BambuStudio/src/libslic3r/TreeSupport.cpp

3581 lines
171 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <math.h>
#include "MinimumSpanningTree.hpp"
#include "TreeSupport.hpp"
#include "Print.hpp"
#include "Layer.hpp"
#include "Fill/FillBase.hpp"
#include "CurveAnalyzer.hpp"
#include "SVG.hpp"
#include "ShortestPath.hpp"
#include "I18N.hpp"
#include <libnest2d/backends/libslic3r/geometries.hpp>
#include "Fill/FillBase.hpp"
#define _L(s) Slic3r::I18N::translate(s)
#define USE_PLAN_LAYER_HEIGHTS 1
#define HEIGHT_TO_SWITCH_INFILL_DIRECTION 30 // change infill direction every 20mm
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795
#endif
#ifndef SIGN
#define SIGN(x) (x>=0?1:-1)
#endif
#define TAU (2.0 * M_PI)
#define NO_INDEX (std::numeric_limits<unsigned int>::max())
// #define SUPPORT_TREE_DEBUG_TO_SVG
namespace Slic3r
{
#define unscale_(val) ((val) * SCALING_FACTOR)
#define FIRST_LAYER_EXPANSION 1.2
inline unsigned int round_divide(unsigned int dividend, unsigned int divisor) //!< Return dividend divided by divisor rounded to the nearest integer
{
return (dividend + divisor / 2) / divisor;
}
inline unsigned int round_up_divide(unsigned int dividend, unsigned int divisor) //!< Return dividend divided by divisor rounded to the nearest integer
{
return (dividend + divisor - 1) / divisor;
}
inline double dot_with_unscale(const Point a, const Point b)
{
return unscale_(a(0)) * unscale_(b(0)) + unscale_(a(1)) * unscale_(b(1));
}
inline double vsize2_with_unscale(const Point pt)
{
return dot_with_unscale(pt, pt);
}
inline Point turn90_ccw(const Point pt)
{
Point ret;
ret(0) = -pt(1);
ret(1) = pt(0);
return ret;
}
inline Point normal(Point pt, double scale)
{
double length = scale_(sqrt(vsize2_with_unscale(pt)));
return pt * (scale / length);
}
enum TreeSupportStage {
STAGE_DETECT_OVERHANGS,
STAGE_GENERATE_CONTACT_NODES,
STAGE_DROP_DOWN_NODES,
STAGE_DRAW_CIRCLES,
STAGE_GENERATE_TOOLPATHS,
STAGE_MinimumSpanningTree,
STAGE_GET_AVOIDANCE,
STAGE_projection_onto_ex,
STAGE_get_collision,
STAGE_intersection_ln,
STAGE_total,
NUM_STAGES
};
class TreeSupportProfiler
{
public:
uint32_t stage_durations[NUM_STAGES];
uint32_t stage_index = 0;
boost::posix_time::ptime tic_time;
boost::posix_time::ptime toc_time;
TreeSupportProfiler()
{
for (uint32_t& item : stage_durations) {
item = 0;
}
}
void stage_start(TreeSupportStage stage)
{
if (stage > NUM_STAGES)
return;
m_stage_start_times[stage] = boost::posix_time::microsec_clock::local_time();
}
void stage_finish(TreeSupportStage stage)
{
if (stage > NUM_STAGES)
return;
boost::posix_time::ptime time = boost::posix_time::microsec_clock::local_time();
stage_durations[stage] = (time - m_stage_start_times[stage]).total_milliseconds();
}
void tic() { tic_time = boost::posix_time::microsec_clock::local_time(); }
void toc() { toc_time = boost::posix_time::microsec_clock::local_time(); }
void stage_add(TreeSupportStage stage, bool do_toc = false)
{
if (stage > NUM_STAGES)
return;
if(do_toc)
toc_time = boost::posix_time::microsec_clock::local_time();
stage_durations[stage] += (toc_time - tic_time).total_milliseconds();
}
std::string report()
{
std::stringstream ss;
ss << "total overhange cost: " << stage_durations[STAGE_total]
<< "; STAGE_DETECT_OVERHANGS: " << stage_durations[STAGE_DETECT_OVERHANGS]
<< "; STAGE_GENERATE_CONTACT_NODES: " << stage_durations[STAGE_GENERATE_CONTACT_NODES]
<< "; STAGE_DROP_DOWN_NODES: " << stage_durations[STAGE_DROP_DOWN_NODES]
<< "; STAGE_DRAW_CIRCLES: " << stage_durations[STAGE_DRAW_CIRCLES]
<< "; STAGE_GENERATE_TOOLPATHS: " << stage_durations[STAGE_GENERATE_TOOLPATHS]
<< "; STAGE_MinimumSpanningTree: " << stage_durations[STAGE_MinimumSpanningTree]
<< "; STAGE_GET_AVOIDANCE: " << stage_durations[STAGE_GET_AVOIDANCE]
<< "; STAGE_projection_onto_ex: " << stage_durations[STAGE_projection_onto_ex]
<< "; STAGE_get_collision: " << stage_durations[STAGE_get_collision]
<< "; STAGE_intersection_ln: " << stage_durations[STAGE_intersection_ln];
return ss.str();
}
private:
boost::posix_time::ptime m_stage_start_times[NUM_STAGES];
};
TreeSupportProfiler profiler;
Lines spanning_tree_to_lines(const std::vector<MinimumSpanningTree>& spanning_trees)
{
Lines polylines;
for (const MinimumSpanningTree& mst : spanning_trees) {
std::vector<Point> points = mst.vertices();
std::unordered_set<Point, PointHash> to_ignore;
for (Point pt1 : points) {
if (to_ignore.find(pt1) != to_ignore.end())
continue;
const std::vector<Point>& neighbours = mst.adjacent_nodes(pt1);
if (neighbours.empty())
continue;
for (Point pt2 : neighbours) {
if (to_ignore.find(pt2) != to_ignore.end())
continue;
Line line(pt1, pt2);
polylines.push_back(line);
}
to_ignore.insert(pt1);
}
}
return polylines;
}
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
static std::string get_svg_filename(std::string layer_nr_or_z, std::string tag = "bbl_ts")
{
static bool rand_init = false;
if (!rand_init) {
srand(time(NULL));
rand_init = true;
}
int rand_num = rand() % 1000000;
//makedir("./SVG");
std::string prefix = "./SVG/";
std::string suffix = ".svg";
return prefix + tag + "_" + layer_nr_or_z /*+ "_" + std::to_string(rand_num)*/ + suffix;
}
static void draw_contours_and_nodes_to_svg
(
std::string layer_nr_or_z,
const ExPolygons &overhangs,
const ExPolygons &overhangs_after_offset,
const ExPolygons &outlines_below,
const std::vector<TreeSupport::Node*> &layer_nodes,
const std::vector<TreeSupport::Node*> &lower_layer_nodes,
std::string name_prefix,
std::vector<std::string> legends = { "overhang","avoid","outlines" }, std::vector<std::string> colors = { "blue","red","yellow" }
)
{
BoundingBox bbox = get_extents(overhangs);
bbox.merge(get_extents(overhangs_after_offset));
bbox.merge(get_extents(outlines_below));
Points layer_pts;
for (TreeSupport::Node* node : layer_nodes) {
layer_pts.push_back(node->position);
}
bbox.merge(get_extents(layer_pts));
bbox.inflated(scale_(1));
bbox.max.x() = std::max(bbox.max.x(), (coord_t)scale_(10));
bbox.max.y() = std::max(bbox.max.y(), (coord_t)scale_(10));
SVG svg;
if(!layer_nr_or_z.empty())
svg.open(get_svg_filename(layer_nr_or_z, name_prefix), bbox);
else
svg.open(name_prefix, bbox);
if (!svg.is_opened()) return;
// draw grid
svg.draw_grid(bbox, "gray", coord_t(scale_(0.05)));
// draw overhang areas
svg.draw_outline(union_ex(overhangs), colors[0]);
svg.draw_outline(union_ex(overhangs_after_offset), colors[1]);
svg.draw_outline(outlines_below, colors[2]);
// draw legend
svg.draw_text(bbox.min + Point(scale_(0), scale_(0)), ("nPoints: "+std::to_string(layer_nodes.size())+"->").c_str(), "green", 4);
svg.draw_text(bbox.min + Point(scale_(15), scale_(0)), std::to_string(lower_layer_nodes.size()).c_str(), "black", 4);
svg.draw_text(bbox.min + Point(scale_(0), scale_(1)), legends[0].c_str(), colors[0].c_str(), 4);
svg.draw_text(bbox.min + Point(scale_(0), scale_(2)), legends[1].c_str(), colors[1].c_str(), 4);
svg.draw_text(bbox.min + Point(scale_(0), scale_(3)), legends[2].c_str(), colors[2].c_str(), 4);
// draw layer nodes
svg.draw(layer_pts, "green", coord_t(scale_(0.1)));
// lower layer points
layer_pts.clear();
for (TreeSupport::Node *node : lower_layer_nodes) {
layer_pts.push_back(node->position);
}
svg.draw(layer_pts, "black", coord_t(scale_(0.1)));
// higher layer points
layer_pts.clear();
for (TreeSupport::Node* node : layer_nodes) {
if(node->parent)
layer_pts.push_back(node->parent->position);
}
svg.draw(layer_pts, "blue", coord_t(scale_(0.1)));
}
static void draw_layer_mst
(const std::string &layer_nr_or_z,
const std::vector<MinimumSpanningTree> &spanning_trees,
const ExPolygons& outline
)
{
auto lines = spanning_tree_to_lines(spanning_trees);
BoundingBox bbox = get_extents(lines);
for (auto& poly : outline)
{
BoundingBox bb = poly.contour.bounding_box();
bbox.merge(bb);
}
SVG svg(get_svg_filename(layer_nr_or_z, "mstree").c_str(), bbox);
if (!svg.is_opened()) return;
svg.draw(lines, "blue", coord_t(scale_(0.05)));
svg.draw_outline(outline, "yellow");
for (auto &spanning_tree : spanning_trees)
svg.draw(spanning_tree.vertices(), "black", coord_t(scale_(0.1)));
}
static void draw_two_overhangs_to_svg(TreeSupportLayer* ts_layer, const ExPolygons& overhangs1, const ExPolygons& overhangs2)
{
if (overhangs1.empty() && overhangs2.empty())
return;
BoundingBox bbox1 = get_extents(overhangs1);
BoundingBox bbox2 = get_extents(overhangs2);
bbox1.merge(bbox2);
SVG svg(get_svg_filename(std::to_string(ts_layer->print_z), "two_overhangs"), bbox1);
if (!svg.is_opened()) return;
svg.draw(union_ex(overhangs1), "blue");
svg.draw(union_ex(overhangs2), "red");
}
static void draw_polylines(TreeSupportLayer* ts_layer, Polylines& polylines)
{
if (polylines.empty())
return;
BoundingBox bbox = get_extents(polylines);
SVG svg(get_svg_filename(std::to_string(ts_layer->print_z), "lightnings"), bbox);
if (!svg.is_opened()) return;
int id = 0;
for (Polyline& pline : polylines)
{
int i1, i2;
for (size_t i = 0; i < pline.size() - 1; i++)
{
i1 = i;
i2 = i + 1;
svg.draw(Line(pline.points[i1], pline.points[i2]), "blue");
svg.draw(pline.points[i1], "red");
id++;
svg.draw_text(pline.points[i1], std::to_string(id).c_str(), "black", 1);
}
svg.draw(pline.points[i2], "red");
id++;
svg.draw_text(pline.points[i2], std::to_string(id).c_str(), "black", 1);
}
}
#endif
// Move point from inside polygon if distance>0, outside if distance<0.
// Special case: distance=0 means find the nearest point of from on the polygon contour.
// The max move distance should not excceed max_move_distance.
static unsigned int move_inside_expoly(const ExPolygon &polygon, Point& from, double distance = 0, double max_move_distance = std::numeric_limits<double>::max())
{
//TODO: This is copied from the moveInside of Polygons.
/*
We'd like to use this function as subroutine in moveInside(Polygons...), but
then we'd need to recompute the distance of the point to the polygon, which
is expensive. Or we need to return the distance. We need the distance there
to compare with the distance to other polygons.
*/
Point ret = from;
double bestDist2 = std::numeric_limits<double>::max();
bool is_already_on_correct_side_of_boundary = false; // whether [from] is already on the right side of the boundary
const Polygon &contour = polygon.contour;
if (contour.points.size() < 2)
{
return 0;
}
Point p0 = contour.points[polygon.contour.size() - 2];
Point p1 = contour.points.back();
// because we compare with vsize2_with_unscale here (no division by zero), we also need to compare by vsize2_with_unscale inside the loop
// to avoid integer rounding edge cases
bool projected_p_beyond_prev_segment = dot_with_unscale(p1 - p0, from - p0) >= vsize2_with_unscale(p1 - p0);
for(const Point& p2 : polygon.contour.points)
{
// X = A + Normal(B-A) * (((B-A) dot_with_unscale (P-A)) / VSize(B-A));
// = A + (B-A) * ((B-A) dot_with_unscale (P-A)) / VSize2(B-A);
// X = P projected on AB
const Point& a = p1;
const Point& b = p2;
const Point& p = from;
Point ab = b - a;
Point ap = p - a;
double ab_length2 = vsize2_with_unscale(ab);
if(ab_length2 <= 0) //A = B, i.e. the input polygon had two adjacent points on top of each other.
{
p1 = p2; //Skip only one of the points.
continue;
}
double dot_prod = dot_with_unscale(ab, ap);
if (dot_prod <= 0) // x is projected to before ab
{
if (projected_p_beyond_prev_segment)
{ // case which looks like: > .
projected_p_beyond_prev_segment = false;
Point& x = p1;
double dist2 = vsize2_with_unscale(x - p);
if (dist2 < bestDist2)
{
bestDist2 = dist2;
if (distance == 0)
{
ret = x;
}
else
{
// TODO: check whether it needs scale_()
Point inward_dir = turn90_ccw(normal(ab, 10.0) + normal(p1 - p0, 10.0)); // inward direction irrespective of sign of [distance]
// MM2INT(10.0) to retain precision for the eventual normalization
ret = x + normal(inward_dir, scale_(distance));
is_already_on_correct_side_of_boundary = dot_with_unscale(inward_dir, p - x) * distance >= 0;
}
}
}
else
{
projected_p_beyond_prev_segment = false;
p0 = p1;
p1 = p2;
continue;
}
}
else if (dot_prod >= ab_length2) // x is projected to beyond ab
{
projected_p_beyond_prev_segment = true;
p0 = p1;
p1 = p2;
continue;
}
else
{ // x is projected to a point properly on the line segment (not onto a vertex). The case which looks like | .
projected_p_beyond_prev_segment = false;
Point x = a + ab * (dot_prod / ab_length2);
double dist2 = vsize2_with_unscale(p - x);
if (dist2 < bestDist2)
{
bestDist2 = dist2;
if (distance == 0)
{
ret = x;
}
else
{
Point inward_dir = turn90_ccw(normal(ab, scale_(distance))); // inward or outward depending on the sign of [distance]
ret = x + inward_dir;
is_already_on_correct_side_of_boundary = dot_with_unscale(inward_dir, p - x) >= 0;
}
}
}
p0 = p1;
p1 = p2;
}
if (is_already_on_correct_side_of_boundary) // when the best point is already inside and we're moving inside, or when the best point is already outside and we're moving outside
{
// BBS. Remove this condition.
if (bestDist2 < distance * distance)
{
from = ret;
}
}
else if (bestDist2 < max_move_distance * max_move_distance)
{
from = ret;
}
return 0;
}
/*
* Implementation assumes moving inside, but moving outside should just as well be possible.
