_depth + WT_EPSILON) / m_nozzle_change_perimeter_width) / 2; else nozzle_change_line_count = (b.nozzle_change_depth + WT_EPSILON) / m_nozzle_change_perimeter_width; break; } } auto format_nozzle_change_line = [](bool start, int old_filament_id, int new_filament_id) -> std::string { char buff[64]; std::string tag = start ? GCodeProcessor::reserved_tag(GCodeProcessor::ETags::NozzleChangeStart) : GCodeProcessor::reserved_tag(GCodeProcessor::ETags::NozzleChangeEnd); snprintf(buff, sizeof(buff), ";%s OF%d NF%d\n", tag.c_str(), old_filament_id, new_filament_id); return std::string(buff); }; float nz_extrusion_flow = nozzle_change_extrusion_flow(m_layer_height); float nozzle_change_speed = 60.0f * m_filpar[m_current_tool].max_e_ramming_speed / nz_extrusion_flow; if (solid_infill) nozzle_change_speed = std::min( 40.f * 60.f , nozzle_change_speed);//If the contact layers belong to different categories, then reduce the speed. float bridge_speed = std::min(60.0f * m_filpar[m_current_tool].max_e_ramming_speed / nozzle_change_extrusion_flow(0.2), nozzle_change_speed); // limit the bridge speed by add flow WipeTowerWriter writer(m_layer_height, m_nozzle_change_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(nz_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift + (new_filament_id != (unsigned int) (-1) && (m_current_shape == SHAPE_REVERSED) ? m_layer_info->depth - m_layer_info->toolchanges_depth() : 0.f)) .append(format_nozzle_change_line(true, old_filament_id, new_filament_id)); WipeTowerBlock* block = get_block_by_category(m_filpar[old_filament_id].category, false); if (!block) { assert(false); return WipeTower::NozzleChangeResult(); } m_cur_block = block; float dy = m_layer_info->extra_spacing * m_nozzle_change_perimeter_width; if (m_need_reverse_travel && m_extra_spacing < m_tpu_fixed_spacing) dy = m_tpu_fixed_spacing * m_nozzle_change_perimeter_width; float x_offset = m_perimeter_width + (m_nozzle_change_perimeter_width - m_perimeter_width) / 2; box_coordinates cleaning_box(Vec2f(x_offset,block->cur_depth + (m_nozzle_change_perimeter_width - m_perimeter_width) / 2), m_wipe_tower_width - 2 * x_offset, nozzle_change_line_count * dy - (m_nozzle_change_perimeter_width - m_perimeter_width) / 2);//top can not print Vec2f initial_position = cleaning_box.ld; writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); const float &xl = cleaning_box.ld.x(); const float &xr = cleaning_box.rd.x(); dy = solid_infill ? m_nozzle_change_perimeter_width : dy; if (solid_infill) nozzle_change_line_count = std::floor(EPSILON + (cleaning_box.ru[1] - cleaning_box.rd[1] + (m_nozzle_change_perimeter_width - m_perimeter_width) / 2.f) / m_nozzle_change_perimeter_width); m_left_to_right = true; bool need_change_flow = false; float ramming_length = nozzle_change_line_count * (xr - xl); int extruder_id = m_filament_map[m_current_tool]-1; float per_cooling_max_speed = m_filpar[m_current_tool].precool_t[extruder_id] > EPSILON ? ramming_length / m_filpar[m_current_tool].precool_t[extruder_id] * 60.f : nozzle_change_speed; if (is_first_layer()) per_cooling_max_speed = m_filpar[m_current_tool].precool_t_first_layer[extruder_id] > EPSILON ? ramming_length / m_filpar[m_current_tool].precool_t_first_layer[extruder_id] * 60.f : nozzle_change_speed; if (nozzle_change_speed > per_cooling_max_speed) nozzle_change_speed = per_cooling_max_speed; if (bridge_speed > per_cooling_max_speed) bridge_speed = per_cooling_max_speed; for (int i = 0; true; ++i) { if (need_thick_bridge_flow(writer.pos().y())) { writer.set_extrusion_flow(nozzle_change_extrusion_flow(0.2)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(0.2) + "\n"); need_change_flow = true; } if (m_left_to_right) writer.extrude(xr + wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), need_change_flow ? bridge_speed : nozzle_change_speed,LimitFlow::LimitRammingFlow); else writer.extrude(xl - wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), need_change_flow ? bridge_speed : nozzle_change_speed,LimitFlow::LimitRammingFlow); if (i == nozzle_change_line_count - 1) break; if ((writer.y() + dy - cleaning_box.ru.y()+(m_nozzle_change_perimeter_width+m_perimeter_width)/2) > (float)EPSILON) break; if (need_change_flow) { writer.set_extrusion_flow(nozzle_change_extrusion_flow(m_layer_height)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(m_layer_height) + "\n"); need_change_flow = false; } writer.extrude(writer.x(), writer.y() + dy, nozzle_change_speed, LimitFlow::LimitRammingFlow); m_left_to_right = !m_left_to_right; } if (need_change_flow) { writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(m_layer_height) + "\n"); } writer.set_extrusion_flow(nz_extrusion_flow); // Reset the extrusion flow. block->cur_depth += nozzle_change_line_count * dy; block->last_nozzle_change_id = old_filament_id; NozzleChangeResult result; if (is_need_reverse_travel(m_current_tool)) { bool left_to_right = !m_left_to_right; int tpu_line_count = nozzle_change_line_count - 1 ; // nozzle_change_line_count / 2 round up if (tpu_line_count <= 0) tpu_line_count = 1; nozzle_change_speed *= 2; // due to nozzle change 2 perimeter float need_reverse_travel_dis = m_filpar[m_current_tool].ramming_travel_time * nozzle_change_speed/60.f; float real_travel_dis = tpu_line_count * (xr - xl - 2 * m_perimeter_width); if (real_travel_dis < need_reverse_travel_dis) nozzle_change_speed *= real_travel_dis / need_reverse_travel_dis; writer.travel(writer.x(), writer.y() - m_nozzle_change_perimeter_width); for (int i = 0; true; ++i) { need_reverse_travel_dis -= (xr - xl - 2 * m_perimeter_width); float offset_dis = 0.f; if (need_reverse_travel_dis < 0) { offset_dis = -need_reverse_travel_dis; } if (left_to_right) writer.travel(xr - m_perimeter_width - offset_dis, writer.y(), nozzle_change_speed); else writer.travel(xl + m_perimeter_width + offset_dis , writer.y(), nozzle_change_speed); if (need_reverse_travel_dis < EPSILON) break; if (i == tpu_line_count - 1) break; writer.travel(writer.x(), writer.y() - dy); left_to_right = !left_to_right; } } else { result.wipe_path.push_back(writer.pos_rotated()); if (m_left_to_right) { result.wipe_path.push_back(Vec2f(0, writer.pos_rotated().y())); } else { result.wipe_path.push_back(Vec2f(m_wipe_tower_width, writer.pos_rotated().y())); } } writer.append(format_nozzle_change_line(false, old_filament_id, new_filament_id)); result.start_pos = writer.start_pos_rotated(); result.origin_start_pos = initial_position; result.end_pos = writer.pos_rotated(); result.gcode = writer.gcode(); return result; } WipeTower::ToolChangeResult WipeTower::finish_layer_new(bool extrude_perimeter, bool extrude_fill, bool extrude_fill_wall) { assert(!this->layer_finished()); m_current_layer_finished = true; WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); // Slow down on the 1st layer. bool first_layer = is_first_layer(); // BBS: speed up perimeter speed to 90mm/s for non-first layer float feedrate = first_layer ? std::min(m_first_layer_speed * 60.f, m_max_speed) : std::min(60.0f * m_filpar[m_current_tool].max_e_speed / m_extrusion_flow, m_max_speed); float fill_box_depth = m_wipe_tower_depth - 2 * m_perimeter_width; if (m_wipe_tower_blocks.size() == 1) { fill_box_depth = m_layer_info->depth - 2 * m_perimeter_width; } box_coordinates fill_box(Vec2f(m_perimeter_width, m_perimeter_width), m_wipe_tower_width - 2 * m_perimeter_width, fill_box_depth); writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON; std::vector finish_rect_wipe_path; if (extrude_fill_wall) { // inner perimeter of the sparse section, if there is space for it: if (fill_box.ru.y() - fill_box.rd.y() > WT_EPSILON) { writer.rectangle_fill_box(this, fill_box, finish_rect_wipe_path, feedrate); } } // Extrude infill to support the material to be printed above. const float dy = (fill_box.lu.y() - fill_box.ld.y() - m_perimeter_width); float left = fill_box.lu.x() + 2 * m_perimeter_width; float right = fill_box.ru.x() - 2 * m_perimeter_width; if (extrude_fill && dy > m_perimeter_width) { writer.travel(fill_box.ld + Vec2f(m_perimeter_width * 2, 0.f)) .append(";--------------------\n" "; CP EMPTY GRID START\n") .comment_with_value(" layer #", m_num_layer_changes + 1); // Is there a soluble filament wiped/rammed at the next layer? // If so, the infill should not be sparse. bool solid_infill = m_layer_info + 1 == m_plan.end() ? false : std::any_of((m_layer_info + 1)->tool_changes.begin(), (m_layer_info + 1)->tool_changes.end(), [this](const WipeTowerInfo::ToolChange &tch) { return m_filpar[tch.new_tool].is_soluble || m_filpar[tch.old_tool].is_soluble; }); solid_infill |= first_layer && m_adhesion; if (solid_infill) { float sparse_factor = 1.5f; // 1=solid, 2=every other line, etc. if (first_layer) { // the infill should touch perimeters left -= m_perimeter_width; right += m_perimeter_width; sparse_factor = 1.f; } float y = fill_box.ld.y() + m_perimeter_width; int n = dy / (m_perimeter_width * sparse_factor); float spacing = (dy - m_perimeter_width) / (n - 1); int i = 0; for (i = 0; i < n; ++i) { writer.extrude(writer.x(), y, feedrate).extrude(i % 2 ? left : right, y); y = y + spacing; } writer.extrude(writer.x(), fill_box.lu.y()); } else { // Extrude an inverse U at the left of the region and the sparse infill. writer.extrude(fill_box.lu + Vec2f(m_perimeter_width * 2, 0.f), feedrate); const int n = 1 + int((right - left) / m_bridging); const float dx = (right - left) / n; for (int i = 1; i <= n; ++i) { float x = left + dx * i; writer.travel(x, writer.y()); writer.extrude(x, i % 2 ? fill_box.rd.y() : fill_box.ru.y()); } finish_rect_wipe_path.clear(); // BBS: add wipe_path for this case: only with finish rectangle finish_rect_wipe_path.emplace_back(writer.pos()); finish_rect_wipe_path.emplace_back(Vec2f(left + dx * n, n % 2 ? fill_box.ru.y() : fill_box.rd.y())); } writer.append("; CP EMPTY GRID END\n" ";------------------\n\n\n\n\n\n\n"); } // outer perimeter (always): // BBS float wipe_tower_depth = m_wipe_tower_depth; if (m_wipe_tower_blocks.size() == 1) { wipe_tower_depth = m_layer_info->depth + m_perimeter_width; } box_coordinates wt_box(Vec2f(0.f, 0.f), m_wipe_tower_width, wipe_tower_depth); wt_box = align_perimeter(wt_box); //if (extrude_perimeter && !m_use_rib_wall) { // if (!m_use_gap_wall) // writer.rectangle(wt_box, feedrate); // else // generate_support_wall(writer, wt_box, feedrate, first_layer); //} Polygon outer_wall; outer_wall = generate_support_wall_new(writer, wt_box, feedrate, first_layer, m_use_rib_wall, extrude_perimeter, m_use_gap_wall); if (extrude_perimeter) m_outer_wall[m_z_pos].push_back(to_polyline(outer_wall)); // brim chamfer float spacing = m_perimeter_width - m_layer_height * float(1. - M_PI_4); // How many perimeters shall the brim have? int loops_num = (m_wipe_tower_brim_width + spacing / 2.f) / spacing; const float max_chamfer_width = 3.f; if (!first_layer) { // stop print chamfer if depth changes if (m_layer_info->depth != m_plan.front().depth) { loops_num = 0; } else { // limit max chamfer width to 3 mm int chamfer_loops_num = (int) (max_chamfer_width / spacing); int dist_to_1st = m_layer_info - m_plan.begin() - m_first_layer_idx; loops_num = std::min(loops_num, chamfer_loops_num) - dist_to_1st; } } if (loops_num > 0) { //box_coordinates box = wt_box; for (size_t i = 0; i < loops_num; ++i) { outer_wall = offset(outer_wall, scaled(spacing)).front(); writer.polygon(outer_wall, feedrate); m_outer_wall[m_z_pos].push_back(to_polyline(outer_wall)); } /*for (size_t i = 0; i < loops_num; ++i) { box.expand(spacing); writer.rectangle(box, feedrate); }*/ if (first_layer) { // Save actual brim width to be later passed to the Print object, which will use it // for skirt calculation and pass it to GLCanvas for precise preview box m_wipe_tower_brim_width_real = loops_num * spacing + spacing / 2.f; //m_wipe_tower_brim_width_real = wt_box.ld.x() - box.ld.x() + spacing / 2.f; } //wt_box = box; } if (extrude_perimeter || loops_num > 0) { writer.add_wipe_path(outer_wall, m_filpar[m_current_tool].wipe_dist); } else { // Now prepare future wipe. box contains rectangle that was extruded last (ccw). Vec2f target = (writer.pos() == wt_box.ld ? wt_box.rd : (writer.pos() == wt_box.rd ? wt_box.ru : (writer.pos() == wt_box.ru ? wt_box.lu : wt_box.ld))); // BBS: add wipe_path for this case: only with finish rectangle if (finish_rect_wipe_path.size() == 2 && finish_rect_wipe_path[0] == writer.pos()) target = finish_rect_wipe_path[1]; writer.add_wipe_point(writer.pos()).add_wipe_point(target); } writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); // Ask our writer about how much material was consumed. // Skip this in case the layer is sparse and config option to not print sparse layers is enabled. if (!m_no_sparse_layers || toolchanges_on_layer) if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); m_nozzle_change_result.gcode.clear(); return construct_tcr(writer, false, m_current_tool, true, false, 0.f); } WipeTower::ToolChangeResult WipeTower::finish_block(const WipeTowerBlock &block, int filament_id, bool extrude_fill) { WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(filament_id) .set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); // Slow down on the 1st layer. bool first_layer = is_first_layer(); // BBS: speed up perimeter speed to 90mm/s for non-first layer float feedrate = first_layer ? std::min(m_first_layer_speed * 60.f, m_max_speed) : std::min(60.0f * m_filpar[filament_id].max_e_speed / m_extrusion_flow, m_max_speed); box_coordinates fill_box(Vec2f(0, 0), 0, 0); fill_box = box_coordinates(Vec2f(m_perimeter_width, block.cur_depth), m_wipe_tower_width - 2 * m_perimeter_width, block.start_depth + block.layer_depths[m_cur_layer_id] - block.cur_depth - m_perimeter_width); writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON; std::vector finish_rect_wipe_path; // inner perimeter of the sparse section, if there is space for it: if (fill_box.ru.y() - fill_box.rd.y() > WT_EPSILON) { writer.rectangle_fill_box(this, fill_box, finish_rect_wipe_path, feedrate); } // Extrude infill to support the material to be printed above. const float dy = (fill_box.lu.y() - fill_box.ld.y() - m_perimeter_width); float left = fill_box.lu.x() + 2 * m_perimeter_width; float right = fill_box.ru.x() - 2 * m_perimeter_width; if (extrude_fill && dy > m_perimeter_width) { writer.travel(fill_box.ld + Vec2f(m_perimeter_width * 2, 0.f)) .append(";--------------------\n" "; CP EMPTY GRID START\n") .comment_with_value(" layer #", m_num_layer_changes + 1); // Is there a soluble filament wiped/rammed at the next layer? // If so, the infill should not be sparse. bool solid_infill = m_layer_info + 1 == m_plan.end() ? false : std::any_of((m_layer_info + 1)->tool_changes.begin(), (m_layer_info + 1)->tool_changes.end(), [this](const WipeTowerInfo::ToolChange &tch) { return m_filpar[tch.new_tool].is_soluble || m_filpar[tch.old_tool].is_soluble; }); solid_infill |= first_layer && m_adhesion; if (solid_infill) { float sparse_factor = 1.5f; // 1=solid, 2=every other line, etc. if (first_layer) { // the infill should touch perimeters left -= m_perimeter_width; right += m_perimeter_width; sparse_factor = 1.f; } float y = fill_box.ld.y() + m_perimeter_width; int n = dy / (m_perimeter_width * sparse_factor); float spacing = (dy - m_perimeter_width) / (n - 1); int i = 0; for (i = 0; i < n; ++i) { writer.extrude(writer.x(), y, feedrate).extrude(i % 2 ? left : right, y); y = y + spacing; } writer.extrude(writer.x(), fill_box.lu.y()); } else { // Extrude an inverse U at the left of the region and the sparse infill. writer.extrude(fill_box.lu + Vec2f(m_perimeter_width * 2, 0.f), feedrate); const int n = 1 + int((right - left) / m_bridging); const float dx = (right - left) / n; for (int i = 1; i <= n; ++i) { float x = left + dx * i; writer.travel(x, writer.y()); writer.extrude(x, i % 2 ? fill_box.rd.y() : fill_box.ru.y()); } finish_rect_wipe_path.clear(); // BBS: add wipe_path for this case: only with finish rectangle finish_rect_wipe_path.emplace_back(writer.pos()); finish_rect_wipe_path.emplace_back(Vec2f(left + dx * n, n % 2 ? fill_box.ru.y() : fill_box.rd.y())); } writer.append("; CP EMPTY GRID END\n" ";------------------\n\n\n\n\n\n\n"); } // outer perimeter (always): // BBS box_coordinates wt_box(Vec2f(0.f, 0.f), m_wipe_tower_width, m_layer_info->depth + m_perimeter_width); wt_box = align_perimeter(wt_box); // Now prepare future wipe. box contains rectangle that was extruded last (ccw). Vec2f target = (writer.pos() == wt_box.ld ? wt_box.rd : (writer.pos() == wt_box.rd ? wt_box.ru : (writer.pos() == wt_box.ru ? wt_box.lu : wt_box.ld))); // BBS: add wipe_path for this case: only with finish rectangle if (finish_rect_wipe_path.size() == 2 && finish_rect_wipe_path[0] == writer.pos()) target = finish_rect_wipe_path[1]; writer.add_wipe_point(writer.pos()).add_wipe_point(target); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); // Ask our writer about how much material was consumed. // Skip this in case the layer is sparse and config option to not print sparse layers is enabled. if (!m_no_sparse_layers || toolchanges_on_layer) if (filament_id < m_used_filament_length.size()) m_used_filament_length[filament_id] += writer.get_and_reset_used_filament_length(); return construct_block_tcr(writer, false, filament_id, true, 0.f); } WipeTower::ToolChangeResult WipeTower::finish_block_solid(const WipeTowerBlock &block, int filament_id, bool extrude_fill, bool interface_solid) { float layer_height = m_layer_height; float e_flow = m_extrusion_flow; if (m_cur_layer_id > 1 && !block.solid_infill[m_cur_layer_id - 1] && m_extrusion_flow < extrusion_flow(0.2)) { layer_height = 0.2; e_flow = extrusion_flow(0.2); } WipeTowerWriter writer(layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(e_flow) .set_z(m_z_pos) .set_initial_tool(filament_id) .set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); // Slow down on the 1st layer. bool first_layer = is_first_layer(); // BBS: speed up perimeter speed to 90mm/s for non-first layer float feedrate = first_layer ? std::min(m_first_layer_speed * 60.f, m_max_speed) : std::min(60.0f * m_filpar[filament_id].max_e_speed / m_extrusion_flow, m_max_speed); feedrate = interface_solid ? 20.f * 60.f : feedrate; box_coordinates fill_box(Vec2f(0, 0), 0, 0); fill_box = box_coordinates(Vec2f(m_perimeter_width, block.cur_depth), m_wipe_tower_width - 2 * m_perimeter_width, block.start_depth + block.layer_depths[m_cur_layer_id] - block.cur_depth - m_perimeter_width); writer.set_initial_position((m_left_to_right ? fill_box.rd : fill_box.ld), m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); m_left_to_right = !m_left_to_right; bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON; // Extrude infill to support the material to be printed above. const float dy = (fill_box.lu.y() - fill_box.ld.y()); float left = fill_box.lu.x(); float right = fill_box.ru.x(); std::vector finish_rect_wipe_path; { writer.append(";--------------------\n" "; CP EMPTY GRID START\n") .comment_with_value(" layer #", m_num_layer_changes + 1); float y = fill_box.ld.y(); int n = (dy + 0.25 * m_perimeter_width) / m_perimeter_width + 1; float spacing = m_perimeter_width; int i = 0; for (i = 0; i < n; ++i) { writer.extrude(m_left_to_right ? right : left, writer.y(), feedrate); if (i == n - 1) { writer.add_wipe_point(writer.pos()).add_wipe_point(Vec2f(m_left_to_right ? left : right, writer.y())); break; } m_left_to_right = !m_left_to_right; y = y + spacing; writer.extrude(writer.x(), y, feedrate); } writer.append("; CP EMPTY GRID END\n" ";------------------\n\n\n\n\n\n\n"); } writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); // Ask our writer about how much material was consumed. // Skip this in case the layer is sparse and config option to not print sparse layers is enabled. if (!m_no_sparse_layers || toolchanges_on_layer) if (filament_id < m_used_filament_length.size()) m_used_filament_length[filament_id] += writer.get_and_reset_used_filament_length(); return construct_block_tcr(writer, false, filament_id, true, 0.f); } void WipeTower::toolchange_wipe_new(WipeTowerWriter &writer, const box_coordinates &cleaning_box, float wipe_length,bool solid_tool_toolchange) { writer.set_extrusion_flow(m_extrusion_flow * (is_first_layer() ? 1.15f : 1.f)).append("; CP TOOLCHANGE WIPE\n"); if (!m_nozzle_change_result.gcode.empty()) writer.change_analyzer_line_width(m_perimeter_width); // BBS: add the note for gcode-check, when the flow changed, the width should follow the change if (is_first_layer()) { writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width) + std::to_string(1.15 * m_perimeter_width) + "\n"); } float retract_length = m_filpar[m_current_tool].retract_length; float retract_speed = m_filpar[m_current_tool].retract_speed * 60; const float &xl = cleaning_box.ld.x(); const float &xr = cleaning_box.rd.x(); float x_to_wipe = wipe_length; float dy = solid_tool_toolchange ? m_perimeter_width :m_layer_info->extra_spacing * m_perimeter_width; x_to_wipe = solid_tool_toolchange ? std::numeric_limits::max(): x_to_wipe; float target_speed = is_first_layer() ? std::min(m_first_layer_speed * 60.f, 4800.f) : 4800.f; target_speed = solid_tool_toolchange ? 