#include "FilamentGroup.hpp" #include "GCode/ToolOrdering.hpp" namespace Slic3r { int FilamentGroup::calc_filament_group(const std::vector>& layer_filaments) { std::setused_filaments; for (const auto& lf : layer_filaments) for (const auto& extruder : lf) used_filaments.insert(extruder); m_filament_labels.resize(used_filaments.size()); m_used_filaments = std::vector(used_filaments.begin(), used_filaments.end()); std::sort(m_used_filaments.begin(), m_used_filaments.end()); if (m_filament_num <= 1) return 0; if (m_filament_num < 10) return calc_filament_group_by_enum(layer_filaments); else return calc_filament_group_by_pam(layer_filaments,300); } int FilamentGroup::calc_filament_group_by_enum(const std::vector>& layer_filaments) { auto bit_count_one = [](int n) { int count = 0; while (n != 0) { n &= n - 1; count++; } return count; }; uint64_t max_group_num = static_cast(1 << m_filament_num); int best_cost = std::numeric_limits::max(); std::vectorbest_label; for (uint64_t i = 0; i < max_group_num; ++i) { int num_to_group_1 = bit_count_one(i); if (num_to_group_1 > m_max_group_size[1] || (m_filament_num - num_to_group_1) > m_max_group_size[0]) continue; std::setgroup_0, group_1; for (int j = 0; j < m_filament_num; ++j) { if (i & static_cast(1 << j)) group_1.insert(m_used_filaments[j]); else group_0.insert(m_used_filaments[j]); } if (group_0.size() < m_max_group_size[0] && group_1.size() < m_max_group_size[1]){ std::vectorfilament_maps(m_filament_num); for (int i = 0; i < m_filament_num; ++i) { if (group_0.find(m_used_filaments[i]) != group_0.end()) filament_maps[i] = 0; if (group_1.find(m_used_filaments[i]) != group_1.end()) filament_maps[i] = 1; } int total_cost = reorder_filaments_for_minimum_flush_volume( m_used_filaments, filament_maps, layer_filaments, m_flush_matrix, get_custom_seq, nullptr ); if (total_cost < best_cost) { best_cost = total_cost; best_label = filament_maps; } } } m_filament_labels = best_label; return best_cost; } int FilamentGroup::calc_filament_group_by_pam(const std::vector>& layer_filaments, int timeout_ms) { //calc pair counts std::vector>count_matrix(m_filament_num,std::vector(m_filament_num)); for (const auto& lf : layer_filaments) { for (auto iter = lf.begin(); iter != lf.end(); ++iter) { auto idx1 = std::find(m_used_filaments.begin(), m_used_filaments.end(), *iter)-m_used_filaments.begin(); for (auto niter = std::next(iter); niter != lf.end(); ++niter) { auto idx2 = std::find(m_used_filaments.begin(), m_used_filaments.end(), *niter) - m_used_filaments.begin(); count_matrix[idx1][idx2] += 1; count_matrix[idx2][idx1] += 1; } } } //calc distance matrix std::vector>distance_matrix(m_filament_num, std::vector(m_filament_num)); for (size_t i = 0; i < m_used_filaments.size(); ++i) { for (size_t j = 0; j < m_used_filaments.size(); ++j) { if (i == j) distance_matrix[i][j] = 0; else { //TODO: check m_flush_matrix float max_val = std::max(m_flush_matrix[0][m_used_filaments[i]][m_used_filaments[j]], m_flush_matrix[0][m_used_filaments[j]][m_used_filaments[i]]); float min_val = std::min(m_flush_matrix[0][m_used_filaments[i]][m_used_filaments[j]], m_flush_matrix[0][m_used_filaments[j]][m_used_filaments[i]]); double p = 0; distance_matrix[i][j] = (max_val * p + min_val * (1 - p)) * count_matrix[i][j]; } } } KMediods PAM(distance_matrix, m_filament_num,m_max_group_size); PAM.fit(timeout_ms); this->m_filament_labels = PAM.get_filament_labels(); int cost = reorder_filaments_for_minimum_flush_volume( m_used_filaments, this->m_filament_labels, layer_filaments, m_flush_matrix, get_custom_seq, nullptr ); return cost; } void KMediods::fit( int timeout_ms) { std::vectorbest_medoids; std::vectorbest_labels; int best_cost = std::numeric_limits::max(); FlushTimeMachine T; T.time_machine_start(); int count = 0; while (true) { std::vectormedoids; std::vectorlabels; if (count == 0) medoids = initialize(INIT_TYPE::Farthest); else medoids = initialize(INIT_TYPE::Random); labels = assign_label(medoids); int cost = calc_cost(labels, medoids); for (int i = 0; i < m_filament_num; ++i) { if (std::find(medoids.begin(), medoids.end(), i) != medoids.end()) continue; for (int j = 0; j < 2; ++j) { std::vector new_medoids = medoids; new_medoids[j] = i; std::vector new_labels = assign_label(new_medoids); int new_cost = calc_cost(new_labels, new_medoids); if (new_cost < cost) { labels = new_labels; cost = new_cost; medoids = new_medoids; } } } if (cost < best_cost) { best_cost = cost; best_labels = labels; best_medoids = medoids; } count += 1; if (T.time_machine_end() > timeout_ms) break; } this->m_filament_labels = best_labels; } std::vector KMediods::assign_label(const std::vector& medoids) const { std::vectorlabels(m_filament_num); struct Comp { bool operator()(const std::pair& a, const std::pair& b) { return a.second > b.second; } }; std::priority_queue, std::vector>,Comp>min_heap; for (int i = 0; i < m_filament_num; ++i) { int distancec_to_0 = m_distance_matrix[i][medoids[0]]; int distancec_to_1 = m_distance_matrix[i][medoids[1]]; min_heap.push({ i,distancec_to_0 - distancec_to_1 }); } std::set group_0, group_1; while (!min_heap.empty()) { auto top = min_heap.top(); min_heap.pop(); if (group_0.size() < m_max_group_size[0] && (top.second <= 0 || group_1.size() >= m_max_group_size[1])) group_0.insert(top.first); else group_1.insert(top.first); } for (auto& item : group_0) labels[item] = 0; for (auto& item : group_1) labels[item] = 1; return labels; } int KMediods::calc_cost(const std::vector& labels, const std::vector& medoids) const { int total_cost = 0; for (int i = 0; i < m_filament_num; ++i) total_cost += m_distance_matrix[i][medoids[labels[i]]]; return total_cost; } std::vector KMediods::initialize(INIT_TYPE type) const { auto hash_func = [](int n1, int n2) { return n1 * 100 + n2; }; srand(time(nullptr)); std::vectorret; if (type == INIT_TYPE::Farthest) { //get the farthest items int target_i=0,target_j=0,target_val=std::numeric_limits::min(); for(int i=0;itarget_val){ target_val=m_distance_matrix[i][j]; target_i=i; target_j=j; } } } ret.emplace_back(std::min(target_i, target_j)); ret.emplace_back(std::max(target_i, target_j)); } else if (type == INIT_TYPE::Random) { while (true) { std::vectormedoids; while (medoids.size() < 2) { int candidate = rand() % m_filament_num; if (std::find(medoids.begin(), medoids.end(), candidate) == medoids.end()) medoids.push_back(candidate); } std::sort(medoids.begin(), medoids.end()); if (m_medoids_set.find(hash_func(medoids[0], medoids[1])) != m_medoids_set.end() && m_medoids_set.size() != (m_filament_num * (m_filament_num - 1) / 2)) continue; else { ret = medoids; break; } } } m_medoids_set.insert(hash_func(ret[0],ret[1])); return ret; } }