*/
static bool move_inside_expolys(const ExPolygons& polygons, Point& from, double distance, double max_move_distance)
{
Point from0 = from;
Point ret = from;
std::vector<Point> valid_pts;
double bestDist2 = std::numeric_limits<double>::max();
unsigned int bestPoly = NO_INDEX;
bool is_already_on_correct_side_of_boundary = false; // whether [from] is already on the right side of the boundary
Point inward_dir;
for (unsigned int poly_idx = 0; poly_idx < polygons.size(); poly_idx++)
{
const ExPolygon poly = polygons[poly_idx];
if (poly.contour.size() < 2)
continue;
Point p0 = poly.contour[poly.contour.size()-2];
Point p1 = poly.contour.points.back();
// because we compare with vsize2_with_unscale here (no division by zero), we also need to compare by vsize2_with_unscale inside the loop
// to avoid integer rounding edge cases
bool projected_p_beyond_prev_segment = dot_with_unscale(p1 - p0, from - p0) >= vsize2_with_unscale(p1 - p0);
for(const Point p2 : poly.contour.points)
{
// X = A + Normal(B-A) * (((B-A) dot_with_unscale (P-A)) / VSize(B-A));
// = A + (B-A) * ((B-A) dot_with_unscale (P-A)) / VSize2(B-A);
// X = P projected on AB
Point a = p1;
Point b = p2;
Point p = from;
Point ab = b - a;
Point ap = p - a;
double ab_length2 = vsize2_with_unscale(ab);
if(ab_length2 <= 0) //A = B, i.e. the input polygon had two adjacent points on top of each other.
{
p1 = p2; //Skip only one of the points.
continue;
}
double dot_prod = dot_with_unscale(ab, ap);
if (dot_prod <= 0) // x is projected to before ab
{
if (projected_p_beyond_prev_segment)
{ // case which looks like: > .
projected_p_beyond_prev_segment = false;
Point& x = p1;
double dist2 = vsize2_with_unscale(x - p);
if (dist2 < bestDist2)
{
bestDist2 = dist2;
bestPoly = poly_idx;
if (distance == 0) { ret = x; }
else
{
inward_dir = turn90_ccw(normal(ab, 10.0) + normal(p1 - p0, 10.0)); // inward direction irrespective of sign of [distance]
// MM2INT(10.0) to retain precision for the eventual normalization
ret = x + normal(inward_dir, scale_(distance));
is_already_on_correct_side_of_boundary = dot_with_unscale(inward_dir, p - x) * distance >= 0;
if (is_already_on_correct_side_of_boundary && dist2 < distance * distance)
valid_pts.push_back(ret-from0);
}
}
}
else
{
projected_p_beyond_prev_segment = false;
p0 = p1;
p1 = p2;
continue;
}
}
else if (dot_prod >= ab_length2) // x is projected to beyond ab
{
projected_p_beyond_prev_segment = true;
p0 = p1;
p1 = p2;
continue;
}
else
{ // x is projected to a point properly on the line segment (not onto a vertex). The case which looks like | .
projected_p_beyond_prev_segment = false;
Point x = a + ab * (dot_prod / ab_length2);
double dist2 = vsize2_with_unscale(p - x);
if (dist2 < bestDist2)
{
bestDist2 = dist2;
bestPoly = poly_idx;
if (distance == 0) { ret = x; }
else
{
inward_dir = turn90_ccw(normal(ab, scale_(distance))); // inward or outward depending on the sign of [distance]
ret = x + inward_dir;
is_already_on_correct_side_of_boundary = dot_with_unscale(inward_dir, p - x) >= 0;
if (is_already_on_correct_side_of_boundary && dist2<distance*distance)
valid_pts.push_back(ret-from0);
}
}
}
p0 = p1;
p1 = p2;
}
}
//if (valid_pts.size() > 1) {
// std::sort(valid_pts.begin(), valid_pts.end());
// Point v_combine = valid_pts[0] + valid_pts[1];
// if(vsize2_with_unscale(v_combine)<distance*distance)
// v_combine = normal(v_combine, scale_(distance));
// ret = v_combine + from0;
//}
if (is_already_on_correct_side_of_boundary) // when the best point is already inside and we're moving inside, or when the best point is already outside and we're moving outside
{
if (bestDist2 < distance * distance)
{
from = ret;
}
return true;
}
else if (bestDist2 < max_move_distance * max_move_distance)
{
from = ret;
return true;
}
return false;
}
static Point find_closest_ex(Point from, const ExPolygons& polygons)
{
Point closest_pt;
double min_dist2 = std::numeric_limits<double>::max();
for (const ExPolygon &poly : polygons) {
for (int i = 0; i < poly.num_contours(); i++) {
const Point* candidate = poly.contour_or_hole(i).closest_point(from);
double dist2 = vsize2_with_unscale(*candidate - from);
if (dist2 < min_dist2) {
closest_pt = *candidate;
min_dist2 = dist2;
}
}
}
return closest_pt;
}
static bool move_outside_expolys(const ExPolygons& polygons, Point& from, double distance, double max_move_distance)
{
return move_inside_expolys(polygons, from, -distance, -max_move_distance);
}
static bool is_inside_ex(const ExPolygon &polygon, const Point &pt)
{
if (!get_extents(polygon).contains(pt))
return false;
return polygon.contains(pt);
}
static bool is_inside_ex(const ExPolygons &polygons, const Point &pt)
{
for (const ExPolygon &poly : polygons) {
if (is_inside_ex(poly, pt))
return true;
}
return false;
}
Point projection_onto_ex(const ExPolygons& polygons, Point from)
{
profiler.tic();
Point projected_pt;
double min_dist = std::numeric_limits<double>::max();
for (auto poly : polygons) {
for (int i = 0; i < poly.num_contours(); i++) {
Point p = from.projection_onto(poly.contour_or_hole(i));
double dist = (from - p).cast<double>().squaredNorm();
if (dist < min_dist) {
projected_pt = p;
min_dist = dist;
}
}
}
profiler.stage_add(STAGE_projection_onto_ex, true);
return projected_pt;
}
static bool move_out_expolys(const ExPolygons& polygons, Point& from, double distance, double max_move_distance)
{
Point from0 = from;
ExPolygons polys_dilated = union_ex(offset_ex(polygons, scale_(distance)));
Point pt = projection_onto_ex(polys_dilated, from);// find_closest_ex(from, polys_dilated);
Point outward_dir = pt - from;
Point pt_max = from + normal(outward_dir, scale_(max_move_distance));
double dist2 = vsize2_with_unscale(outward_dir);
if (dist2 > SQ(max_move_distance))
pt = pt_max;
// case 5: already outside and far enough, no need to move
if (!is_inside_ex(polys_dilated, from))
return true;
else if (!is_inside_ex(polygons, from)) {
// case 4: already outside but not far enough
from = pt;
return true;
}
else {
bool pt_max_in_poly = is_inside_ex(polygons, pt_max);
if (!pt_max_in_poly) {
from = pt_max;
return true;
}
else {
return false;
}
}
}
static Point bounding_box_middle(const BoundingBox &bbox)
{
return (bbox.max + bbox.min) / 2;
}
TreeSupport::TreeSupport(PrintObject& object, const SlicingParameters &slicing_params)
: m_object(&object), m_slicing_params(slicing_params), m_object_config(&object.config())
{
m_raft_layers = slicing_params.base_raft_layers + slicing_params.interface_raft_layers;
SupportMaterialPattern support_pattern = m_object_config->support_base_pattern;
m_support_params.base_fill_pattern =
support_pattern == smpLightning ? ipLightning :
support_pattern == smpHoneycomb ? ipHoneycomb :
m_support_params.support_density > 0.95 || m_support_params.with_sheath ? ipRectilinear :
ipSupportBase;
m_support_params.interface_fill_pattern = (m_support_params.interface_density > 0.95 ? ipRectilinear : ipSupportBase);
m_support_params.contact_fill_pattern = (m_object_config->support_interface_pattern == smipAuto && m_slicing_params.soluble_interface) ||
m_object_config->support_interface_pattern == smipConcentric ?
ipConcentric :
(m_support_params.interface_density > 0.95 ? ipRectilinear : ipSupportBase);
m_support_params.support_extrusion_width = m_object_config->support_line_width.value > 0 ? m_object_config->support_line_width : m_object_config->line_width;
is_slim = is_tree_slim(m_object_config->support_type, m_object_config->support_style);
MAX_BRANCH_RADIUS = is_slim ? 5.0 : 10.0;
tree_support_branch_diameter_angle = 5.0;//is_slim ? 10.0 : 5.0;
}
#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
void TreeSupport::detect_object_overhangs()
{
// overhangs are already detected
if (m_object->tree_support_layer_count() >= m_object->layer_count())
return;
// Clear and create Tree Support Layers
m_object->clear_tree_support_layers();
m_object->clear_tree_support_preview_cache();
create_tree_support_layers();
m_ts_data = m_object->alloc_tree_support_preview_cache();
m_ts_data->is_slim = is_slim;
const PrintObjectConfig& config = m_object->config();
SupportType stype = config.support_type.value;
const coordf_t radius_sample_resolution = m_ts_data->m_radius_sample_resolution;
const coordf_t extrusion_width = config.line_width.value;
const coordf_t extrusion_width_scaled = scale_(extrusion_width);
const coordf_t max_bridge_length = scale_(config.max_bridge_length.value);
const bool bridge_no_support = max_bridge_length > 0;
const bool support_critical_regions_only = config.support_critical_regions_only.value;
const int enforce_support_layers = config.enforce_support_layers.value;
const double area_thresh_well_supported = SQ(scale_(6));
const double length_thresh_well_supported = scale_(6);
static const double sharp_tail_max_support_height = 8.f;
// a region is considered well supported if the number of layers below it exceeds this threshold
const int thresh_layers_below = 10 / config.layer_height;
double obj_height = m_object->size().z();
struct ExPolygonComp {
bool operator()(const ExPolygon& a, const ExPolygon& b) const {
return &a < &b;
}
};
// for small overhang removal
struct OverhangCluster {
std::map<int, const ExPolygon*> layer_overhangs;
ExPolygons merged_poly;
int min_layer = 1e7;
int max_layer = 0;
coordf_t offset = 0;
bool is_cantilever = false;
OverhangCluster(const ExPolygon* expoly, int layer_nr) {
push_back(expoly, layer_nr);
}
void push_back(const ExPolygon* expoly, int layer_nr) {
layer_overhangs.emplace(layer_nr, expoly);
auto dilate1 = offset_ex(*expoly, offset);
if (!dilate1.empty())
merged_poly = union_ex(merged_poly, dilate1);
min_layer = std::min(min_layer, layer_nr);
max_layer = std::max(max_layer, layer_nr);
}
int height() {
return max_layer - min_layer + 1;
}
bool intersects(const ExPolygon& region, int layer_nr, coordf_t offset) {
if (layer_nr < 1) return false;
auto it = layer_overhangs.find(layer_nr - 1);
if (it == layer_overhangs.end()) return false;
const ExPolygon* overhang = it->second;
this->offset = offset;
auto dilate1 = offset_ex(region, offset);
return !intersection_ex(*overhang, dilate1).empty();
}
};
std::vector<OverhangCluster> overhangClusters;
std::map<const ExPolygon*, int> overhang2clusterInd;
// for sharp tail detection
struct RegionCluster {
std::map<int, const ExPolygon*> layer_regions;
ExPolygon base;
BoundingBox bbox;
int min_layer = 1e7;
int max_layer = 0;
RegionCluster(const ExPolygon* expoly, int layer_nr) {
push_back(expoly, layer_nr);
}
void push_back(const ExPolygon* expoly, int layer_nr) {
if (layer_regions.empty()) {
base = *expoly;
bbox = get_extents(base);
}
layer_regions.emplace(layer_nr, expoly);
bbox.merge(get_extents(*expoly));
min_layer = std::min(min_layer, layer_nr);
max_layer = std::max(max_layer, layer_nr);
}
int height() {
return max_layer - min_layer + 1;
}
bool intersects(const ExPolygon& region, int layer_nr, coordf_t offset) {
if (layer_nr < 1) return false;
auto it = layer_regions.find(layer_nr - 1);
if (it == layer_regions.end()) return false;
const ExPolygon* region_lower = it->second;
return !intersection_ex(*region_lower, region).empty();
}
};
std::vector<RegionCluster> regionClusters;
std::map<const ExPolygon*, int> region2clusterInd;
auto find_and_insert_cluster = [](auto& regionClusters, auto& region2clusterInd, const ExPolygon& region, int layer_nr, coordf_t offset) {
bool found = false;
for (int i = 0; i < regionClusters.size();i++) {
auto& cluster = regionClusters[i];
if (cluster.intersects(region, layer_nr, offset)) {
cluster.push_back(&region, layer_nr);
region2clusterInd.emplace(&region, i);
found = true;
break;
}
}
if (!found) {
regionClusters.emplace_back(&region, layer_nr);
region2clusterInd.emplace(&region, regionClusters.size() - 1);
}
};
// main part of sharptail detections
if (is_tree(stype))
{
double threshold_rad = (config.support_threshold_angle.value < EPSILON ? 30 : config.support_threshold_angle.value+1) * M_PI / 180.;
ExPolygons regions_well_supported;
std::map<ExPolygon, int, ExPolygonComp> region_layers_below;
ExPolygons lower_overhang_dilated;
for (size_t layer_nr = 0; layer_nr < m_object->layer_count(); layer_nr++){
if (m_object->print()->canceled())
break;
if (!is_auto(stype) && layer_nr > enforce_support_layers)
continue;
Layer* layer = m_object->get_layer(layer_nr);
for (auto& slice : layer->lslices)
find_and_insert_cluster(regionClusters, region2clusterInd, slice, layer_nr, 0);
if (layer->lower_layer == nullptr) {
for (auto& slice : layer->lslices) {
auto bbox_size = get_extents(slice).size();
if (/*slice.area() > area_thresh_well_supported || */
(bbox_size.x()>length_thresh_well_supported && bbox_size.y()>length_thresh_well_supported))
regions_well_supported.emplace_back(slice);
else if(g_config_support_sharp_tails){
layer->sharp_tails.push_back(slice);
layer->sharp_tails_height.insert({ &slice, layer->height });
}
}
continue;
}
Layer* lower_layer = layer->lower_layer;
coordf_t lower_layer_offset = layer_nr < enforce_support_layers ? -0.15 * extrusion_width : (float)lower_layer->height / tan(threshold_rad);
coordf_t support_offset_scaled = scale_(lower_layer_offset);
// Filter out areas whose diameter that is smaller than extrusion_width. Do not use offset2() for this purpose!