20.f * 60.f : target_speed; float wipe_speed = 0.33f * target_speed; m_left_to_right = ((m_cur_layer_id + 3) % 4 >= 2); bool is_from_up = (m_cur_layer_id % 2 == 1); // now the wiping itself: for (int i = 0; true; ++i) { if (i != 0) { if (wipe_speed < 0.34f * target_speed) wipe_speed = 0.375f * target_speed; else if (wipe_speed < 0.377 * target_speed) wipe_speed = 0.458f * target_speed; else if (wipe_speed < 0.46f * target_speed) wipe_speed = 0.875f * target_speed; else wipe_speed = std::min(target_speed, wipe_speed + 50.f); } bool need_change_flow = need_thick_bridge_flow(writer.y()); // BBS: check the bridging area and use the bridge flow if (need_change_flow) { writer.set_extrusion_flow(extrusion_flow(0.2)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(0.2) + "\n"); } float ironing_length = 3.; if (i == 0 && m_use_gap_wall) { // BBS: add ironing after extruding start if (m_left_to_right) { float dx = xr + wipe_tower_wall_infill_overlap * m_perimeter_width - writer.pos().x(); if (abs(dx) < ironing_length) ironing_length = abs(dx); writer.extrude(writer.x() + ironing_length, writer.y(), wipe_speed); writer.retract(retract_length, retract_speed); writer.travel(writer.x() - 1.5 * ironing_length, writer.y(), 600.); if (flat_ironing) { writer.travel(writer.x() + 0.5f * ironing_length, writer.y(), 240.); Vec2f pos{writer.x() + 1.f * ironing_length, writer.y()}; writer.spiral_flat_ironing(writer.pos(), flat_iron_area, m_perimeter_width, flat_iron_speed); writer.travel(pos, wipe_speed); } else writer.travel(writer.x() + 1.5 * ironing_length, writer.y(), 240.); writer.retract(-retract_length, retract_speed); writer.extrude(xr + wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), wipe_speed); } else { float dx = xl - wipe_tower_wall_infill_overlap * m_perimeter_width - writer.pos().x(); if (abs(dx) < ironing_length) ironing_length = abs(dx); writer.extrude(writer.x() - ironing_length, writer.y(), wipe_speed); writer.retract(retract_length, retract_speed); writer.travel(writer.x() + 1.5 * ironing_length, writer.y(), 600.); if (flat_ironing) { writer.travel(writer.x() - 0.5f * ironing_length, writer.y(), 240.); Vec2f pos{writer.x() - 1.0f * ironing_length, writer.y()}; writer.spiral_flat_ironing(writer.pos(), flat_iron_area, m_perimeter_width, flat_iron_speed); writer.travel(pos, wipe_speed); }else writer.travel(writer.x() - 1.5 * ironing_length, writer.y(), 240.); writer.retract(-retract_length, retract_speed); writer.extrude(xl - wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), wipe_speed); } } else { if (m_left_to_right) writer.extrude(xr + wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), wipe_speed); else writer.extrude(xl - wipe_tower_wall_infill_overlap * m_perimeter_width, writer.y(), wipe_speed); } // BBS: recover the flow in non-bridging area if (need_change_flow) { writer.set_extrusion_flow(m_extrusion_flow); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(m_layer_height) + "\n"); } if (!is_from_up && (writer.y() + dy - float(EPSILON) >cleaning_box.lu.y() - m_perimeter_width)) break; // in case next line would not fit if (is_from_up && (writer.y() - dy+ float(EPSILON))tool_changes.back().new_tool) m_left_to_right = !m_left_to_right; writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow. // BBS: add the note for gcode-check when the flow changed if (is_first_layer()) { writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width) + std::to_string(m_perimeter_width) + "\n"); } } WipeTower::WipeTowerBlock * WipeTower::get_block_by_category(int filament_adhesiveness_category, bool create) { auto iter = std::find_if(m_wipe_tower_blocks.begin(), m_wipe_tower_blocks.end(), [&filament_adhesiveness_category](const WipeTower::WipeTowerBlock &item) { return item.filament_adhesiveness_category == filament_adhesiveness_category; }); if (iter != m_wipe_tower_blocks.end()) { return &(*iter); } if (create) { WipeTower::WipeTowerBlock new_block; new_block.block_id = m_wipe_tower_blocks.size(); new_block.filament_adhesiveness_category = filament_adhesiveness_category; m_wipe_tower_blocks.emplace_back(new_block); return &m_wipe_tower_blocks.back(); } return nullptr; } void WipeTower::add_depth_to_block(int filament_id, int filament_adhesiveness_category, float depth, bool is_nozzle_change) { std::vector &layer_depth = m_all_layers_depth[m_cur_layer_id]; auto iter = std::find_if(layer_depth.begin(), layer_depth.end(), [&filament_adhesiveness_category](const WipeTower::BlockDepthInfo &item) { return item.category == filament_adhesiveness_category; }); if (iter != layer_depth.end()) { iter->depth += depth; if (is_nozzle_change) iter->nozzle_change_depth += depth; } else { WipeTower::BlockDepthInfo new_block; new_block.category = filament_adhesiveness_category; new_block.depth = depth; if (is_nozzle_change) new_block.nozzle_change_depth += depth; layer_depth.emplace_back(std::move(new_block)); } } int WipeTower::get_filament_category(int filament_id) { if (filament_id >= m_filament_categories.size()) return 0; return m_filament_categories[filament_id]; } bool WipeTower::is_in_same_extruder(int filament_id_1, int filament_id_2) { if (filament_id_1 >= m_filament_map.size() || filament_id_2 >= m_filament_map.size()) return true; return m_filament_map[filament_id_1] == m_filament_map[filament_id_2]; } void WipeTower::reset_block_status() { for (auto &block : m_wipe_tower_blocks) { block.cur_depth = block.start_depth; block.last_filament_change_id = -1; block.last_nozzle_change_id = -1; } } void WipeTower::set_nozzle_last_layer_id() { for (int idx = 0; idx < m_plan.size(); idx++) { auto &info = m_plan[idx]; for(int i =0 ; i= 0) m_last_layer_id[m_filament_map[old_tool] - 1] = idx; m_last_layer_id[m_filament_map[new_tool] - 1] = idx; } } } void WipeTower::update_all_layer_depth(float wipe_tower_depth) { m_wipe_tower_depth = 0.f; float start_offset = m_perimeter_width; float start_depth = start_offset; for (auto& block : m_wipe_tower_blocks) { block.depth *= m_extra_spacing; block.start_depth = start_depth; start_depth += block.depth; m_wipe_tower_depth += block.depth; for (auto& layer_depth : block.layer_depths) { layer_depth *= m_extra_spacing; } for (WipeTowerInfo& plan_info : m_plan) { plan_info.depth *= m_extra_spacing; } } if (m_wipe_tower_depth > 0) m_wipe_tower_depth += start_offset; if (m_enable_timelapse_print) { if (is_approx(m_wipe_tower_depth, 0.f)) m_wipe_tower_depth = wipe_tower_depth; for (WipeTowerInfo &plan_info : m_plan) { plan_info.depth = m_wipe_tower_depth; } } } void WipeTower::generate_wipe_tower_blocks() { // 1. generate all layer depth m_all_layers_depth.clear(); m_all_layers_depth.resize(m_plan.size()); m_cur_layer_id = 0; for (auto& info : m_plan) { for (const WipeTowerInfo::ToolChange &tool_change : info.tool_changes) { if (is_in_same_extruder(tool_change.old_tool, tool_change.new_tool)) { int filament_adhesiveness_category = get_filament_category(tool_change.new_tool); add_depth_to_block(tool_change.new_tool, filament_adhesiveness_category, tool_change.required_depth); } else { int old_filament_category = get_filament_category(tool_change.old_tool); add_depth_to_block(tool_change.old_tool, old_filament_category, tool_change.nozzle_change_depth, true); int new_filament_category = get_filament_category(tool_change.new_tool); add_depth_to_block(tool_change.new_tool, new_filament_category, tool_change.required_depth - tool_change.nozzle_change_depth); } } ++m_cur_layer_id; } // 2. generate all