ExPolygons lower_polys;// = offset2_ex(lower_layer->lslices, -extrusion_width_scaled / 2, extrusion_width_scaled / 2);
for (const ExPolygon& expoly : lower_layer->lslices) {
if (!offset_ex(expoly, -extrusion_width_scaled / 2).empty()) {
lower_polys.emplace_back(expoly);
}
}
ExPolygons curr_polys;// = offset2_ex(layer->lslices, -extrusion_width_scaled / 2, extrusion_width_scaled / 2);
for (const ExPolygon& expoly : layer->lslices) {
if (!offset_ex(expoly, -extrusion_width_scaled / 2).empty()) {
curr_polys.emplace_back(expoly);
}
}
// normal overhang
ExPolygons lower_layer_offseted = offset_ex(lower_polys, support_offset_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS);
ExPolygons overhang_areas = std::move(diff_ex(curr_polys, lower_layer_offseted));
overhang_areas.erase(std::remove_if(overhang_areas.begin(), overhang_areas.end(),
[extrusion_width_scaled](ExPolygon &area) { return offset_ex(area, -0.1 * extrusion_width_scaled).empty(); }),
overhang_areas.end());
ExPolygons overhangs_sharp_tail;
if (is_auto(stype) && g_config_support_sharp_tails)
{
#if 0
// detect sharp tail and add more supports around
for (auto& lower_region : lower_layer_offseted) {
auto radius = get_extents(lower_region).radius();
auto out_of_well_supported_region = offset_ex(diff_ex({ lower_region }, regions_well_supported), -extrusion_width_scaled);
auto bbox_size = get_extents(out_of_well_supported_region).size();
double area_inter = area(intersection_ex({ lower_region }, regions_well_supported));
if ((area_inter==0 ||
((bbox_size.x()> extrusion_width_scaled && bbox_size.y() > extrusion_width_scaled) && area_inter < area_thresh_well_supported ) )
/*&& (obj_height - scale_(layer->slice_z)) > get_extents(lower_region).radius() * 5*/) {
auto lower_region_unoffseted = offset_ex(lower_region, -support_offset_scaled);
if (!lower_region_unoffseted.empty())
lower_region = lower_region_unoffseted.front();
}
}
if (!lower_layer_offseted.empty()) {
overhangs_sharp_tail = std::move(diff_ex(curr_polys, lower_layer_offseted));
//overhangs_sharp_tail = std::move(offset2_ex(overhangs_sharp_tail, -0.1 * extrusion_width_scaled, 0.1 * extrusion_width_scaled));
overhangs_sharp_tail = diff_ex(overhangs_sharp_tail, overhang_areas);
}
if (!overhangs_sharp_tail.empty()) {
append(layer->sharp_tails, overhangs_sharp_tail);
overhang_areas = union_ex(overhang_areas, overhangs_sharp_tail);
}
#else
// BBS detect sharp tail
const ExPolygons& lower_layer_sharptails = lower_layer->sharp_tails;
auto& lower_layer_sharptails_height = lower_layer->sharp_tails_height;
for (ExPolygon& expoly : layer->lslices) {
bool is_sharp_tail = false;
float accum_height = layer->height;
do {
// 1. nothing below
// check whether this is a sharp tail region
if (intersection_ex({expoly}, lower_polys).empty()) {
is_sharp_tail = expoly.area() < area_thresh_well_supported;
break;
}
// 2. something below
// check whether this is above a sharp tail region.
// 2.1 If no sharp tail below, this is considered as common region.
ExPolygons supported_by_lower = intersection_ex({expoly}, lower_layer_sharptails);
if (supported_by_lower.empty()) {
is_sharp_tail = false;
break;
}
// 2.2 If sharp tail below, check whether it support this region enough.
float supported_area = area(supported_by_lower);
BoundingBox bbox = get_extents(supported_by_lower);
#if 0
// judge by area isn't reliable, failure cases include 45 degree rotated cube
if (supported_area > area_thresh_well_supported) {
is_sharp_tail = false;
break;
}
#endif
if (bbox.size().x() > length_thresh_well_supported && bbox.size().y() > length_thresh_well_supported) {
is_sharp_tail = false;
break;
}
// 2.3 check whether sharp tail exceed the max height
for (auto &lower_sharp_tail_height : lower_layer_sharptails_height) {
if (!intersection_ex(*lower_sharp_tail_height.first, expoly).empty()) {
accum_height += lower_sharp_tail_height.second;
break;
}
}
if (accum_height >= sharp_tail_max_support_height) {
is_sharp_tail = false;
break;
}
// 2.4 if the area grows fast than threshold, it get connected to other part or
// it has a sharp slop and will be auto supported.
ExPolygons new_overhang_expolys = diff_ex({expoly}, lower_layer_sharptails);
if (!offset_ex(new_overhang_expolys, -5.0 * extrusion_width_scaled).empty()) {
is_sharp_tail = false;
break;
}
// 2.5 mark the expoly as sharptail
is_sharp_tail = true;
} while (0);
if (is_sharp_tail) {
ExPolygons overhang = diff_ex({expoly}, lower_layer->lslices);
layer->sharp_tails.push_back(expoly);
layer->sharp_tails_height.insert({ &expoly, accum_height });
append(overhang_areas, overhang);
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
SVG svg(get_svg_filename(std::to_string(layer->print_z), "sharp_tail"), m_object->bounding_box());
if (svg.is_opened()) svg.draw(overhang, "yellow");
#endif
}
}
#endif
}
if (bridge_no_support && overhang_areas.size()>0) {
m_object->remove_bridges_from_contacts(lower_layer, layer, extrusion_width_scaled, &overhang_areas, max_bridge_length, true);
}
TreeSupportLayer* ts_layer = m_object->get_tree_support_layer(layer_nr + m_raft_layers);
for (ExPolygon& poly : overhang_areas) {
if (!offset_ex(poly, -0.1 * extrusion_width_scaled).empty())
ts_layer->overhang_areas.emplace_back(poly);
}
if (is_auto(stype) && g_config_remove_small_overhangs) {
for (auto& overhang : ts_layer->overhang_areas) {
find_and_insert_cluster(overhangClusters, overhang2clusterInd, overhang, layer_nr, extrusion_width_scaled);
}
}
if (is_auto(stype) && /*g_config_support_sharp_tails*/0)
{ // update well supported regions
ExPolygons regions_well_supported2;
// regions intersects with lower regions_well_supported or large support are also well supported
auto inters = intersection_ex(layer->lslices, regions_well_supported);
auto inters2 = intersection_ex(layer->lslices, ts_layer->overhang_areas);
inters.insert(inters.end(), inters2.begin(), inters2.end());
for (auto inter : inters) {
auto bbox_size = get_extents(inter).size();
if (inter.area() >= area_thresh_well_supported
|| (bbox_size.x()>length_thresh_well_supported && bbox_size.y()>length_thresh_well_supported) )
{
auto tmp = offset_ex(inter, support_offset_scaled);
if (!tmp.empty()) {
// if inter is a single line with only 2 valid points, clipper will return empty
regions_well_supported2.emplace_back(std::move(tmp[0]));
}
}
}
// experimental: regions high enough is also well supported
for (auto& region : layer->lslices) {
auto cluster = regionClusters[region2clusterInd[&region]];
if (layer_nr - cluster.min_layer > thresh_layers_below)
regions_well_supported2.push_back(region);
}
regions_well_supported = union_ex(regions_well_supported2);
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
if (!regions_well_supported.empty()) {
SVG svg(get_svg_filename(std::to_string(layer->print_z), "regions_well_supported"), m_object->bounding_box());
if (svg.is_opened())
svg.draw(regions_well_supported, "yellow");
}
#endif
}
}
}
auto enforcers = m_object->slice_support_enforcers();
auto blockers = m_object->slice_support_blockers();
m_object->project_and_append_custom_facets(false, EnforcerBlockerType::ENFORCER, enforcers);
m_object->project_and_append_custom_facets(false, EnforcerBlockerType::BLOCKER, blockers);
// check whether the overhang cluster is cantilever (far awary from main body)
for (auto& cluster : overhangClusters) {
Layer* layer = m_object->get_layer(cluster.min_layer);
if (layer->lower_layer == NULL) continue;
Layer* lower_layer = layer->lower_layer;
auto cluster_boundary = intersection(cluster.merged_poly, offset(lower_layer->lslices, scale_(0.5)));
double dist_max = 0;
Points cluster_pts;
for (auto& poly : cluster.merged_poly)
append(cluster_pts, poly.contour.points);
for (auto& pt : cluster_pts) {
double dist_pt = std::numeric_limits<double>::max();
for (auto& poly : cluster_boundary) {
double d = poly.distance_to(pt);
dist_pt = std::min(dist_pt, d);
}
dist_max = std::max(dist_max, dist_pt);
}
if (dist_max > scale_(3)) { // this cluster is cantilever if the farmost point is larger than 3mm away from base
for (auto it = cluster.layer_overhangs.begin(); it != cluster.layer_overhangs.end(); it++) {
int layer_nr = it->first;
auto p_overhang = it->second;
m_object->get_layer(layer_nr)->cantilevers.emplace_back(*p_overhang);
}
cluster.is_cantilever = true;
}
}
if (is_auto(stype) && g_config_remove_small_overhangs) {
if (blockers.size() < m_object->layer_count())
blockers.resize(m_object->layer_count());
for (auto& cluster : overhangClusters) {
auto erode1 = offset_ex(cluster.merged_poly, -1.5*extrusion_width_scaled);
//DEBUG
bool save_poly = false;
if (save_poly) {
erode1 = offset_ex(cluster.merged_poly, -1*extrusion_width_scaled);
double a = area(erode1);
erode1[0].contour.remove_duplicate_points();
a = area(erode1);
auto tmp = offset_ex(erode1, extrusion_width_scaled);
SVG svg("SVG/merged_poly_"+std::to_string(cluster.min_layer)+".svg", m_object->bounding_box());
if (svg.is_opened()) {
svg.draw_outline(cluster.merged_poly, "yellow");
svg.draw_outline(erode1, "yellow");
}
}
// 1. check overhang span size is smaller than 3mm
//auto bbox_size = get_extents(cluster.merged_poly).size();
//const double dimension_limit = scale_(3.0) + 2 * extrusion_width_scaled;
//if (bbox_size.x() > dimension_limit || bbox_size.y() > dimension_limit)
// continue;
// 2. check overhang cluster size is smaller than 3.0 * fw_scaled
if (area(erode1) > SQ(scale_(0.1)))
continue;
// 3. check whether the small overhang is sharp tail
bool is_sharp_tail = false;
for (size_t layer_id = cluster.min_layer; layer_id < cluster.max_layer; layer_id++) {
Layer* layer = m_object->get_layer(layer_id);
if (!intersection_ex(layer->sharp_tails, cluster.merged_poly).empty()) {
is_sharp_tail = true;
break;
}
}
if (is_sharp_tail) continue;
// 4. check whether the overhang cluster is cantilever
if (cluster.is_cantilever) continue;
for (auto it = cluster.layer_overhangs.begin(); it != cluster.layer_overhangs.end(); it++) {
int layer_nr = it->first;
auto p_overhang = it->second;
blockers[layer_nr].push_back(p_overhang->contour);
// auto dilate1 = offset_ex(*p_overhang, extrusion_width_scaled);
// auto erode1 = offset_ex(*p_overhang, -extrusion_width_scaled);
// Layer* layer = m_object->get_layer(layer_nr);
// auto inter_with_others = intersection_ex(dilate1, diff_ex(layer->lslices, *p_overhang));
//// the following cases are small overhangs:
//// 1) overhang is single line (erode1.empty()==true)
//// 2) overhang is not island (intersects with others)
// if (erode1.empty() && !inter_with_others.empty())
// blockers[layer_nr].push_back(p_overhang->contour);
}
}
}
has_overhangs = false;
for (int layer_nr = 0; layer_nr < m_object->layer_count(); layer_nr++) {
if (m_object->print()->canceled())
break;
TreeSupportLayer* ts_layer = m_object->get_tree_support_layer(layer_nr + m_raft_layers);
if (support_critical_regions_only) {
auto layer = m_object->get_layer(layer_nr);
auto lower_layer = layer->lower_layer;
if (lower_layer == nullptr)
ts_layer->overhang_areas = layer->sharp_tails;
else
ts_layer->overhang_areas = diff_ex(layer->sharp_tails, lower_layer->lslices);
append(ts_layer->overhang_areas, layer->cantilevers);
}
if (layer_nr < blockers.size()) {
Polygons& blocker = blockers[layer_nr];
ts_layer->overhang_areas = diff_ex(ts_layer->overhang_areas, offset_ex(blocker, scale_(radius_sample_resolution)));
}
for (auto &area : ts_layer->overhang_areas) {
ts_layer->overhang_types.emplace(&area, TreeSupportLayer::Detected);
}
// enforcers
if (layer_nr < enforcers.size()) {
Polygons& enforcer = enforcers[layer_nr];
// coconut: enforcer can't do offset2_ex, otherwise faces with angle near 90 degrees can't have enforcers, which
// is not good. For example: tails of animals needs extra support except the lowest tip.
//enforcer = std::move(offset2_ex(enforcer, -0.1 * extrusion_width_scaled, 0.1 * extrusion_width_scaled));
enforcer = offset(enforcer, 0.1 * extrusion_width_scaled);
for (const Polygon& poly : enforcer) {
ts_layer->overhang_areas.emplace_back(poly);
ts_layer->overhang_types.emplace(&ts_layer->overhang_areas.back(), TreeSupportLayer::Enforced);
}
}
if (!ts_layer->overhang_areas.empty()) has_overhangs = true;
}
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
for (const TreeSupportLayer* layer : m_object->tree_support_layers()) {
if (layer->overhang_areas.empty())
continue;
SVG svg(get_svg_filename(std::to_string(layer->print_z), "overhang_areas"), m_object->bounding_box());
if (svg.is_opened()) {
svg.draw_outline(m_object->get_layer(layer->id())->lslices, "yellow");
svg.draw(layer->overhang_areas, "red");
for (auto& overhang : layer->overhang_areas) {
double aarea = overhang.area()/ area_thresh_well_supported;
auto pt = get_extents(overhang).center();
char x[20]; sprintf(x, "%.2f", aarea);
svg.draw_text(pt, x, "red");
}
}
}
#endif
}
void TreeSupport::create_tree_support_layers()
{
int layer_id = 0;
coordf_t raft_print_z = 0.f;
coordf_t raft_slice_z = 0.f;
for (; layer_id < m_slicing_params.base_raft_layers; layer_id++) {
raft_print_z += m_slicing_params.base_raft_layer_height;
raft_slice_z = raft_print_z - m_slicing_params.base_raft_layer_height / 2;
m_object->add_tree_support_layer(layer_id, m_slicing_params.base_raft_layer_height, raft_print_z, raft_slice_z);
}
for (; layer_id < m_slicing_params.base_raft_layers + m_slicing_params.interface_raft_layers; layer_id++) {
raft_print_z += m_slicing_params.interface_raft_layer_height;
raft_slice_z = raft_print_z - m_slicing_params.interface_raft_layer_height / 2;
m_object->add_tree_support_layer(layer_id, m_slicing_params.base_raft_layer_height, raft_print_z, raft_slice_z);
}
for (Layer *layer : m_object->layers()) {
TreeSupportLayer* ts_layer = m_object->add_tree_support_layer(layer->id(), layer->height, layer->print_z, layer->slice_z);
if (ts_layer->id() > m_raft_layers) {
TreeSupportLayer* lower_layer = m_object->get_tree_support_layer(ts_layer->id() - 1);
lower_layer->upper_layer = ts_layer;
ts_layer->lower_layer = lower_layer;
}
}
}
static inline BoundingBox fill_expolygon_generate_paths(
ExtrusionEntitiesPtr &dst,
ExPolygon &&expolygon,
Fill *filler,
const FillParams &fill_params,
ExtrusionRole role,
const Flow &flow)
{
Surface surface(stInternal, std::move(expolygon));
Polylines polylines;
try {
polylines = filler->fill_surface(&surface, fill_params);
} catch (InfillFailedException &) {
}
BoundingBox fill_bbox;
if (!polylines.empty()) {
fill_bbox = polylines[0].bounding_box();
for (auto& polyline : polylines)
fill_bbox.merge(polyline.bounding_box());
}
extrusion_entities_append_paths(dst, std::move(polylines), role, flow.mm3_per_mm(), flow.width(), flow.height());
return fill_bbox;
}
static inline std::vector<BoundingBox> fill_expolygons_generate_paths(
ExtrusionEntitiesPtr &dst,
ExPolygons &&expolygons,
Fill *filler,
const FillParams &fill_params,
ExtrusionRole role,
const Flow &flow)
{
std::vector<BoundingBox> fill_boxes;
for (ExPolygon& expoly : expolygons) {
auto box = fill_expolygon_generate_paths(dst, std::move(expoly), filler, fill_params, role, flow);
fill_boxes.emplace_back(box);
}
return fill_boxes;
}
static void make_perimeter_and_inner_brim(ExtrusionEntitiesPtr &dst, const Print &print, const ExPolygon &support_area, size_t wall_count, const Flow &flow, bool is_interface)
{
Polygons loops;
ExPolygons support_area_new = offset_ex(support_area, -0.5f * float(flow.scaled_spacing()), jtSquare);
std::map<ExPolygon *, int> depth_per_expoly;
std::list<ExPolygon> expoly_list;
for (ExPolygon &expoly : support_area_new) {
expoly_list.emplace_back(std::move(expoly));
depth_per_expoly.insert({&expoly_list.back(), 0});
}
while (!expoly_list.empty()) {
polygons_append(loops, to_polygons(expoly_list.front()));
auto first_iter = expoly_list.begin();
auto depth_iter = depth_per_expoly.find(&expoly_list.front());
if (depth_iter->second + 1 < wall_count) {
// shrink and then dilate to prevent overlapping and overflow
ExPolygons expolys_new = offset_ex(expoly_list.front(), -1.4 * float(flow.scaled_spacing()), jtSquare);
expolys_new = offset_ex(expolys_new, .4*float(flow.scaled_spacing()), jtSquare);
for (ExPolygon &expoly : expolys_new) {
auto new_iter = expoly_list.insert(expoly_list.begin(), expoly);
depth_per_expoly.insert({ &*new_iter, depth_iter->second + 1 });
}
}
depth_per_expoly.erase(depth_iter);
expoly_list.erase(first_iter);
}
ExtrusionRole role = is_interface ? erSupportMaterialInterface : erSupportMaterial;
extrusion_entities_append_loops(dst, std::move(loops), role,
float(flow.mm3_per_mm()), float(flow.width()), float(flow.height()));
}
static void make_perimeter_and_infill(ExtrusionEntitiesPtr& dst, const Print& print, const ExPolygon& support_area, size_t wall_count, const Flow& flow, ExtrusionRole role, Fill* filler_support, double support_density, bool infill_first=true)
{
Polygons loops;
ExPolygons support_area_new = offset_ex(support_area, -0.5f * float(flow.scaled_spacing()), jtSquare);
// draw infill
FillParams fill_params;
fill_params.density = support_density;
fill_params.dont_adjust = true;
ExPolygons to_infill = offset_ex(support_area, -0.5f * float(flow.scaled_spacing()), jtSquare);
std::vector<BoundingBox> fill_boxes = fill_expolygons_generate_paths(dst, std::move(to_infill), filler_support, fill_params, role, flow);
// allow wall_count to be zero, which means only draw infill
if (wall_count == 0) {
for (auto fill_bbox : fill_boxes)
{
if (filler_support->angle == 0) {
fill_bbox.min[0] -= scale_(10);
fill_bbox.max[0] += scale_(10);
}
else {
fill_bbox.min[1] -= scale_(10);
fill_bbox.max[1] += scale_(10);
}
support_area_new = diff_ex(support_area_new, offset_ex(to_expolygons({ fill_bbox.polygon() }), 0.5*flow.scaled_width()));
}
// filter out small areas
for (auto it = support_area_new.begin(); it != support_area_new.end(); ) {
if (offset_ex(*it, -flow.scaled_width()).empty())
it = support_area_new.erase(it);
else
it++;
}
}
{
std::map<ExPolygon*, int> depth_per_expoly;
std::list<ExPolygon> expoly_list;
for (ExPolygon& expoly : support_area_new) {
expoly_list.emplace_back(std::move(expoly));
depth_per_expoly.insert({ &expoly_list.back(), 0 });
}
while (!expoly_list.empty()) {
polygons_append(loops, to_polygons(expoly_list.front()));
auto first_iter = expoly_list.begin();
auto depth_iter = depth_per_expoly.find(&expoly_list.front());
if (depth_iter->second + 1 < wall_count) {
ExPolygons expolys_new = offset_ex(expoly_list.front(), -float(flow.scaled_spacing()), jtSquare);
for (ExPolygon& expoly : expolys_new) {
auto new_iter = expoly_list.insert(expoly_list.begin(), expoly);
depth_per_expoly.insert({ &*new_iter, depth_iter->second + 1 });
}
}
depth_per_expoly.erase(depth_iter);
expoly_list.erase(first_iter);
}
if (infill_first)
extrusion_entities_append_loops(dst, std::move(loops), role,
float(flow.mm3_per_mm()), float(flow.width()), float(flow.height()));
else { // loops first
ExtrusionEntitiesPtr loops_entities;
extrusion_entities_append_loops(loops_entities, std::move(loops), role,
float(flow.mm3_per_mm()), float(flow.width()), float(flow.height()));
loops_entities.insert(loops_entities.end(), dst.begin(), dst.end());
dst = std::move(loops_entities);
}
}
if (infill_first) {
// sort regions to reduce travel
Points ordering_points;
for (const auto& area : dst)
ordering_points.push_back(area->first_point());
std::vector<Points::size_type> order = chain_points(ordering_points);
ExtrusionEntitiesPtr new_dst;
new_dst.reserve(ordering_points.size());
for (size_t i : order)
new_dst.emplace_back(dst[i]);
dst = new_dst;
}
}
void TreeSupport::generate_toolpaths()
{
const PrintConfig &print_config = m_object->print()->config();
const PrintObjectConfig &object_config = m_object->config();
coordf_t support_extrusion_width = m_support_params.support_extrusion_width;
coordf_t nozzle_diameter = print_config.nozzle_diameter.get_at(object_config.support_filament - 1);
coordf_t layer_height = object_config.layer_height.value;
const size_t wall_count = object_config.tree_support_wall_count.value;
const bool with_infill = object_config.support_base_pattern != smpNone && object_config.support_base_pattern != smpDefault;
// coconut: use same intensity settings as SupportMaterial.cpp
auto m_support_material_interface_flow = support_material_interface_flow(m_object, float(m_slicing_params.layer_height));
coordf_t interface_spacing = object_config.support_interface_spacing.value + m_support_material_interface_flow.spacing();
coordf_t bottom_interface_spacing = object_config.support_bottom_interface_spacing.value + m_support_material_interface_flow.spacing();
coordf_t interface_density = std::min(1., m_support_material_interface_flow.spacing() / interface_spacing);
coordf_t bottom_interface_density = std::min(1., m_support_material_interface_flow.spacing() / bottom_interface_spacing);
const coordf_t branch_radius = object_config.tree_support_branch_diameter.value / 2;
const coordf_t branch_radius_scaled = scale_(branch_radius);
if (m_object->tree_support_layers().empty())
return;
// calculate fill areas for raft layers
ExPolygons raft_areas;
if (m_object->layer_count() > 0) {
const Layer *layer = m_object->layers().front();
for (const ExPolygon &expoly : layer->lslices) {
raft_areas.push_back(expoly);
}
}
if (m_object->tree_support_layer_count() > m_raft_layers) {
const TreeSupportLayer *ts_layer = m_object->get_tree_support_layer(m_raft_layers);
for (const ExPolygon expoly : ts_layer->floor_areas)
raft_areas.push_back(expoly);
for (const ExPolygon expoly : ts_layer->roof_areas)
raft_areas.push_back(expoly);
for (const ExPolygon expoly : ts_layer->base_areas)
raft_areas.push_back(expoly);
}
raft_areas = std::move(offset_ex(raft_areas, scale_(3.)));
// generate raft tool path
if (m_raft_layers > 0)
{
ExtrusionRole raft_contour_er = m_slicing_params.base_raft_layers > 0 ? erSupportMaterial : erSupportMaterialInterface;
TreeSupportLayer *ts_layer = m_object->tree_support_layers().front();
Flow flow = m_object->print()->brim_flow();
Polygons loops;
for (const ExPolygon& expoly : raft_areas) {
loops.push_back(expoly.contour);
loops.insert(loops.end(), expoly.holes.begin(), expoly.holes.end());
}
extrusion_entities_append_loops(ts_layer->support_fills.entities, std::move(loops), raft_contour_er,
float(flow.mm3_per_mm()), float(flow.width()), float(flow.height()));
raft_areas = offset_ex(raft_areas, -flow.scaled_spacing() / 2.);
}
for (size_t layer_nr = 0; layer_nr < m_slicing_params.base_raft_layers; layer_nr++) {
TreeSupportLayer *ts_layer = m_object->get_tree_support_layer(layer_nr);
coordf_t expand_offset = (layer_nr == 0 ? 0. : -1.);
Flow support_flow = layer_nr == 0 ? m_object->print()->brim_flow() : Flow(support_extrusion_width, ts_layer->height, nozzle_diameter);
Fill* filler_interface = Fill::new_from_type(ipRectilinear);
filler_interface->angle = layer_nr == 0 ? 90 : 0;
filler_interface->spacing = support_extrusion_width;
FillParams fill_params;
fill_params.density = interface_density;
fill_params.dont_adjust = true;
fill_expolygons_generate_paths(ts_layer->support_fills.entities, std::move(offset_ex(raft_areas, scale_(expand_offset))),
filler_interface, fill_params, erSupportMaterial, support_flow);
}
for (size_t layer_nr = m_slicing_params.base_raft_layers;
layer_nr < m_slicing_params.base_raft_layers + m_slicing_params.interface_raft_layers;
layer_nr++)
{
TreeSupportLayer *ts_layer = m_object->get_tree_support_layer(layer_nr);
coordf_t expand_offset = (layer_nr == 0 ? 0. : -1.);
Flow support_flow(support_extrusion_width, ts_layer->height, nozzle_diameter);
Fill* filler_interface = Fill::new_from_type(ipRectilinear);
filler_interface->angle = 0;
filler_interface->spacing = support_extrusion_width;
FillParams fill_params;
fill_params.density = interface_density;
fill_params.dont_adjust = true;
fill_expolygons_generate_paths(ts_layer->support_fills.entities, std::move(offset_ex(raft_areas, scale_(expand_offset))),
filler_interface, fill_params, erSupportMaterialInterface, support_flow);
}
BoundingBox bbox_object(Point(-scale_(1.), -scale_(1.0)), Point(scale_(1.), scale_(1.)));
auto obj_size = m_object->size();
bool obj_is_vertical = obj_size.x() < obj_size.y();
int num_layers_to_change_infill_direction = int(HEIGHT_TO_SWITCH_INFILL_DIRECTION / object_config.layer_height.value); // change direction every 30mm
std::shared_ptr<Fill> filler_interface = std::shared_ptr<Fill>(Fill::new_from_type(m_support_params.contact_fill_pattern));
std::shared_ptr<Fill> filler_Roof1stLayer = std::shared_ptr<Fill>(Fill::new_from_type(ipRectilinear));
std::shared_ptr<Fill> filler_support = std::shared_ptr<Fill>(Fill::new_from_type(m_support_params.base_fill_pattern));
filler_interface->set_bounding_box(bbox_object);
filler_Roof1stLayer->set_bounding_box(bbox_object);
filler_support->set_bounding_box(bbox_object);
filler_interface->angle = Geometry::deg2rad(object_config.support_angle.value + 90.);//(1 - obj_is_vertical) * M_PI_2;//((1-obj_is_vertical) + int(layer_id / num_layers_to_change_infill_direction)) * M_PI_2;;//layer_id % 2 ? 0 : M_PI_2;
filler_Roof1stLayer->angle = Geometry::deg2rad(object_config.support_angle.value + 90.);
// generate tree support tool paths
tbb::parallel_for(
tbb::blocked_range<size_t>(m_raft_layers, m_object->tree_support_layer_count()),
[&](const tbb::blocked_range<size_t>& range)
{
for (size_t layer_id = range.begin(); layer_id < range.end(); layer_id++) {
if (m_object->print()->canceled())
break;
m_object->print()->set_status(70, (boost::format(_L("Support: generate toolpath at layer %d")) % layer_id).str());
TreeSupportLayer* ts_layer = m_object->get_tree_support_layer(layer_id);
Flow support_flow(support_extrusion_width, ts_layer->height, nozzle_diameter);
coordf_t support_spacing = object_config.support_base_pattern_spacing.value + support_flow.spacing();
coordf_t support_density = std::min(1., support_flow.spacing() / support_spacing);
ts_layer->support_fills.no_sort = false;
for (auto& area_group : ts_layer->area_groups) {
ExPolygon& poly = *area_group.area;
ExPolygons polys;
FillParams fill_params;
if (area_group.type != TreeSupportLayer::BaseType) {
// interface
if (layer_id == 0) {
Flow flow = m_raft_layers == 0 ? m_object->print()->brim_flow() : support_flow;
make_perimeter_and_inner_brim(ts_layer->support_fills.entities, *m_object->print(), poly, wall_count, flow,
area_group.type == TreeSupportLayer::RoofType);
polys = std::move(offset_ex(poly, -flow.scaled_spacing()));
} else if (area_group.type == TreeSupportLayer::Roof1stLayer) {
polys = std::move(offset_ex(poly, 0.5*support_flow.scaled_width()));
}
else {
polys.push_back(poly);
}
fill_params.density = interface_density;
fill_params.dont_adjust = true;
}
if (area_group.type == TreeSupportLayer::Roof1stLayer) {
// roof_1st_layer
fill_params.density = interface_density;
// Note: spacing means the separation between two lines as if they are tightly extruded
filler_Roof1stLayer->spacing = m_support_material_interface_flow.spacing();
// generate a perimeter first to support interface better
ExtrusionEntityCollection* temp_support_fills = new ExtrusionEntityCollection();
make_perimeter_and_infill(temp_support_fills->entities, *m_object->print(), poly, 1, m_support_material_interface_flow, erSupportMaterial,
filler_Roof1stLayer.get(), interface_density, false);
temp_support_fills->no_sort = true; // make sure loops are first
if (!temp_support_fills->entities.empty())
ts_layer->support_fills.entities.push_back(temp_support_fills);
else
delete temp_support_fills;
} else if (area_group.type == TreeSupportLayer::FloorType) {
// floor_areas
fill_params.density = bottom_interface_density;
filler_interface->spacing = m_support_material_interface_flow.spacing();
fill_expolygons_generate_paths(ts_layer->support_fills.entities, std::move(polys),
filler_interface.get(), fill_params, erSupportMaterialInterface, m_support_material_interface_flow);
} else if (area_group.type == TreeSupportLayer::RoofType) {
// roof_areas
fill_params.density = interface_density;
filler_interface->spacing = m_support_material_interface_flow.spacing();
fill_expolygons_generate_paths(ts_layer->support_fills.entities, std::move(polys), filler_interface.get(), fill_params, erSupportMaterialInterface,
m_support_material_interface_flow);
}
else {
// base_areas
filler_support->spacing = support_flow.spacing();
Flow flow = (layer_id == 0 && m_raft_layers == 0) ? m_object->print()->brim_flow() : support_flow;
if (area_group.dist_to_top < 10 / layer_height && !with_infill) {
// at least 2 walls for the top tips
make_perimeter_and_inner_brim(ts_layer->support_fills.entities, *m_object->print(), poly, std::max(wall_count, size_t(2)), flow, false);
} else {
if (with_infill && layer_id > 0 && m_support_params.base_fill_pattern != ipLightning) {
filler_support->angle = Geometry::deg2rad(object_config.support_angle.value);
// allow infill-only mode if support is thick enough
if (offset(poly, -scale_(support_spacing * 1.5)).empty() == false) {
make_perimeter_and_infill(ts_layer->support_fills.entities, *m_object->print(), poly, wall_count, flow, erSupportMaterial,
filler_support.get(), support_density);
} else { // otherwise must draw 1 wall
make_perimeter_and_infill(ts_layer->support_fills.entities, *m_object->print(), poly, std::max(size_t(1), wall_count), flow,
erSupportMaterial, filler_support.get(), support_density);
}
} else {
make_perimeter_and_inner_brim(ts_layer->support_fills.entities, *m_object->print(), poly,
layer_id > 0 ? wall_count : std::numeric_limits<size_t>::max(), flow, false);
}
}
}
}
if (m_support_params.base_fill_pattern == ipLightning)
{
double print_z = ts_layer->print_z;
if (printZ_to_lightninglayer.find(print_z) == printZ_to_lightninglayer.end())
continue;
//TODO:
//1.the second parameter of convertToLines seems to decide how long the lightning should be trimmed from its root, so that the root wont overlap/detach the support contour.