layer depth std::vector> all_layer_category_to_depth(m_plan.size()); for (size_t layer_id = 0; layer_id < m_all_layers_depth.size(); ++layer_id) { const auto& layer_blocks = m_all_layers_depth[layer_id]; std::unordered_map &category_to_depth = all_layer_category_to_depth[layer_id]; for (auto block : layer_blocks) { category_to_depth[block.category] = block.depth; } } // 3. generate wipe tower block m_wipe_tower_blocks.clear(); for (int layer_id = 0; layer_id < all_layer_category_to_depth.size(); ++layer_id) { const auto &layer_category_depths = all_layer_category_to_depth[layer_id]; for (auto iter = layer_category_depths.begin(); iter != layer_category_depths.end(); ++iter) { auto* block = get_block_by_category(iter->first, true); if (block->layer_depths.empty()) { block->layer_depths.resize(all_layer_category_to_depth.size(), 0); block->solid_infill.resize(all_layer_category_to_depth.size(), false); block->finish_depth.resize(all_layer_category_to_depth.size(), 0); } block->depth = std::max(block->depth, iter->second); block->layer_depths[layer_id] = iter->second; } } // add solid infill flag int solid_infill_layer = 4; for (WipeTowerBlock& block : m_wipe_tower_blocks) { for (int layer_id = 0; layer_id < all_layer_category_to_depth.size(); ++layer_id) { std::unordered_map &category_to_depth = all_layer_category_to_depth[layer_id]; if (is_approx(category_to_depth[block.filament_adhesiveness_category], 0.f)) { int layer_count = solid_infill_layer; while (layer_count > 0) { if (layer_id + layer_count < all_layer_category_to_depth.size()) { std::unordered_map& up_layer_depth = all_layer_category_to_depth[layer_id + layer_count]; if (!is_approx(up_layer_depth[block.filament_adhesiveness_category], 0.f)) { block.solid_infill[layer_id] = true; break; } } --layer_count; } } } } // 4. get real depth for every layer for (int layer_id = m_plan.size() - 1; layer_id >= 0; --layer_id) { m_plan[layer_id].depth = 0; for (auto& block : m_wipe_tower_blocks) { if (layer_id < m_plan.size() - 1) block.layer_depths[layer_id] = std::max(block.layer_depths[layer_id], block.layer_depths[layer_id + 1]); m_plan[layer_id].depth += block.layer_depths[layer_id]; } } if (m_tower_framework) { for (int layer_id = 1; layer_id < m_plan.size(); ++layer_id) { m_plan[layer_id].depth = 0; for (auto &block : m_wipe_tower_blocks) { block.layer_depths[layer_id] = block.layer_depths[0]; m_plan[layer_id].depth += block.layer_depths[layer_id]; } } } } void WipeTower::plan_tower_new() { if (m_wipe_tower_brim_width < 0) m_wipe_tower_brim_width = get_auto_brim_by_height(m_wipe_tower_height); if (m_use_rib_wall) { // recalculate wipe_tower_with and layer's depth generate_wipe_tower_blocks(); float max_depth = std::accumulate(m_wipe_tower_blocks.begin(), m_wipe_tower_blocks.end(), 0.f, [](float a, const auto &t) { return a + t.depth; }) + m_perimeter_width; float square_width = align_ceil(std::sqrt(max_depth * m_wipe_tower_width * m_extra_spacing), m_perimeter_width); //std::cout << " before m_wipe_tower_width = " << m_wipe_tower_width << " max_depth = " << max_depth << std::endl; m_wipe_tower_width = square_width; float width = m_wipe_tower_width - 2 * m_perimeter_width; for (int idx = 0; idx < m_plan.size(); idx++) { for (auto &toolchange : m_plan[idx].tool_changes) { float length_to_extrude = toolchange.wipe_length; float depth = std::ceil(length_to_extrude / width) * m_perimeter_width; float nozzle_change_depth = 0; if (!m_filament_map.empty() && m_filament_map[toolchange.old_tool] != m_filament_map[toolchange.new_tool]) { double e_flow = nozzle_change_extrusion_flow(m_plan[idx].height); double length = m_filaments_change_length[toolchange.old_tool] / e_flow; int nozzle_change_line_count = length / (m_wipe_tower_width - 2*m_nozzle_change_perimeter_width) + 1; if (m_need_reverse_travel) nozzle_change_depth = m_tpu_fixed_spacing * nozzle_change_line_count * m_nozzle_change_perimeter_width; else nozzle_change_depth = nozzle_change_line_count * m_nozzle_change_perimeter_width; depth += nozzle_change_depth; } toolchange.nozzle_change_depth = nozzle_change_depth; toolchange.required_depth = depth; } } } generate_wipe_tower_blocks(); float max_depth = 0.f; for (const auto &block : m_wipe_tower_blocks) { max_depth += block.depth; } //std::cout << " after square " << m_wipe_tower_width << " depth " << max_depth << std::endl; float min_wipe_tower_depth = get_limit_depth_by_height(m_wipe_tower_height); // only for get m_extra_spacing { if (m_enable_timelapse_print && max_depth < EPSILON) { max_depth = min_wipe_tower_depth; if (m_use_rib_wall) { m_wipe_tower_width = max_depth; } } if (max_depth + EPSILON < min_wipe_tower_depth) { //if enable rib_wall, there is no need to set extra_spacing if (m_use_rib_wall) m_rib_length = std::max(m_rib_length, min_wipe_tower_depth * (float) std::sqrt(2)); else m_extra_spacing = std::max(min_wipe_tower_depth / max_depth, m_extra_spacing); } for (int idx = 0; idx < m_plan.size(); idx++) { auto &info = m_plan[idx]; if (idx == 0 && m_extra_spacing > 1.f + EPSILON) { // apply solid fill for the first layer info.extra_spacing = 1.f; for (auto &toolchange : info.tool_changes) { float x_to_wipe = volume_to_length(toolchange.wipe_volume, m_perimeter_width, info.height); float line_len = m_wipe_tower_width - 2 * m_perimeter_width; float x_to_wipe_new = x_to_wipe * m_extra_spacing; x_to_wipe_new = std::floor(x_to_wipe_new / line_len) * line_len; x_to_wipe_new = std::max(x_to_wipe_new, x_to_wipe); int line_count = std::ceil((x_to_wipe_new - WT_EPSILON) / line_len); // nozzle change length int nozzle_change_line_count = (toolchange.nozzle_change_depth + WT_EPSILON) / m_nozzle_change_perimeter_width; toolchange.required_depth = line_count * m_perimeter_width + nozzle_change_line_count * m_nozzle_change_perimeter_width; toolchange.wipe_volume = x_to_wipe_new / x_to_wipe * toolchange.wipe_volume; toolchange.wipe_length = x_to_wipe_new; } } else { info.extra_spacing = m_extra_spacing; for (auto &toolchange : info.tool_changes) { toolchange.required_depth *= m_extra_spacing; toolchange.wipe_length = volume_to_length(toolchange.wipe_volume, m_perimeter_width, info.height); } } } } update_all_layer_depth(max_depth); set_nozzle_last_layer_id(); m_rib_length = std::max({m_rib_length, sqrt(m_wipe_tower_depth * m_wipe_tower_depth + m_wipe_tower_width * m_wipe_tower_width)}); m_rib_length += m_extra_rib_length; m_rib_length = std::max(0.f, m_rib_length); m_rib_width = std::min(m_rib_width, std::min(m_wipe_tower_depth, m_wipe_tower_width) / 2.f); // Ensure that the rib wall of the wipetower are attached to the infill. } int WipeTower::get_wall_filament_for_all_layer() { std::map category_counts; std::map filament_counts; int current_tool = m_current_tool; for (const auto &layer : m_plan) { if (layer.tool_changes.empty()){ filament_counts[current_tool]++; category_counts[get_filament_category(current_tool)]++; continue; } std::unordered_set used_tools; std::unordered_set used_category; for (size_t i = 0; i < layer.tool_changes.size(); ++i) { if (i == 0) { filament_counts[layer.tool_changes[i].old_tool]++; category_counts[get_filament_category(layer.tool_changes[i].old_tool)]++; used_tools.insert(layer.tool_changes[i].old_tool); used_category.insert(get_filament_category(layer.tool_changes[i].old_tool)); } if (!used_category.count(get_filament_category(layer.tool_changes[i].new_tool))) category_counts[get_filament_category(layer.tool_changes[i].new_tool)]++; if (!used_tools.count(layer.tool_changes[i].new_tool)) filament_counts[layer.tool_changes[i].new_tool]++; used_tools.insert(layer.tool_changes[i].new_tool); used_category.insert(get_filament_category(layer.tool_changes[i].new_tool)); } current_tool = layer.tool_changes.empty()?current_tool:layer.tool_changes.back().new_tool; } // std::vector> category_counts_vec; int selected_category = -1; int selected_count = 0; for (auto iter = category_counts.begin(); iter != category_counts.end(); ++iter) { if (iter->second > selected_count) { selected_category = iter->first; selected_count = iter->second; } } // std::sort(category_counts_vec.begin(), category_counts_vec.end(), [](const std::pair &left, const std::pair& right) { // return left.second > right.second; // }); int filament_id = -1; int filament_count = 0; for (auto iter = filament_counts.begin(); iter != filament_counts.end(); ++iter) { if (m_filament_categories[iter->first] == selected_category && iter->second > filament_count) { filament_id = iter->first; filament_count = iter->second; } } return filament_id; } void WipeTower::generate_new(std::vector> &result) { if (m_plan.empty()) return; //m_extra_spacing = 1.f; m_wipe_tower_height = m_plan.back().z;//real wipe_tower_height plan_tower_new(); m_layer_info = m_plan.begin(); for (const auto &layer : m_plan) { if (!layer.tool_changes.empty()) { m_current_tool = layer.tool_changes.front().old_tool; break; } } for (auto &used : m_used_filament_length) // reset used filament stats used = 0.f; int wall_filament = get_wall_filament_for_all_layer(); std::vector layer_result; int index = 0; std::unordered_set solid_blocks_id;// The contact surface of different bonded materials is solid. for (auto layer : m_plan) { reset_block_status(); m_cur_layer_id = index++; set_layer(layer.z, layer.height, 0, false, layer.z == m_plan.back().z); if (m_layer_info->depth < m_perimeter_width) continue; if (m_wipe_tower_blocks.size() == 1) { if (m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width) { // align y shift to perimeter width float dy = m_extra_spacing * m_perimeter_width; m_y_shift = (m_wipe_tower_depth - m_layer_info->depth) / 2.f; m_y_shift = align_round(m_y_shift, dy); } } get_wall_skip_points(layer); ToolChangeResult finish_layer_tcr; ToolChangeResult timelapse_wall; auto get_wall_filament_for_this_layer = [this, &layer, &wall_filament]() -> int { if (layer.tool_changes.size() == 0) return -1; int candidate_id = -1; for (size_t idx = 0; idx < layer.tool_changes.size(); ++idx) { if (idx == 0) { if (layer.tool_changes[idx].old_tool == wall_filament && is_valid_last_layer(layer.tool_changes[idx].old_tool)) return wall_filament; else if (m_filpar[layer.tool_changes[idx].old_tool].category == m_filpar[wall_filament].category &&is_valid_last_layer(layer.tool_changes[idx].old_tool)) { candidate_id = layer.tool_changes[idx].old_tool; } } if (layer.tool_changes[idx].new_tool == wall_filament) { return wall_filament; } if ((candidate_id == -1) && (m_filpar[layer.tool_changes[idx].new_tool].category == m_filpar[wall_filament].category)) candidate_id = layer.tool_changes[idx].new_tool; } return candidate_id == -1 ? layer.tool_changes[0].new_tool : candidate_id; }; int wall_idx = get_wall_filament_for_this_layer(); // this layer has no tool_change if (wall_idx == -1) { bool need_insert_solid_infill = false; for (const WipeTowerBlock &block : m_wipe_tower_blocks) { if (block.solid_infill[m_cur_layer_id] && (block.filament_adhesiveness_category != m_filament_categories[m_current_tool])) { need_insert_solid_infill = true; break; } } if (need_insert_solid_infill) { wall_idx = m_current_tool; } else { if (m_enable_timelapse_print) { timelapse_wall = only_generate_out_wall(true); } finish_layer_tcr = finish_layer_new(m_enable_timelapse_print ? false : true, layer.extruder_fill); std::for_each(m_wipe_tower_blocks.begin(), m_wipe_tower_blocks.end(), [this](WipeTowerBlock &block) { block.finish_depth[this->m_cur_layer_id] = block.start_depth; }); } } // generate tool change bool insert_wall = false; int insert_finish_layer_idx = -1; if (wall_idx != -1 && m_enable_timelapse_print) { timelapse_wall = only_generate_out_wall(true); } for (int i = 0; i < int(layer.tool_changes.size()); ++i) { ToolChangeResult wall_gcode; if (i == 0 && (layer.tool_changes[i].old_tool == wall_idx)) { finish_layer_tcr = finish_layer_new(m_enable_timelapse_print ? false : true, false, false); } const auto * block = get_block_by_category(m_filpar[layer.tool_changes[i].new_tool].category, false); int id = std::find_if(m_wipe_tower_blocks.begin(), m_wipe_tower_blocks.end(), [&](const WipeTowerBlock &b) { return &b == block; }) - m_wipe_tower_blocks.begin(); bool solid_toolchange = solid_blocks_id.count(id); const auto * block2 = get_block_by_category(m_filpar[layer.tool_changes[i].old_tool].category, false); id = std::find_if(m_wipe_tower_blocks.begin(), m_wipe_tower_blocks.end(), [&](const WipeTowerBlock &b) { return &b == block2; }) - m_wipe_tower_blocks.begin(); bool solid_nozzlechange = solid_blocks_id.count(id); layer_result.emplace_back(tool_change_new(layer.tool_changes[i].new_tool, solid_toolchange,solid_nozzlechange)); if (i == 0 && (layer.tool_changes[i].old_tool == wall_idx)) { } else if (layer.tool_changes[i].new_tool == wall_idx) { finish_layer_tcr = finish_layer_new(m_enable_timelapse_print ? false : true, false, false); insert_finish_layer_idx = i; } } // insert finish block if (wall_idx != -1) { if (layer.tool_changes.empty()) { finish_layer_tcr = finish_layer_new(m_enable_timelapse_print ? false : true, false, false); } for (WipeTowerBlock& block : m_wipe_tower_blocks) { block.finish_depth[m_cur_layer_id] = block.start_depth + block.depth; if (block.cur_depth + EPSILON >= block.start_depth + block.layer_depths[m_cur_layer_id]-m_perimeter_width) { continue; } int id = std::find_if(m_wipe_tower_blocks.begin(), m_wipe_tower_blocks.end(), [&](const WipeTowerBlock &b) { return &b == █ }) - m_wipe_tower_blocks.begin(); bool interface_solid = solid_blocks_id.count(id); int finish_layer_filament = -1; if (block.last_filament_change_id != -1) { finish_layer_filament = block.last_filament_change_id; } else if (block.last_nozzle_change_id != -1) { finish_layer_filament = block.last_nozzle_change_id; } if (!layer.tool_changes.empty()) { WipeTowerBlock * last_layer_finish_block = get_block_by_category(get_filament_category(layer.tool_changes.front().old_tool), false); if (last_layer_finish_block && last_layer_finish_block->block_id == block.block_id && finish_layer_filament == -1) finish_layer_filament = layer.tool_changes.front().old_tool; } if (finish_layer_filament == -1) { finish_layer_filament = wall_idx; } // Cancel the block of the last layer if (!is_valid_last_layer(finish_layer_filament)) continue; ToolChangeResult finish_block_tcr; if (interface_solid || (block.solid_infill[m_cur_layer_id] && block.filament_adhesiveness_category != m_filament_categories[finish_layer_filament])) { interface_solid = interface_solid && !