// whether current value works correctly remained to be tested
//2.related to previous one, that lightning roots need to be trimed more when support has multiple walls
//3.function connect_infill() and variable 'params' helps create connection pattern along contours between two lightning roots,
// strengthen lightnings while it may make support harder. decide to enable it or not. if yes, proper values for params are remained to be tested
auto& lightning_layer = generator->getTreesForLayer(printZ_to_lightninglayer[print_z]);
Flow flow = (layer_id == 0 && m_raft_layers == 0) ? m_object->print()->brim_flow() :support_flow;
ExPolygons areas = offset_ex(ts_layer->base_areas, -flow.scaled_spacing());
for (auto& area : areas)
{
Polylines polylines = lightning_layer.convertToLines(to_polygons(area), 0);
for (auto itr = polylines.begin(); itr != polylines.end();)
{
if (itr->length() < scale_(1.0))
itr = polylines.erase(itr);
else
itr++;
}
Polylines opt_polylines;
#if 1
//this wont create connection patterns along contours
append(opt_polylines, chain_polylines(std::move(polylines)));
#else
//this will create connection patterns along contours
FillParams params;
params.anchor_length = float(Fill::infill_anchor * 0.01 * flow.spacing());
params.anchor_length_max = Fill::infill_anchor_max;
params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);
Fill::connect_infill(std::move(polylines), area, opt_polylines, flow.spacing(), params);
#endif
extrusion_entities_append_paths(ts_layer->support_fills.entities, opt_polylines, erSupportMaterial,
float(flow.mm3_per_mm()), float(flow.width()), float(flow.height()));
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
std::string name = "./SVG/trees_polyline_" + std::to_string(ts_layer->print_z) /*+ "_" + std::to_string(rand_num)*/ + ".svg";
BoundingBox bbox = get_extents(ts_layer->base_areas);
SVG svg(name, bbox);
if (svg.is_opened()) {
svg.draw(ts_layer->base_areas, "blue");
svg.draw(generator->Overhangs()[printZ_to_lightninglayer[print_z]], "red");
for (auto &line : opt_polylines) svg.draw(line, "yellow");
}
#endif
}
}
// sort extrusions to reduce travel, also make sure walls go before infills
if(ts_layer->support_fills.no_sort==false)
chain_and_reorder_extrusion_entities(ts_layer->support_fills.entities);
}
}
);
}
Polygons TreeSupport::spanning_tree_to_polygon(const std::vector<MinimumSpanningTree>& spanning_trees, Polygons layer_contours, int layer_nr)
{
Polygons polys;
auto& mst_line_x_layer_contour_cache = m_mst_line_x_layer_contour_caches[layer_nr];
for (MinimumSpanningTree mst : spanning_trees) {
std::vector<Point> points = mst.vertices();
if (points.size() == 0)
continue;
std::map<Point, bool> visited;
for (int i=0;i<points.size();i++)
visited.emplace(points[i],false);
std::unordered_set<Line, LineHash> to_ignore;
for (int i = 0; i < points.size(); i++) {
if (visited[points[i]] == true)
continue;
Polygon poly;
bool has_next = true;
Point pt1 = points[i];
poly.points.push_back(pt1);
visited[pt1] = true;
while (has_next) {
const std::vector<Point>& neighbours = mst.adjacent_nodes(pt1);
if (neighbours.empty())
{
break;
}
double min_ccw = std::numeric_limits<double>::max();
Point pt_selected = neighbours[0];
has_next = false;
for (Point pt2 : neighbours) {
if (to_ignore.find(Line(pt1, pt2)) == to_ignore.end()) {
auto iter = mst_line_x_layer_contour_cache.find({ pt1,pt2 });
if (iter != mst_line_x_layer_contour_cache.end()) {
if (iter->second)
continue;
}
else {
Polylines pls;
pls.emplace_back(pt1, pt2);
Polylines pls_intersect = intersection_pl(pls, layer_contours);
mst_line_x_layer_contour_cache.insert({ {pt1, pt2}, !pls_intersect.empty() });
mst_line_x_layer_contour_cache.insert({ {pt2, pt1}, !pls_intersect.empty() });
if (!pls_intersect.empty())
continue;
}
if (poly.points.size() < 2 || visited[pt2]==false)
{
pt_selected = pt2;
has_next = true;
break;
}
double curr_ccw = pt2.ccw(pt1, poly.points.back());
if (curr_ccw < min_ccw)
{
min_ccw = curr_ccw;
pt_selected = pt2;
has_next = true;
}
}
}
if (has_next) {
poly.points.push_back(pt_selected);
to_ignore.insert(Line(pt1, pt_selected));
visited[pt_selected] = true;
pt1 = pt_selected;
}
}
polys.emplace_back(std::move(poly));
}
}
return polys;
}
Polygons TreeSupport::contact_nodes_to_polygon(const std::vector<Node*>& contact_nodes, Polygons layer_contours, int layer_nr, std::vector<double>& radiis, std::vector<bool>& is_interface)
{
Polygons polys;
std::vector<MinimumSpanningTree> spanning_trees;
std::vector<double> radiis_mtree;
std::vector<bool> is_interface_mtree;
// generate minimum spanning trees
{
std::map<Node*, bool> visited;
for (int i = 0; i < contact_nodes.size(); i++)
visited.emplace(contact_nodes[i], false);
std::unordered_set<Line, LineHash> to_ignore;
// generate minimum spaning trees
for (int i = 0; i < contact_nodes.size(); i++) {
Node* node = contact_nodes[i];
if (visited[node])
continue;
std::vector<Point> points_to_mstree;
double radius = 0;
Point pt1 = node->position;
points_to_mstree.push_back(pt1);
visited[node] = true;
radius += node->radius;
for (int j = i + 1; j < contact_nodes.size(); j++) {
Node* node2 = contact_nodes[j];
Point pt2 = node2->position;
// connect to this neighbor if:
// 1) both are interface or both are not
// 3) not readly added
// 4) won't cross perimeters: this is not right since we need to check all possible connections
if ((node->support_roof_layers_below > 0) == (node2->support_roof_layers_below > 0)
&& to_ignore.find(Line(pt1, pt2)) == to_ignore.end())
{
points_to_mstree.emplace_back(pt2);
visited[node2] = true;
radius += node2->radius;
}
}
spanning_trees.emplace_back(points_to_mstree);
radiis_mtree.push_back(radius / points_to_mstree.size());
is_interface_mtree.push_back(node->support_roof_layers_below > 0);
}
}
auto lines = spanning_tree_to_lines(spanning_trees);
#if 1
// convert mtree to polygon
for (int k = 0; k < spanning_trees.size(); k++) {
auto& mst_line_x_layer_contour_cache = m_mst_line_x_layer_contour_caches[layer_nr];
MinimumSpanningTree mst = spanning_trees[k];
std::vector<Point> points = mst.vertices();
std::map<Point, bool> visited;
for (int i = 0; i < points.size(); i++)
visited.emplace(points[i], false);
std::unordered_set<Line, LineHash> to_ignore;
for (int i = 0; i < points.size(); i++) {
if (visited[points[i]])
continue;
Polygon poly;
Point pt1 = points[i];
poly.points.push_back(pt1);
visited[pt1] = true;
bool has_next = true;
while (has_next)
{
const std::vector<Point>& neighbours = mst.adjacent_nodes(pt1);
double min_ccw = -std::numeric_limits<double>::max();
Point pt_selected;
has_next = false;
for (Point pt2 : neighbours) {
if (to_ignore.find(Line(pt1, pt2)) == to_ignore.end()) {
auto iter = mst_line_x_layer_contour_cache.find({ pt1,pt2 });
if (iter != mst_line_x_layer_contour_cache.end()) {
if (iter->second)
continue;
}
else {
Polylines pls;
pls.emplace_back(pt1, pt2);
Polylines pls_intersect = intersection_pl(pls, layer_contours);
mst_line_x_layer_contour_cache.insert({ {pt1, pt2}, !pls_intersect.empty() });
mst_line_x_layer_contour_cache.insert({ {pt2, pt1}, !pls_intersect.empty() });
if (!pls_intersect.empty())
continue;
}
if (poly.points.size() < 2)
{
pt_selected = pt2;
has_next = true;
break;
}
double curr_ccw = pt2.ccw(pt1, poly.points.rbegin()[1]);
if (curr_ccw > min_ccw)
{
has_next = true;
min_ccw = curr_ccw;
pt_selected = pt2;
}
}
}
if (!has_next)
break;
poly.points.push_back(pt_selected);
to_ignore.insert(Line(pt1, pt_selected));
visited[pt_selected] = true;
pt1 = pt_selected;
}
polys.emplace_back(std::move(poly));
radiis.push_back(radiis_mtree[k]);
is_interface.push_back(is_interface_mtree[k]);
}
}
#else
polys = spanning_tree_to_polygon(spanning_trees, layer_contours, layer_nr, radiis);
#endif
return polys;
}
void TreeSupport::generate_support_areas()
{
const PrintObjectConfig &config = m_object->config();
bool tree_support_enable = config.enable_support.value && is_tree(config.support_type.value);
if (!tree_support_enable)
return;
std::vector<std::vector<Node*>> contact_nodes(m_object->layers().size());
profiler.stage_start(STAGE_total);
// Generate overhang areas
profiler.stage_start(STAGE_DETECT_OVERHANGS);
m_object->print()->set_status(55, _L("Support: detect overhangs"));
detect_object_overhangs();
profiler.stage_finish(STAGE_DETECT_OVERHANGS);
// Generate contact points of tree support
profiler.stage_start(STAGE_GENERATE_CONTACT_NODES);
m_object->print()->set_status(56, _L("Support: generate contact points"));
generate_contact_points(contact_nodes);
profiler.stage_finish(STAGE_GENERATE_CONTACT_NODES);
//Drop nodes to lower layers.
profiler.stage_start(STAGE_DROP_DOWN_NODES);
m_object->print()->set_status(60, _L("Support: propagate branches"));
drop_nodes(contact_nodes);
profiler.stage_finish(STAGE_DROP_DOWN_NODES);
// smooth_nodes(contact_nodes);
#if !USE_PLAN_LAYER_HEIGHTS
// Adjust support layer heights
adjust_layer_heights(contact_nodes);
#endif
//Generate support areas.
profiler.stage_start(STAGE_DRAW_CIRCLES);
m_object->print()->set_status(65, _L("Support: draw polygons"));
draw_circles(contact_nodes);
profiler.stage_finish(STAGE_DRAW_CIRCLES);
for (auto& layer : contact_nodes)
{
for (Node* p_node : layer)
{
delete p_node;
}
layer.clear();
}
contact_nodes.clear();
profiler.stage_start(STAGE_GENERATE_TOOLPATHS);
m_object->print()->set_status(69, _L("Support: generate toolpath"));
generate_toolpaths();
profiler.stage_finish(STAGE_GENERATE_TOOLPATHS);
profiler.stage_finish(STAGE_total);
BOOST_LOG_TRIVIAL(debug) << "tree support time " << profiler.report();
}
coordf_t TreeSupport::calc_branch_radius(coordf_t base_radius, size_t layers_to_top, size_t tip_layers, double diameter_angle_scale_factor)
{
double radius;
if (!is_slim) {
if ((layers_to_top + 1) > tip_layers) {
radius = base_radius + base_radius * (layers_to_top + 1) * diameter_angle_scale_factor;
} else {
radius = base_radius * (layers_to_top + 1) / tip_layers;
}
} else {
if ((layers_to_top + 1) > tip_layers * 2) {
radius = base_radius + base_radius * (layers_to_top + 1) * diameter_angle_scale_factor;
} else {
radius = base_radius * (layers_to_top + 1) / (tip_layers * 2);
}
radius = std::max(radius, MIN_BRANCH_RADIUS);
}
radius = std::min(radius, MAX_BRANCH_RADIUS);
return radius;
}
coordf_t TreeSupport::calc_branch_radius(coordf_t base_radius, coordf_t mm_to_top, double diameter_angle_scale_factor)
{
double radius;
if (mm_to_top > base_radius)
{
radius = base_radius + mm_to_top * diameter_angle_scale_factor;
}
else
{
radius = mm_to_top * diameter_angle_scale_factor;
}
radius = std::max(radius, MIN_BRANCH_RADIUS);
radius = std::min(radius, MAX_BRANCH_RADIUS);
return radius;
}
ExPolygons avoid_object_remove_extra_small_parts(ExPolygons &expolys, const ExPolygons &avoid_region) {
ExPolygons expolys_out;
for (auto expoly : expolys) {
auto expolys_avoid = diff_ex(expoly, avoid_region);
int idx_max_area = -1;
float max_area = 0;
for (int i = 0; i < expolys_avoid.size(); ++i) {
auto a = expolys_avoid[i].area();
if (a > max_area) {
max_area = a;
idx_max_area = i;
}
}
if (idx_max_area >= 0) expolys_out.emplace_back(std::move(expolys_avoid[idx_max_area]));
}
return expolys_out;
}
void TreeSupport::draw_circles(const std::vector<std::vector<Node*>>& contact_nodes)
{
const PrintObjectConfig &config = m_object->config();
const Print* print = m_object->print();
bool has_brim = print->has_brim();
bool has_infill = config.support_base_pattern.value != smpNone && config.support_base_pattern != smpDefault;
int bottom_gap_layers = round(m_slicing_params.gap_object_support / m_slicing_params.layer_height);
const coordf_t branch_radius = config.tree_support_branch_diameter.value / 2;
const coordf_t branch_radius_scaled = scale_(branch_radius);
Polygon branch_circle; //Pre-generate a circle with correct diameter so that we don't have to recompute those (co)sines every time.
// Use square support if there are too many nodes per layer because circle support needs much longer time to compute
// Hower circle support can be printed faster, so we prefer circle for fewer nodes case.
const bool SQUARE_SUPPORT = avg_node_per_layer > 200;
const int CIRCLE_RESOLUTION = SQUARE_SUPPORT ? 4 : 100; // The number of vertices in each circle.
for (int i = 0; i < CIRCLE_RESOLUTION; i++)
{
double angle;
if (SQUARE_SUPPORT)
angle = (double) i / CIRCLE_RESOLUTION * TAU + PI / 4.0 + nodes_angle;
else
angle = (double) i / CIRCLE_RESOLUTION * TAU;
branch_circle.append(Point(cos(angle) * branch_radius_scaled, sin(angle) * branch_radius_scaled));
}
// Performance optimization. Only generate lslices for brim and skirt.
size_t brim_skirt_layers = has_brim ? 1 : 0;
const PrintConfig& print_config = print->config();
for (const PrintObject* object : print->objects())
{
size_t skirt_layers = print->has_infinite_skirt() ? object->layer_count() : std::min(size_t(print_config.skirt_height.value), object->layer_count());
brim_skirt_layers = std::max(brim_skirt_layers, skirt_layers);
}
// generate areas
const coordf_t layer_height = config.layer_height.value;
const size_t top_interface_layers = config.support_interface_top_layers.value;
const size_t bottom_interface_layers = config.support_interface_bottom_layers.value;
const size_t tip_layers = branch_radius / layer_height; //The number of layers to be shrinking the circle to create a tip. This produces a 45 degree angle.
const double diameter_angle_scale_factor = tan(tree_support_branch_diameter_angle * M_PI / 180.);// * layer_height / branch_radius; //Scale factor per layer to produce the desired angle.
const coordf_t line_width = config.support_line_width;
const coordf_t line_width_scaled = scale_(line_width);
const bool with_lightning_infill = m_support_params.base_fill_pattern == ipLightning;
coordf_t support_extrusion_width = m_support_params.support_extrusion_width;
const size_t wall_count = config.tree_support_wall_count.value;
const PrintObjectConfig& object_config = m_object->config();
auto m_support_material_flow = support_material_flow(m_object, float(m_slicing_params.layer_height));
coordf_t support_spacing = object_config.support_base_pattern_spacing.value + m_support_material_flow.spacing();
coordf_t support_density = std::min(1., m_support_material_flow.spacing() / support_spacing);
BOOST_LOG_TRIVIAL(info) << "draw_circles for object: " << m_object->model_object()->name;
// coconut: previously std::unordered_map in m_collision_cache is not multi-thread safe which may cause programs stuck, here we change to tbb::concurrent_unordered_map
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_object->layer_count()),
[&](const tbb::blocked_range<size_t>& range)
{
for (size_t layer_nr = range.begin(); layer_nr < range.end(); layer_nr++)
{
if (print->canceled())
break;
const std::vector<Node*>& curr_layer_nodes = contact_nodes[layer_nr];
TreeSupportLayer* ts_layer = m_object->get_tree_support_layer(layer_nr + m_raft_layers);
assert(ts_layer != nullptr);
// skip if current layer has no points. This fixes potential crash in get_collision (see jira BBL001-355)
if (curr_layer_nodes.empty()) {
ts_layer->print_z = 0.0;
ts_layer->height = 0.0;
continue;
}
Node* first_node = curr_layer_nodes.front();
ts_layer->print_z = first_node->print_z;
ts_layer->height = first_node->height;
if (ts_layer->height < EPSILON) {
continue;
}
ExPolygons& base_areas = ts_layer->base_areas;
ExPolygons& roof_areas = ts_layer->roof_areas;
ExPolygons& roof_1st_layer = ts_layer->roof_1st_layer;
ExPolygons& floor_areas = ts_layer->floor_areas;
ExPolygons& roof_gap_areas = ts_layer->roof_gap_areas;
int max_layers_above_base = 0;
int max_layers_above_roof = 0;
int max_layers_above_roof1 = 0;
BOOST_LOG_TRIVIAL(debug) << "circles at layer " << layer_nr << " contact nodes size=" << contact_nodes[layer_nr].size();
//Draw the support areas and add the roofs appropriately to the support roof instead of normal areas.
ts_layer->lslices.reserve(contact_nodes[layer_nr].size());
for (const Node* p_node : contact_nodes[layer_nr])
{
if (print->canceled())
break;
const Node& node = *p_node;
ExPolygons area;
// Generate directly from overhang polygon if one of the following is true:
// 1) node is a normal part of hybrid support
// 2) node is virtual
if (node.type == ePolygon || node.distance_to_top<0) {
if (node.overhang->contour.size() > 100 || node.overhang->holes.size()>1)
area.emplace_back(*node.overhang);
else {
area = offset_ex({ *node.overhang }, scale_(m_ts_data->m_xy_distance));
}
}
else {
Polygon circle;
size_t layers_to_top = node.distance_to_top;
double scale;
if (top_interface_layers>0) { // if has interface, branch circles should be larger
scale = static_cast<double>(layers_to_top + 1) / tip_layers;
scale = layers_to_top < tip_layers ? (0.5 + scale / 2) : (1 + static_cast<double>(layers_to_top - tip_layers) * diameter_angle_scale_factor);
} else { // directly calc scale from the radius used in drop_nodes
scale = calc_branch_radius(branch_radius, node.dist_mm_to_top, diameter_angle_scale_factor) / branch_radius;
}
if (is_slim && 0) {
double moveX = node.movement.x() / (scale * branch_radius_scaled);
double moveY = node.movement.y() / (scale * branch_radius_scaled);
const double vsize_inv = 0.5 / (0.01 + std::sqrt(moveX * moveX + moveY * moveY));
double matrix[2*2] = {
scale * (1 + moveX * moveX * vsize_inv),scale * (0 + moveX * moveY * vsize_inv),
scale * (0 + moveX * moveY * vsize_inv),scale * (1 + moveY * moveY * vsize_inv),
};
for (auto vertex: branch_circle.points) {
vertex = Point(matrix[0] * vertex.x() + matrix[1] * vertex.y(), matrix[2] * vertex.x() + matrix[3] * vertex.y());
circle.append(node.position + vertex);
}
} else {
for (auto iter = branch_circle.points.begin(); iter != branch_circle.points.end(); iter++) {
Point corner = (*iter) * scale;
circle.append(node.position + corner);
}
}
if (layer_nr == 0 && m_raft_layers == 0) {
double brim_width = layers_to_top * layer_height / (scale * branch_radius) * 0.5;
circle = offset(circle, scale_(brim_width))[0];
}
area.emplace_back(ExPolygon(circle));
// merge overhang to get a smoother interface surface
if (top_interface_layers > 0 && node.support_roof_layers_below > 0) {
ExPolygons overhang_expanded;
if (node.overhang->contour.size() > 100 || node.overhang->holes.size()>1)
overhang_expanded.emplace_back(*node.overhang);
else {
// 对于有缺陷的模型overhang膨胀以后可能是空的
overhang_expanded = offset_ex({ *node.overhang }, scale_(m_ts_data->m_xy_distance));
}
append(area, overhang_expanded);
}
}
if (node.distance_to_top < 0)
append(roof_gap_areas, area);
else if (node.support_roof_layers_below == 1)
{
append(roof_1st_layer, area);
max_layers_above_roof1 = std::max(max_layers_above_roof1, node.distance_to_top);
}
else if (node.support_roof_layers_below > 0)
{
append(roof_areas, area);
max_layers_above_roof = std::max(max_layers_above_roof, node.distance_to_top);
}
else
{
append(base_areas, area);
max_layers_above_base = std::max(max_layers_above_base, node.distance_to_top);
}
if (layer_nr < brim_skirt_layers)
append(ts_layer->lslices, area);
}
ts_layer->lslices = std::move(union_ex(ts_layer->lslices));
//Must update bounding box which is used in avoid crossing perimeter
ts_layer->lslices_bboxes.clear();
ts_layer->lslices_bboxes.reserve(ts_layer->lslices.size());
for (const ExPolygon &expoly : ts_layer->lslices)
ts_layer->lslices_bboxes.emplace_back(get_extents(expoly));
ts_layer->backup_untyped_slices();
m_object->print()->set_status(65, (boost::format( _L("Support: generate polygons at layer %d")) % layer_nr).str());
// join roof segments
double contact_dist_scaled = scale_(0.5);// scale_(m_slicing_params.gap_support_object);
roof_areas = std::move(offset2_ex(roof_areas, contact_dist_scaled, -contact_dist_scaled));
roof_1st_layer = std::move(offset2_ex(roof_1st_layer, contact_dist_scaled, -contact_dist_scaled));
// avoid object
auto avoid_region_interface = m_ts_data->get_collision(m_ts_data->m_xy_distance, layer_nr);
//roof_areas = std::move(diff_ex(roof_areas, avoid_region_interface));
//roof_1st_layer = std::move(diff_ex(roof_1st_layer, avoid_region_interface));
roof_areas = avoid_object_remove_extra_small_parts(roof_areas, avoid_region_interface);
roof_1st_layer = avoid_object_remove_extra_small_parts(roof_1st_layer, avoid_region_interface);
// roof_1st_layer and roof_areas may intersect, so need to subtract roof_areas from roof_1st_layer
roof_1st_layer = std::move(diff_ex(roof_1st_layer, roof_areas));
// let supports touch objects when brim is on
auto avoid_region = m_ts_data->get_collision((layer_nr == 0 && has_brim) ? config.brim_object_gap : m_ts_data->m_xy_distance, layer_nr);
// base_areas = std::move(diff_ex(base_areas, avoid_region));
base_areas = avoid_object_remove_extra_small_parts(base_areas, avoid_region);
base_areas = std::move(diff_ex(base_areas, roof_areas));
base_areas = std::move(diff_ex(base_areas, roof_1st_layer));
base_areas = std::move(diff_ex(base_areas, roof_gap_areas));
if (SQUARE_SUPPORT) {
// simplify support contours
ExPolygons base_areas_simplified;
for (auto &area : base_areas) { area.simplify(scale_(line_width / 2), &base_areas_simplified, SimplifyMethodDP); }
base_areas = std::move(base_areas_simplified);
}
//Subtract support floors. We can only compute floor_areas here instead of with roof_areas,
// or we'll get much wider floor than necessary.
if (bottom_interface_layers + bottom_gap_layers > 0)
{
if (layer_nr >= bottom_interface_layers + bottom_gap_layers)
{
for (size_t i = 0; i <= bottom_gap_layers; i++)
{
const Layer* below_layer = m_object->get_layer(layer_nr - bottom_interface_layers - i);
ExPolygons bottom_interface = std::move(intersection_ex(base_areas, below_layer->lslices));
floor_areas.insert(floor_areas.end(), bottom_interface.begin(), bottom_interface.end());
}
}
if (floor_areas.empty() == false) {
floor_areas = std::move(diff_ex(floor_areas, avoid_region_interface));
floor_areas = std::move(offset2_ex(floor_areas, contact_dist_scaled, -contact_dist_scaled));
base_areas = std::move(diff_ex(base_areas, offset_ex(floor_areas, 10)));
}
}
if (bottom_gap_layers > 0 && layer_nr > bottom_gap_layers) {
const Layer* below_layer = m_object->get_layer(layer_nr - bottom_gap_layers);
ExPolygons bottom_gap_area = std::move(intersection_ex(floor_areas, below_layer->lslices));
if (!bottom_gap_area.empty()) {
floor_areas = std::move(diff_ex(floor_areas, bottom_gap_area));
}
}
auto &area_groups = ts_layer->area_groups;
for (auto &area : ts_layer->base_areas) area_groups.emplace_back(&area, TreeSupportLayer::BaseType, max_layers_above_base);
for (auto &area : ts_layer->roof_areas) area_groups.emplace_back(&area, TreeSupportLayer::RoofType, max_layers_above_roof);
for (auto &area : ts_layer->floor_areas) area_groups.emplace_back(&area, TreeSupportLayer::FloorType, 10000);
for (auto &area : ts_layer->roof_1st_layer) area_groups.emplace_back(&area, TreeSupportLayer::Roof1stLayer, max_layers_above_roof1);
for (auto &area_group : area_groups) {
auto& expoly = area_group.area;
expoly->holes.erase(std::remove_if(expoly->holes.begin(), expoly->holes.end(),
[](auto &hole) {
auto bbox_size = get_extents(hole).size();
return bbox_size[0] < scale_(2) && bbox_size[1] < scale_(2);
}),
expoly->holes.end());
}
}
});
#if 1
if (with_lightning_infill)
{
const bool global_lightning_infill = true;
std::vector<Polygons> contours;
std::vector<Polygons> overhangs;
for (int layer_nr = 1; layer_nr < m_object->layer_count(); layer_nr++) {
if (print->canceled()) break;
const std::vector<Node*>& curr_layer_nodes = contact_nodes[layer_nr];
TreeSupportLayer* ts_layer = m_object->get_tree_support_layer(layer_nr + m_raft_layers);
assert(ts_layer != nullptr);
// skip if current layer has no points. This fixes potential crash in get_collision (see jira BBL001-355)
if (curr_layer_nodes.empty()) continue;
if (ts_layer->height < EPSILON) continue;
if (ts_layer->area_groups.empty()) continue;
ExPolygons& base_areas = ts_layer->base_areas;
int layer_nr_lower = layer_nr - 1;
for (layer_nr_lower; layer_nr_lower >= 0; layer_nr_lower--) {
if (!m_object->get_tree_support_layer(layer_nr_lower + m_raft_layers)->area_groups.empty()) break;
}
TreeSupportLayer* lower_layer = m_object->get_tree_support_layer(layer_nr_lower + m_raft_layers);
ExPolygons& base_areas_lower = m_object->get_tree_support_layer(layer_nr_lower + m_raft_layers)->base_areas;
ExPolygons overhang;
if (layer_nr_lower == 0)
continue;
if (global_lightning_infill)
{
//search overhangs globally
overhang = std::move(diff_ex(offset_ex(base_areas_lower, -2.0 * scale_(support_extrusion_width)), base_areas));
}
else
{
//search overhangs only on floating islands
for (auto& base_area : base_areas)
for (auto& hole : base_area.holes)
{
Polygon rev_hole = hole;
rev_hole.make_counter_clockwise();
ExPolygons ex_hole = to_expolygons(ExPolygon(rev_hole));
for (auto& other_area : base_areas)
//if (&other_area != &base_area)
ex_hole = std::move(diff_ex(ex_hole, other_area));
overhang = std::move(union_ex(overhang, ex_hole));
}
overhang = std::move(intersection_ex(overhang, offset_ex(base_areas_lower, -0.5 * scale_(support_extrusion_width))));
}
overhangs.emplace_back(to_polygons(overhang));
contours.emplace_back(to_polygons(base_areas_lower)); //cant guarantee for 100% success probability, infill fails sometimes
printZ_to_lightninglayer[lower_layer->print_z] = overhangs.size() - 1;
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
draw_two_overhangs_to_svg(m_object->get_tree_support_layer(layer_nr_lower + m_raft_layers), base_areas_lower, to_expolygons(overhangs.back()));
#endif
}
generator = std::make_unique<FillLightning::Generator>(m_object, contours, overhangs, []() {}, support_density);
}
else if (!has_infill) {
// move the holes to contour so they can be well supported
// check if poly's contour intersects with expoly's contour
auto intersects_contour = [](Polygon poly, ExPolygon expoly, Point& pt_on_poly, Point& pt_on_expoly, Point& pt_far_on_poly, float dist_thresh = 0.01) {
float min_dist = std::numeric_limits<float>::max();
float max_dist = 0;
for (auto from : poly.points) {
for (int i = 0; i < expoly.num_contours(); i++) {
const Point* candidate = expoly.contour_or_hole(i).closest_point(from);
double dist2 = vsize2_with_unscale(*candidate - from);
if (dist2 < min_dist) {
min_dist = dist2;
pt_on_poly = from;
pt_on_expoly = *candidate;
}
if (dist2 > max_dist) {
max_dist = dist2;
pt_far_on_poly = from;
}
if (dist2 < dist_thresh) { return true; }
}
}
return false;
};
// polygon pointer: depth, direction, farPoint
std::map<const Polygon*, std::tuple<int, Point, Point>> holePropagationInfos;
for (int layer_nr = m_object->layer_count() - 1; layer_nr > 0; layer_nr--) {
if (print->canceled()) break;
m_object->print()->set_status(66, (boost::format(_L("Support: fix holes at layer %d")) % layer_nr).str());
const std::vector<Node*>& curr_layer_nodes = contact_nodes[layer_nr];
TreeSupportLayer* ts_layer = m_object->get_tree_support_layer(layer_nr + m_raft_layers);
assert(ts_layer != nullptr);
// skip if current layer has no points. This fixes potential crash in get_collision (see jira BBL001-355)
if (curr_layer_nodes.empty()) continue;
if (ts_layer->height < EPSILON) continue;
if (ts_layer->area_groups.empty()) continue;
int layer_nr_lower = layer_nr - 1;
for (layer_nr_lower; layer_nr_lower >= 0; layer_nr_lower--) {
if (!m_object->get_tree_support_layer(layer_nr_lower + m_raft_layers)->area_groups.empty()) break;
}
if (layer_nr_lower < 0) continue;
auto& area_groups_lower = m_object->get_tree_support_layer(layer_nr_lower + m_raft_layers)->area_groups;
for (const auto& area_group : ts_layer->area_groups) {
if (area_group.type != TreeSupportLayer::BaseType) continue;
const auto& area = area_group.area;
for (const auto& hole : area->holes) {
// auto hole_bbox = get_extents(hole).polygon();
for (auto& area_group_lower : area_groups_lower) {
if (area_group.type != TreeSupportLayer::BaseType) continue;
auto& base_area_lower = *area_group_lower.area;
Point pt_on_poly, pt_on_expoly, pt_far_on_poly;
// if a hole doesn't intersect with lower layer's contours, add a hole to lower layer and move it slightly to the contour
if (base_area_lower.contour.contains(hole.points.front()) && !intersects_contour(hole, base_area_lower, pt_on_poly, pt_on_expoly, pt_far_on_poly)) {
Polygon hole_lower = hole;
Point direction = normal(pt_on_expoly - pt_on_poly, line_width_scaled / 2);
hole_lower.translate(direction);
// note to expand a hole, we need to do negative offset
auto hole_expanded = offset(hole_lower, -line_width_scaled / 4, ClipperLib::JoinType::jtSquare);
if (!hole_expanded.empty()) {
base_area_lower.holes.push_back(std::move(hole_expanded[0]));
holePropagationInfos.insert({ &base_area_lower.holes.back(), {25, direction, pt_far_on_poly} });
}
break;
}
else if (holePropagationInfos.find(&hole) != holePropagationInfos.end() && std::get<0>(holePropagationInfos[&hole]) > 0 &&
base_area_lower.contour.contains(std::get<2>(holePropagationInfos[&hole]))) {
Polygon hole_lower = hole;
auto&& direction = std::get<1>(holePropagationInfos[&hole]);
hole_lower.translate(direction);
// note to shrink a hole, we need to do positive offset
auto hole_expanded = offset(hole_lower, line_width_scaled / 2, ClipperLib::JoinType::jtSquare);
Point farPoint = std::get<2>(holePropagationInfos[&hole]) + direction * 2;
if (!hole_expanded.empty()) {
base_area_lower.holes.push_back(std::move(hole_expanded[0]));
holePropagationInfos.insert({ &base_area_lower.holes.back(), {std::get<0>(holePropagationInfos[&hole]) - 1, direction, farPoint} });
}
break;
}
}
{
// if roof1 interface is inside a hole, need to expand the interface
for (auto& roof1 : ts_layer->roof_1st_layer) {
//if (hole.contains(roof1.contour.points.front()) && hole.contains(roof1.contour.bounding_box().center()))
bool is_inside_hole = std::all_of(roof1.contour.points.begin(), roof1.contour.points.end(), [&hole](Point& pt) { return hole.contains(pt); });
if (is_inside_hole) {
Polygon hole_reoriented = hole;
if (roof1.contour.is_counter_clockwise())
hole_reoriented.make_counter_clockwise();
else if (roof1.contour.is_clockwise())
hole_reoriented.make_clockwise();
auto tmp = union_({ roof1.contour }, { hole_reoriented });
if (!tmp.empty()) roof1.contour = tmp[0];
// make sure 1) roof1 and object 2) roof1 and roof, won't intersect
// Note: We can't replace roof1 directly, as we have recorded its address.