((block.solid_infill[m_cur_layer_id] && block.filament_adhesiveness_category != m_filament_categories[finish_layer_filament]));//noly reduce speed when finish_block_tcr = finish_block_solid(block, finish_layer_filament, layer.extruder_fill, interface_solid); block.finish_depth[m_cur_layer_id] = block.start_depth + block.depth; } else { finish_block_tcr = finish_block(block, finish_layer_filament, layer.extruder_fill); block.finish_depth[m_cur_layer_id] = block.cur_depth; } bool has_inserted = false; { auto fc_iter = std::find_if(layer_result.begin(), layer_result.end(), [&finish_layer_filament](const WipeTower::ToolChangeResult &item) { return item.new_tool == finish_layer_filament; }); if (fc_iter != layer_result.end()) { *fc_iter = merge_tcr(*fc_iter, finish_block_tcr); has_inserted = true; } } if (block.last_filament_change_id == -1 && !has_inserted) { auto nc_iter = std::find_if(layer_result.begin(), layer_result.end(), [&finish_layer_filament](const WipeTower::ToolChangeResult &item) { return item.initial_tool == finish_layer_filament; }); if (nc_iter != layer_result.end()) { *nc_iter = merge_tcr(finish_block_tcr, *nc_iter); has_inserted = true; } } if (!has_inserted) { if (finish_block_tcr.gcode.empty()) finish_block_tcr = finish_block_tcr; else finish_layer_tcr = merge_tcr(finish_layer_tcr, finish_block_tcr); } } } // record the contact layers of different categories solid_blocks_id.clear(); if (wall_idx != -1) { for (const WipeTowerBlock &block : m_wipe_tower_blocks) { ToolChangeResult finish_block_tcr; if (block.solid_infill[m_cur_layer_id] && block.filament_adhesiveness_category != m_filament_categories[wall_idx]) { int id = std::find_if(m_wipe_tower_blocks.begin(), m_wipe_tower_blocks.end(), [&](const WipeTowerBlock &b) { return &b == █ }) - m_wipe_tower_blocks.begin(); solid_blocks_id.insert(id); } } } if (layer_result.empty()) { // there is nothing to merge finish_layer with layer_result.emplace_back(std::move(finish_layer_tcr)); } else if (is_valid_gcode(finish_layer_tcr.gcode)) { if (insert_finish_layer_idx == -1) layer_result[0] = merge_tcr(finish_layer_tcr, layer_result[0]); else layer_result[insert_finish_layer_idx] = merge_tcr(layer_result[insert_finish_layer_idx], finish_layer_tcr); } if (m_enable_timelapse_print && !timelapse_wall.gcode.empty()) { layer_result.insert(layer_result.begin(), std::move(timelapse_wall)); } result.emplace_back(std::move(layer_result)); } assert(m_outer_wall.size() == m_plan.size()); } // Processes vector m_plan and calls respective functions to generate G-code for the wipe tower // Resulting ToolChangeResults are appended into vector "result" void WipeTower::generate(std::vector> &result) { if (m_plan.empty()) return; m_extra_spacing = 1.f; plan_tower(); // BBS #if 0 for (int i=0;i<5;++i) { save_on_last_wipe(); plan_tower(); } #endif m_layer_info = m_plan.begin(); // we don't know which extruder to start with - we'll set it according to the first toolchange for (const auto& layer : m_plan) { if (!layer.tool_changes.empty()) { m_current_tool = layer.tool_changes.front().old_tool; break; } } for (auto& used : m_used_filament_length) // reset used filament stats used = 0.f; m_old_temperature = -1; // reset last temperature written in the gcode std::vector layer_result; int index = 0; for (auto layer : m_plan) { m_cur_layer_id = index++; set_layer(layer.z, layer.height, 0, false/*layer.z == m_plan.front().z*/, layer.z == m_plan.back().z); // BBS //m_internal_rotation += 180.f; if (m_layer_info->depth < m_perimeter_width) continue; if (m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width) { // align y shift to perimeter width float dy = m_extra_spacing * m_perimeter_width; m_y_shift = (m_wipe_tower_depth - m_layer_info->depth) / 2.f; m_y_shift = align_round(m_y_shift, dy); } // BBS: consider both soluable and support properties int idx = first_toolchange_to_nonsoluble_nonsupport (layer.tool_changes); ToolChangeResult finish_layer_tcr; ToolChangeResult timelapse_wall; if (idx == -1) { // if there is no toolchange switching to non-soluble, finish layer // will be called at the very beginning. That's the last possibility // where a nonsoluble tool can be. if (m_enable_timelapse_print) { timelapse_wall = only_generate_out_wall(); } finish_layer_tcr = finish_layer(m_enable_timelapse_print ? false : true, layer.extruder_fill); } for (int i=0; itoolchanges_depth() : 0.f)); // Slow down on the 1st layer. bool first_layer = is_first_layer(); // BBS: speed up perimeter speed to 90mm/s for non-first layer float feedrate = first_layer ? std::min(m_first_layer_speed * 60.f, m_max_speed) : std::min(60.0f * m_filpar[m_current_tool].max_e_speed / m_extrusion_flow, m_max_speed); float fill_box_y = m_layer_info->toolchanges_depth() + m_perimeter_width; box_coordinates fill_box(Vec2f(m_perimeter_width, fill_box_y), m_wipe_tower_width - 2 * m_perimeter_width, m_layer_info->depth - fill_box_y); writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON; // we are in one of the corners, travel to ld along the perimeter: // BBS: Delete some unnecessary travel //if (writer.x() > fill_box.ld.x() + EPSILON) writer.travel(fill_box.ld.x(), writer.y()); //if (writer.y() > fill_box.ld.y() + EPSILON) writer.travel(writer.x(), fill_box.ld.y()); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); // outer perimeter (always): // BBS float wipe_tower_depth = m_layer_info->depth + m_perimeter_width; if (is_new_mode && m_enable_timelapse_print) wipe_tower_depth = m_wipe_tower_depth; box_coordinates wt_box(Vec2f(0.f, (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)), m_wipe_tower_width, wipe_tower_depth); wt_box = align_perimeter(wt_box); Polygon outer_wall; //if (m_use_gap_wall) // generate_support_wall(writer, wt_box, feedrate, first_layer); //else // writer.rectangle(wt_box, feedrate); outer_wall = generate_support_wall_new(writer, wt_box, feedrate, first_layer, m_use_rib_wall, true, m_use_gap_wall); m_outer_wall[m_z_pos].push_back(to_polyline(outer_wall)); // Now prepare future wipe. box contains rectangle that was extruded last (ccw). // Vec2f target = (writer.pos() == wt_box.ld ? wt_box.rd : (writer.pos() == wt_box.rd ? wt_box.ru : (writer.pos() == wt_box.ru ? wt_box.lu : wt_box.ld))); //writer.add_wipe_point(writer.pos()).add_wipe_point(target); writer.add_wipe_path(outer_wall, m_filpar[m_current_tool].wipe_dist); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); // Ask our writer about how much material was consumed. // Skip this in case the layer is sparse and config option to not print sparse layers is enabled. if (!m_no_sparse_layers || toolchanges_on_layer) if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); return construct_tcr(writer, false, old_tool, true, false, 0.f); } Polygon WipeTower::generate_rib_polygon(const box_coordinates &wt_box) { auto get_current_layer_rib_len = [](float cur_height, float max_height, float max_len) -> float { return std::abs(max_height - cur_height) / max_height * max_len; }; coord_t diagonal_width = scaled(m_rib_width)/2; float a = this->m_wipe_tower_width, b = this->m_wipe_tower_depth; Line line_1(Point::new_scale(Vec2f{0, 0}), Point::new_scale(Vec2f{a, b})); Line line_2(Point::new_scale(Vec2f{a, 0}), Point::new_scale(Vec2f{0, b})); float diagonal_extra_length = std::max(0.f, m_rib_length - (float) unscaled(line_1.length())) / 2.f; diagonal_extra_length = scaled(get_current_layer_rib_len(this->m_z_pos, this->m_wipe_tower_height, diagonal_extra_length)); Point y_shift{0, scaled(this->m_y_shift)}; line_1.extend(double(diagonal_extra_length)); line_2.extend(double(diagonal_extra_length)); line_1.translate(-y_shift); line_2.translate(-y_shift); Polygon poly_1 = generate_rectange(line_1, diagonal_width); Polygon poly_2 = generate_rectange(line_2, diagonal_width); Polygon poly; poly.points.push_back(Point::new_scale(wt_box.ld)); poly.points.push_back(Point::new_scale(wt_box.rd)); poly.points.push_back(Point::new_scale(wt_box.ru)); poly.points.push_back(Point::new_scale(wt_box.lu)); Polygons p_1_2 = union_({poly_1, poly_2, poly}); //Polygon res_poly = p_1_2.front(); //for (auto &p : res_poly.points) res.push_back(unscale(p).cast()); /*if (p_1_2.front().points.size() != 16) std::cout << "error " << std::endl;*/ return p_1_2.front(); }; Polygon WipeTower::generate_support_wall_new(WipeTowerWriter &writer, const box_coordinates &wt_box, double feedrate, bool first_layer,bool rib_wall, bool extrude_perimeter, bool skip_points) { auto get_closet_idx = [this, &writer](Polylines &pls) -> std::pair { Vec2f anchor{writer.x(), writer.y()}; int closestIndex = -1; int closestPl = -1; float minDistance = std::numeric_limits::max(); for (int i = 0; i < pls.size(); ++i) { for (int j = 0; j < pls[i].size(); ++j) { float distance = (unscaled(pls[i][j]) - anchor).squaredNorm(); if (distance < minDistance) { minDistance = distance; closestPl = i; closestIndex = j; } } } return {closestPl, closestIndex}; }; float retract_length = m_filpar[m_current_tool].retract_length; float retract_speed = m_filpar[m_current_tool].retract_speed * 60; Polygon wall_polygon = rib_wall ? generate_rib_polygon(wt_box) : generate_rectange_polygon(wt_box.ld, wt_box.ru); Polylines result_wall; Polygon insert_skip_polygon; if (m_used_fillet) { if (!rib_wall && m_y_shift > EPSILON)// do nothing because the fillet will cause it to be suspended. { } else { wall_polygon = rib_wall ? rounding_polygon(wall_polygon) : wall_polygon; // rectangle_wall do nothing Polygon wt_box_polygon = generate_rectange_polygon(wt_box.ld, wt_box.ru); wall_polygon = union_({wall_polygon, wt_box_polygon}).front(); } } if (!extrude_perimeter) return wall_polygon; if (skip_points) { result_wall = contrust_gap_for_skip_points(wall_polygon,m_wall_skip_points,m_wipe_tower_width,2.5*m_perimeter_width,insert_skip_polygon); } else { result_wall.push_back(to_polyline(wall_polygon)); insert_skip_polygon = wall_polygon; } writer.generate_path(result_wall, feedrate, retract_length, retract_speed,m_used_fillet); if (m_cur_layer_id == 0) { BoundingBox bbox = get_extents(result_wall); m_rib_offset = Vec2f(-unscaled(bbox.min.x()), -unscaled(bbox.min.y())); } return insert_skip_polygon; } Polygon WipeTower::generate_support_wall(WipeTowerWriter &writer, const box_coordinates &wt_box, double feedrate, bool first_layer) { float retract_length = m_filpar[m_current_tool].retract_length; float retract_speed = m_filpar[m_current_tool].retract_speed *60 ; bool is_left = false; bool is_right = false; for (auto pt : m_wall_skip_points) { if (abs(pt.x()) < EPSILON) { is_left = true; } else if (abs(pt.x() - m_wipe_tower_width) < EPSILON) { is_right = true; } } if (is_left && is_right) { Vec2f *p = nullptr; p->x(); } if (!is_left && !is_right) { Vec2f *p = nullptr; p->x(); } // 3 ------------- 2 // | | // | | // 0 ------------- 1 int index = 0; Vec2f cur_pos = writer.pos(); if (abs(cur_pos.x() - wt_box.ld.x()) > abs(cur_pos.x() - wt_box.rd.x())) { if (abs(cur_pos.y() - wt_box.ld.y()) > abs(cur_pos.y() - wt_box.lu.y())) { index = 2; } else { index = 1; } } else { if (abs(cur_pos.y() - wt_box.ld.y()) > abs(cur_pos.y() - wt_box.lu.y())) { index = 3; } else { index = 0; } } std::vector points; points.emplace_back(wt_box.ld); points.emplace_back(wt_box.rd); points.emplace_back(wt_box.ru); points.emplace_back(wt_box.lu); writer.travel(points[index]); int extruded_nums = 0; while (extruded_nums < 4) { index = (index + 1) % 4; if (index == 2) { if (is_right) { std::vector break_segments = remove_points_from_segment(Segment(wt_box.rd, wt_box.ru), m_wall_skip_points, 2.5 * m_perimeter_width); for (auto iter = break_segments.begin(); iter != break_segments.end(); ++iter) { float dx = iter->start.x() - writer.pos().x(); float dy = iter->start.y() - writer.pos().y(); float len = std::sqrt(dx * dx + dy * dy); if (len > 0) { writer.retract(retract_length, retract_speed); writer.travel(iter->start, 600.); writer.retract(-retract_length, retract_speed); } else writer.travel(iter->start, 600.); writer.extrude(iter->end, feedrate); } writer.travel(wt_box.ru, feedrate); } else { writer.extrude(wt_box.ru, feedrate); } } else if (index == 0) { if (is_left) { std::vector break_segments = remove_points_from_segment(Segment(wt_box.ld, wt_box.lu), m_wall_skip_points, 2.5 * m_perimeter_width); for (auto iter = break_segments.rbegin(); iter != break_segments.rend(); ++iter) { float dx = iter->end.x() - writer.pos().x(); float dy = iter->end.y() - writer.pos().y(); float len = std::sqrt(dx * dx + dy * dy); if (len > 0) { writer.retract(retract_length, retract_speed); writer.travel(iter->end, 600.); writer.retract(-retract_length, retract_speed); } else writer.travel(iter->end, 600.); writer.extrude(iter->start, feedrate); } writer.travel(wt_box.ld, feedrate); } else { writer.extrude(wt_box.ld, feedrate); } } else { writer.extrude(points[index], feedrate); } extruded_nums++; } return Polygon(); } bool WipeTower::get_floating_area(float &start_pos_y, float &end_pos_y) const { if (m_layer_info == m_plan.begin() || (m_layer_info - 1) == m_plan.begin()) return false; if (!m_cur_block) return false; end_pos_y = m_cur_block->start_depth + m_cur_block->depth - m_perimeter_width; start_pos_y = m_cur_block->finish_depth[m_cur_layer_id - 1]; #if 0 float last_layer_fill_box_y = (m_layer_info - 1)->toolchanges_depth() + m_perimeter_width; float last_layer_wipe_depth = (m_layer_info - 1)->depth; if (last_layer_wipe_depth - last_layer_fill_box_y <= 2 * m_perimeter_width) return false; start_pos_y = last_layer_fill_box_y + m_perimeter_width; end_pos_y = last_layer_wipe_depth - m_perimeter_width; #endif return true; } bool WipeTower::need_thick_bridge_flow(float pos_y) const { if (m_layer_height >= 0.2) return false; float y_min = 0., y_max = 0.; if (get_floating_area(y_min, y_max)) { return pos_y > y_min && pos_y < y_max; } return false; } bool WipeTower::is_valid_last_layer(int tool) const { int nozzle_id = -1; if (tool >= 0 && tool < m_filament_map.size()) nozzle_id = m_filament_map[tool]-1; if (nozzle_id < 0 || nozzle_id >= m_printable_height.size()) return true; if (m_last_layer_id[nozzle_id] == m_cur_layer_id && m_z_pos > m_printable_height[nozzle_id]) return false; return true; } } // namespace Slic3r