// So instead we need to replace its members one by one.
auto tmp1 = diff_ex(roof1, m_ts_data->get_collision((layer_nr == 0 && has_brim) ? config.brim_object_gap : m_ts_data->m_xy_distance, layer_nr));
tmp1 = diff_ex(tmp1, ts_layer->roof_areas);
if (!tmp1.empty()) {
roof1.contour = std::move(tmp1[0].contour);
roof1.holes = std::move(tmp1[0].holes);
}
break;
}
}
}
}
}
}
}
#endif
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
for (int layer_nr = m_object->layer_count() - 1; layer_nr > 0; layer_nr--) {
TreeSupportLayer* ts_layer = m_object->get_tree_support_layer(layer_nr + m_raft_layers);
ExPolygons& base_areas = ts_layer->base_areas;
ExPolygons& roof_areas = ts_layer->roof_areas;
ExPolygons& roof_1st_layer = ts_layer->roof_1st_layer;
ExPolygons& floor_areas = ts_layer->floor_areas;
if (base_areas.empty() && roof_areas.empty() && roof_1st_layer.empty()) continue;
char fname[10]; sprintf(fname, "%d_%.2f", layer_nr, ts_layer->print_z);
draw_contours_and_nodes_to_svg("", base_areas, roof_areas, roof_1st_layer, {}, {}, get_svg_filename(fname, "circles"), {"base", "roof", "roof1st"});
}
// export layer & print_z log
std::ofstream draw_circles_layer_out;
draw_circles_layer_out.open("./SVG/layer_heights_draw_circles.txt");
if (draw_circles_layer_out.is_open()) {
for (int layer_nr = m_object->layer_count() - 1; layer_nr > 0; layer_nr--) {
TreeSupportLayer* ts_layer = m_object->get_tree_support_layer(layer_nr + m_raft_layers);
ExPolygons& base_areas = ts_layer->base_areas;
ExPolygons& roof_areas = ts_layer->roof_areas;
ExPolygons& roof_1st_layer = ts_layer->roof_1st_layer;
ExPolygons& floor_areas = ts_layer->floor_areas;
if (base_areas.empty() && roof_areas.empty() && roof_1st_layer.empty()) continue;
draw_circles_layer_out << layer_nr << " " << ts_layer->print_z << " " << ts_layer->height << std::endl;
}
}
#endif // SUPPORT_TREE_DEBUG_TO_SVG
TreeSupportLayerPtrs& ts_layers = m_object->tree_support_layers();
auto iter = std::remove_if(ts_layers.begin(), ts_layers.end(), [](TreeSupportLayer* ts_layer) { return ts_layer->height < EPSILON; });
ts_layers.erase(iter, ts_layers.end());
for (int layer_nr = 0; layer_nr < ts_layers.size(); layer_nr++) {
ts_layers[layer_nr]->upper_layer = layer_nr != ts_layers.size() - 1 ? ts_layers[layer_nr + 1] : nullptr;
ts_layers[layer_nr]->lower_layer = layer_nr > 0 ? ts_layers[layer_nr - 1] : nullptr;
}
}
void TreeSupport::drop_nodes(std::vector<std::vector<Node*>>& contact_nodes)
{
const PrintObjectConfig &config = m_object->config();
// Use Minimum Spanning Tree to connect the points on each layer and move them while dropping them down.
const coordf_t support_extrusion_width = m_support_params.support_extrusion_width;
const coordf_t layer_height = config.layer_height.value;
const double angle = config.tree_support_branch_angle.value * M_PI / 180.;
const int wall_count = std::max(1, config.tree_support_wall_count.value);
double tan_angle = tan(angle); // when nodes are thick, they can move further. this is the max angle
const coordf_t max_move_distance = (angle < M_PI / 2) ? (coordf_t)(tan_angle * layer_height)*wall_count : std::numeric_limits<coordf_t>::max();
const double max_move_distance2 = max_move_distance * max_move_distance;
const coordf_t branch_radius = config.tree_support_branch_diameter.value / 2;
const size_t tip_layers = branch_radius / layer_height; //The number of layers to be shrinking the circle to create a tip. This produces a 45 degree angle.
const double diameter_angle_scale_factor = tan(tree_support_branch_diameter_angle * M_PI / 180.);//*layer_height / branch_radius; // Scale factor per layer to produce the desired angle.
const coordf_t radius_sample_resolution = m_ts_data->m_radius_sample_resolution;
const bool support_on_buildplate_only = config.support_on_build_plate_only.value;
const size_t bottom_interface_layers = config.support_interface_bottom_layers.value;
const size_t top_interface_layers = config.support_interface_top_layers.value;
float DO_NOT_MOVER_UNDER_MM = is_slim ? 0 : 5; // do not move contact points under 5mm
auto get_branch_angle = [this,&config](coordf_t radius) {
if (config.tree_support_branch_angle.value < 30.0) return config.tree_support_branch_angle.value;
return (radius - MIN_BRANCH_RADIUS) / (MAX_BRANCH_RADIUS - MIN_BRANCH_RADIUS) * (config.tree_support_branch_angle.value - 30.0) + 30.0;
};
auto get_max_move_dist = [this, &config, branch_radius, tip_layers, diameter_angle_scale_factor, wall_count, support_extrusion_width](const Node *node, int power = 1) {
double move_dist = node->max_move_dist;
if (node->max_move_dist == 0) {
if (node->radius == 0) node->radius = calc_branch_radius(branch_radius, node->dist_mm_to_top, diameter_angle_scale_factor);
double angle = config.tree_support_branch_angle.value;
if (angle > 30.0 && node->radius > MIN_BRANCH_RADIUS)
angle = (node->radius - MIN_BRANCH_RADIUS) / (MAX_BRANCH_RADIUS - MIN_BRANCH_RADIUS) * (config.tree_support_branch_angle.value - 30.0) + 30.0;
double tan_angle = tan(angle * M_PI / 180);
int wall_count_ = node->radius > 2 * config.support_line_width ? wall_count : 1;
node->max_move_dist = (angle < 90) ? (coordf_t) (tan_angle * node->height) * wall_count_ : std::numeric_limits<coordf_t>::max();
node->max_move_dist = std::min(node->max_move_dist, support_extrusion_width);
move_dist = node->max_move_dist;
}
if (power == 2) move_dist = SQ(move_dist);
return move_dist;
};
std::vector<std::pair<coordf_t, coordf_t>> layer_heights = plan_layer_heights(contact_nodes);
if (layer_heights.empty()) return;
std::unordered_set<Node*> to_free_node_set;
m_spanning_trees.resize(contact_nodes.size());
//m_mst_line_x_layer_contour_caches.resize(contact_nodes.size());
if (!is_slim)
{// get outlines below and avoidance area using tbb
//m_object->print()->set_status(59, "Support: preparing avoidance regions ");
// get all the possible radiis
std::vector<std::set<coordf_t> > all_layer_radius(m_highest_overhang_layer+1);
std::vector<std::set<int> > all_layer_node_dist(m_highest_overhang_layer+1);
for (size_t layer_nr = m_highest_overhang_layer; layer_nr > 0; layer_nr--)
{
auto& layer_contact_nodes = contact_nodes[layer_nr];
auto& layer_radius = all_layer_radius[layer_nr];
auto& layer_node_dist = all_layer_node_dist[layer_nr];
if (!layer_contact_nodes.empty()) {
for (Node* p_node : layer_contact_nodes) {
layer_node_dist.emplace(p_node->distance_to_top);
}
}
if (layer_nr < m_highest_overhang_layer) {
for (auto node_dist : all_layer_node_dist[layer_nr + 1])
layer_node_dist.emplace(node_dist+1);
}
for (auto node_dist : layer_node_dist) {
layer_radius.emplace(calc_branch_radius(branch_radius, node_dist, tip_layers, diameter_angle_scale_factor));
}
}
// parallel pre-compute avoidance
tbb::parallel_for(tbb::blocked_range<size_t>(1, m_highest_overhang_layer),
[&](const tbb::blocked_range<size_t>& range) {
for (size_t layer_nr = range.begin(); layer_nr < range.end(); layer_nr++) {
for (auto node_dist : all_layer_node_dist[layer_nr])
{
m_ts_data->get_avoidance(0, layer_nr - 1);
m_ts_data->get_avoidance(calc_branch_radius(branch_radius, node_dist, tip_layers, diameter_angle_scale_factor), layer_nr - 1);
}
}
});
BOOST_LOG_TRIVIAL(debug) << "before m_avoidance_cache.size()=" << m_ts_data->m_avoidance_cache.size();
}
for (size_t layer_nr = contact_nodes.size() - 1; layer_nr > 0; layer_nr--) // Skip layer 0, since we can't drop down the vertices there.
{
if (m_object->print()->canceled())
break;
auto& layer_contact_nodes = contact_nodes[layer_nr];
if (layer_contact_nodes.empty())
continue;
int layer_nr_next = layer_nr - 1;
while (layer_nr_next>=0 && layer_heights[layer_nr_next].second < EPSILON)
layer_nr_next--;
coordf_t print_z_next = layer_heights[layer_nr_next].first;
coordf_t height_next = layer_heights[layer_nr_next].second;
std::deque<std::pair<size_t, Node*>> unsupported_branch_leaves; // All nodes that are leaves on this layer that would result in unsupported ('mid-air') branches.
const Layer* ts_layer = m_object->get_tree_support_layer(layer_nr);
m_object->print()->set_status(60, (boost::format(_L("Support: propagate branches at layer %d")) % layer_nr).str());
Polygons layer_contours = std::move(m_ts_data->get_contours_with_holes(layer_nr));
//std::unordered_map<Line, bool, LineHash>& mst_line_x_layer_contour_cache = m_mst_line_x_layer_contour_caches[layer_nr];
std::unordered_map<Line, bool, LineHash> mst_line_x_layer_contour_cache;
auto is_line_cut_by_contour = [&mst_line_x_layer_contour_cache,&layer_contours](Point a, Point b)
{
auto iter = mst_line_x_layer_contour_cache.find({ a, b });
if (iter != mst_line_x_layer_contour_cache.end()) {
if (iter->second)
return true;
}
else {
profiler.tic();
Line ln(b, a);
Lines pls_intersect = intersection_ln(ln, layer_contours);
mst_line_x_layer_contour_cache.insert({ {a, b}, !pls_intersect.empty() });
mst_line_x_layer_contour_cache.insert({ ln, !pls_intersect.empty() });
profiler.stage_add(STAGE_intersection_ln, true);
if (!pls_intersect.empty())
return true;
}
return false;
};
//Group together all nodes for each part.
const ExPolygons& parts = m_ts_data->get_avoidance(0, layer_nr);
std::vector<std::unordered_map<Point, Node*, PointHash>> nodes_per_part(1 + parts.size()); //All nodes that aren't inside a part get grouped together in the 0th part.
for (Node* p_node : layer_contact_nodes)
{
const Node& node = *p_node;
if (node.distance_to_top < 0) {
// gap nodes do not merge or move
Node* next_node = new Node(p_node->position, p_node->distance_to_top + 1, p_node->skin_direction, p_node->support_roof_layers_below - 1, p_node->to_buildplate, p_node,
print_z_next, height_next);
get_max_move_dist(next_node);
next_node->is_merged = false;
contact_nodes[layer_nr_next].emplace_back(next_node);
continue;
}
if (support_on_buildplate_only && !node.to_buildplate) //Can't rest on model and unable to reach the build plate. Then we must drop the node and leave parts unsupported.
{
unsupported_branch_leaves.push_front({ layer_nr, p_node });
continue;
}
if (node.to_buildplate || parts.empty()) //It's outside, so make it go towards the build plate.
{
nodes_per_part[0][node.position] = p_node;
continue;
}
if (node.type == ePolygon) {
// polygon node do not merge or move
const bool to_buildplate = !is_inside_ex(m_ts_data->m_layer_outlines[layer_nr], p_node->position);
Node *next_node = new Node(p_node->position, p_node->distance_to_top + 1, p_node->skin_direction, p_node->support_roof_layers_below - 1, to_buildplate, p_node,
print_z_next, height_next);
next_node->max_move_dist = 0;
next_node->is_merged = false;
contact_nodes[layer_nr_next].emplace_back(next_node);
continue;
}
/* Find which part this node is located in and group the nodes in
* the same part together. Since nodes have a radius and the
* avoidance areas are offset by that radius, the set of parts may
* be different per node. Here we consider a node to be inside the
* part that is closest. The node may be inside a bigger part that
* is actually two parts merged together due to an offset. In that
* case we may incorrectly keep two nodes separate, but at least
* every node falls into some group.
*/
coordf_t closest_part_distance2 = std::numeric_limits<coordf_t>::max();
size_t closest_part = -1;
for (size_t part_index = 0; part_index < parts.size(); part_index++)
{
//constexpr bool border_result = true;
if (is_inside_ex(parts[part_index], node.position)) //If it's inside, the distance is 0 and this part is considered the best.
{
closest_part = part_index;
closest_part_distance2 = 0;
break;
}
Point closest_point = *parts[part_index].contour.closest_point(node.position);
const coordf_t distance2 = vsize2_with_unscale(node.position - closest_point);
if (distance2 < closest_part_distance2)
{
closest_part_distance2 = distance2;
closest_part = part_index;
}
}
//Put it in the best one.
nodes_per_part[closest_part + 1][node.position] = p_node; //Index + 1 because the 0th index is the outside part.
}
//Create a MST for every part.
profiler.tic();
//std::vector<MinimumSpanningTree>& spanning_trees = m_spanning_trees[layer_nr];
std::vector<MinimumSpanningTree> spanning_trees;
for (const std::unordered_map<Point, Node*, PointHash>& group : nodes_per_part)
{
std::vector<Point> points_to_buildplate;
for (const std::pair<const Point, Node*>& entry : group)
{
points_to_buildplate.emplace_back(entry.first); //Just the position of the node.
}
spanning_trees.emplace_back(points_to_buildplate);
}
profiler.stage_add(STAGE_MinimumSpanningTree,true);
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
coordf_t branch_radius_temp = 0;
coordf_t max_y = std::numeric_limits<coordf_t>::min();
draw_layer_mst(std::to_string(layer_nr), spanning_trees, m_object->get_layer(layer_nr)->lslices);
#endif
for (size_t group_index = 0; group_index < nodes_per_part.size(); group_index++)
{
const MinimumSpanningTree& mst = spanning_trees[group_index];
//In the first pass, merge all nodes that are close together.
std::unordered_set<Node*> to_delete;
for (const std::pair<const Point, Node*>& entry : nodes_per_part[group_index])
{
Node* p_node = entry.second;
Node& node = *p_node;
if (to_delete.find(p_node) != to_delete.end())
{
continue; //Delete this node (don't create a new node for it on the next layer).
}
const std::vector<Point>& neighbours = mst.adjacent_nodes(node.position);
if (neighbours.size() == 1 && vsize2_with_unscale(neighbours[0] - node.position) < max_move_distance2 && mst.adjacent_nodes(neighbours[0]).size() == 1) //We have just two nodes left, and they're very close!
{
//Insert a completely new node and let both original nodes fade.
Point next_position = (node.position + neighbours[0]) / 2; //Average position of the two nodes.
const coordf_t branch_radius_node = calc_branch_radius(branch_radius, node.dist_mm_to_top, diameter_angle_scale_factor);
auto avoid_layer = m_ts_data->get_avoidance(branch_radius_node, layer_nr_next);
if (group_index == 0)
{
//Avoid collisions.
const coordf_t max_move_between_samples = max_move_distance + radius_sample_resolution + EPSILON; //100 micron extra for rounding errors.
move_out_expolys(avoid_layer, next_position, radius_sample_resolution + EPSILON, max_move_between_samples);
}
Node* neighbour = nodes_per_part[group_index][neighbours[0]];
size_t new_distance_to_top = std::max(node.distance_to_top, neighbour->distance_to_top) + 1;
size_t new_support_roof_layers_below = std::max(node.support_roof_layers_below, neighbour->support_roof_layers_below) - 1;
double new_dist_mm_to_top = std::max(node.dist_mm_to_top, neighbour->dist_mm_to_top) + node.height;
const bool to_buildplate = !is_inside_ex(m_ts_data->get_avoidance(0, layer_nr_next), next_position);
Node * next_node = new Node(next_position, new_distance_to_top, node.skin_direction, new_support_roof_layers_below, to_buildplate, p_node,
layer_heights[layer_nr_next].first, layer_heights[layer_nr_next].second, new_dist_mm_to_top);
next_node->movement = next_position - node.position;
get_max_move_dist(next_node);
next_node->is_merged = true;
contact_nodes[layer_nr_next].push_back(next_node);
// Make sure the next pass doesn't drop down either of these (since that already happened).
node.merged_neighbours.push_front(neighbour);
to_delete.insert(neighbour);
to_delete.insert(p_node);
}
else if (neighbours.size() > 1) //Don't merge leaf nodes because we would then incur movement greater than the maximum move distance.
{
//Remove all neighbours that are too close and merge them into this node.
for (const Point& neighbour : neighbours)
{
if (vsize2_with_unscale(neighbour - node.position) < /*max_move_distance2*/get_max_move_dist(&node,2))
{
Node* neighbour_node = nodes_per_part[group_index][neighbour];
node.distance_to_top = std::max(node.distance_to_top, neighbour_node->distance_to_top);
node.support_roof_layers_below = std::max(node.support_roof_layers_below, neighbour_node->support_roof_layers_below);
node.dist_mm_to_top = std::max(node.dist_mm_to_top, neighbour_node->dist_mm_to_top);
node.merged_neighbours.push_front(neighbour_node);
node.merged_neighbours.insert(node.merged_neighbours.end(), neighbour_node->merged_neighbours.begin(), neighbour_node->merged_neighbours.end());
node.is_merged = true;
to_delete.insert(neighbour_node);
}
}
}
}
//In the second pass, move all middle nodes.
for (const std::pair<const Point, Node*>& entry : nodes_per_part[group_index])
{
Node* p_node = entry.second;
const Node& node = *p_node;
if (to_delete.find(p_node) != to_delete.end())
{
continue;
}
//If the branch falls completely inside a collision area (the entire branch would be removed by the X/Y offset), delete it.
if (group_index > 0 && is_inside_ex(m_ts_data->get_collision(m_ts_data->m_xy_distance, layer_nr), node.position))
{
const coordf_t branch_radius_node = calc_branch_radius(branch_radius, node.dist_mm_to_top, diameter_angle_scale_factor);
Point to_outside = projection_onto_ex(m_ts_data->get_collision(m_ts_data->m_xy_distance, layer_nr), node.position);
double dist2_to_outside = vsize2_with_unscale(node.position - to_outside);
if (dist2_to_outside >= branch_radius_node * branch_radius_node) //Too far inside.
{
if (support_on_buildplate_only)
{
unsupported_branch_leaves.push_front({ layer_nr, p_node });
}
else {
Node* pn = p_node;
for (int i = 0; i <= bottom_interface_layers && pn; i++, pn = pn->parent)
pn->support_floor_layers_above = bottom_interface_layers - i + 1; // +1 so the parent node has support_floor_layers_above=2
to_delete.insert(p_node);
}
continue;
}
// if the link between parent and current is cut by contours, mark current as bottom contact node
if (p_node->parent && intersection_ln({p_node->position, p_node->parent->position}, layer_contours).empty()==false)
{
Node* pn = p_node->parent;
for (int i = 0; i <= bottom_interface_layers && pn; i++, pn = pn->parent)
pn->support_floor_layers_above = bottom_interface_layers - i + 1;
to_delete.insert(p_node);
continue;
}
}
Point next_layer_vertex = node.position;
Point move_to_neighbor_center;
std::vector<Point> moves;
std::vector<float> weights;
const std::vector<Point> neighbours = mst.adjacent_nodes(node.position);
// 1. do not merge neighbors under 5mm
// 2. Only merge node with single neighbor in distance between [max_move_distance, 10mm/layer_height]
float dist2_to_first_neighbor = neighbours.empty() ? 0 : vsize2_with_unscale(neighbours[0] - node.position);
if (ts_layer->print_z > DO_NOT_MOVER_UNDER_MM &&
(neighbours.size() > 1 || (neighbours.size() == 1 && dist2_to_first_neighbor >= max_move_distance2))) // Only nodes that aren't about to collapse.
{
// Move towards the average position of all neighbours.
Point sum_direction(0, 0);
for (const Point &neighbour : neighbours) {
// do not move to the neighbor to be deleted
Node *neighbour_node = nodes_per_part[group_index][neighbour];
if (to_delete.find(neighbour_node) != to_delete.end()) continue;
Point direction = neighbour - node.position;
// do not move to neighbor that's too far away (即使以最大速度移动,在接触热床之前都无法汇聚)
float dist2_to_neighbor = vsize2_with_unscale(direction);
coordf_t branch_bottom_radius = calc_branch_radius(branch_radius, node.dist_mm_to_top + node.print_z, diameter_angle_scale_factor);
coordf_t neighbour_bottom_radius = calc_branch_radius(branch_radius, neighbour_node->dist_mm_to_top + neighbour_node->print_z, diameter_angle_scale_factor);
double max_converge_distance = tan_angle * (ts_layer->print_z - DO_NOT_MOVER_UNDER_MM) + std::max(branch_bottom_radius, neighbour_bottom_radius);
if (dist2_to_neighbor > max_converge_distance * max_converge_distance) continue;
if (is_line_cut_by_contour(node.position, neighbour)) continue;
if (is_slim)
sum_direction += direction * (1 / dist2_to_neighbor);
else
sum_direction += direction;
}
if (is_slim)
move_to_neighbor_center = sum_direction;
else {
if (vsize2_with_unscale(sum_direction) <= max_move_distance2) {
move_to_neighbor_center = sum_direction;
} else {
move_to_neighbor_center = normal(sum_direction, scale_(get_max_move_dist(&node)));
}
}
}
const coordf_t branch_radius_node = calc_branch_radius(branch_radius, node.dist_mm_to_top/*+node.print_z*/, diameter_angle_scale_factor);
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
if (node.position(1) > max_y) {
max_y = node.position(1);
branch_radius_temp = branch_radius_node;
}
#endif
auto avoid_layer = m_ts_data->get_avoidance(branch_radius_node, layer_nr_next);
Point to_outside = projection_onto_ex(avoid_layer, node.position);
Point direction_to_outer = to_outside - node.position;
double dist2_to_outer = vsize2_with_unscale(direction_to_outer);
// don't move if
// 1) line of node and to_outside is cut by contour (means supports may intersect with object)
// 2) it's impossible to move to build plate
if (is_line_cut_by_contour(node.position, to_outside) || dist2_to_outer > max_move_distance2 * SQ(layer_nr) ||
!is_inside_ex(avoid_layer, node.position)) {
// try move to outside of lower layer instead
Point candidate_vertex = node.position;
const coordf_t max_move_between_samples = max_move_distance + radius_sample_resolution + EPSILON; // 100 micron extra for rounding errors.
bool is_outside = move_out_expolys(avoid_layer, candidate_vertex, max_move_between_samples, max_move_between_samples);
if (is_outside) {
direction_to_outer = candidate_vertex - node.position;
dist2_to_outer = vsize2_with_unscale(direction_to_outer);
} else {
direction_to_outer = Point(0, 0);
dist2_to_outer = 0;
}
}
// move to the averaged direction of neighbor center and contour edge if they are roughly same direction
Point movement;
if (is_slim)
movement = move_to_neighbor_center*2 + (dist2_to_outer > EPSILON ? direction_to_outer * (1 / dist2_to_outer) : Point(0, 0));
else {
if (movement.dot(move_to_neighbor_center) >= 0.2 || move_to_neighbor_center == Point(0, 0))
movement = direction_to_outer + move_to_neighbor_center;
else
movement = move_to_neighbor_center; // otherwise move to neighbor center first
}
if (vsize2_with_unscale(movement) > get_max_move_dist(&node,2))
movement = normal(movement, scale_(get_max_move_dist(&node)));
// add momentum to force smooth movement
//movement = movement * 0.5 + p_node->movement * 0.5;
next_layer_vertex += movement;
const bool to_buildplate = !is_inside_ex(m_ts_data->m_layer_outlines[layer_nr], next_layer_vertex);// !is_inside_ex(m_ts_data->get_avoidance(m_ts_data->m_xy_distance, layer_nr - 1), next_layer_vertex);
Node * next_node = new Node(next_layer_vertex, node.distance_to_top + 1, node.skin_direction, node.support_roof_layers_below - 1, to_buildplate, p_node,
print_z_next, height_next);
next_node->movement = movement;
get_max_move_dist(next_node);
next_node->is_merged = false;
contact_nodes[layer_nr_next].push_back(next_node);
}
}
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
draw_contours_and_nodes_to_svg(std::to_string(ts_layer->print_z), m_ts_data->get_avoidance(0, layer_nr), m_ts_data->get_avoidance(branch_radius_temp, layer_nr), m_ts_data->m_layer_outlines_below[layer_nr],
contact_nodes[layer_nr], contact_nodes[layer_nr_next], "contact_points", { "overhang","avoid","outline" }, { "blue","red","yellow" });
if (contact_nodes[layer_nr].empty() == false) {
BOOST_LOG_TRIVIAL(debug) << "drop_nodes layer " << layer_nr << ", print_z=" << ts_layer->print_z;
for (size_t i = 0; i < std::min(size_t(5), contact_nodes[layer_nr].size()); i++) {
auto &node = contact_nodes[layer_nr][i];
BOOST_LOG_TRIVIAL(debug) << "\t node " << i << ", pos=" << node->position << ", move = " << node->movement << ", is_merged=" << node->is_merged;
}
}
#endif
// Prune all branches that couldn't find support on either the model or the buildplate (resulting in 'mid-air' branches).
for (;! unsupported_branch_leaves.empty(); unsupported_branch_leaves.pop_back())
{
const auto& entry = unsupported_branch_leaves.back();
Node* i_node = entry.second;
for (size_t i_layer = entry.first; i_node != nullptr; ++i_layer, i_node = i_node->parent)
{
std::vector<Node*>::iterator to_erase = std::find(contact_nodes[i_layer].begin(), contact_nodes[i_layer].end(), i_node);
if (to_erase != contact_nodes[i_layer].end())
{
to_free_node_set.insert(*to_erase);
contact_nodes[i_layer].erase(to_erase);
to_free_node_set.insert(i_node);
for (Node* neighbour : i_node->merged_neighbours)
{
unsupported_branch_leaves.push_front({ i_layer, neighbour });
}
}
}
}
}
// delete nodes with no children (means either it's a single layer nodes, or the branch has been deleted but not completely)
for (size_t layer_nr = contact_nodes.size() - 1; layer_nr > 0; layer_nr--){
auto layer_contact_nodes = contact_nodes[layer_nr];
for (Node *p_node : layer_contact_nodes) {
if (p_node->child==nullptr) {
std::vector<Node *>::iterator to_erase = std::find(contact_nodes[layer_nr].begin(), contact_nodes[layer_nr].end(), p_node);
if (to_erase != contact_nodes[layer_nr].end()) {
to_free_node_set.insert(*to_erase);
contact_nodes[layer_nr].erase(to_erase);
}
}
}
}
BOOST_LOG_TRIVIAL(debug) << "after m_avoidance_cache.size()=" << m_ts_data->m_avoidance_cache.size();
for (Node *node : to_free_node_set)
{
delete node;
}
to_free_node_set.clear();
// Merge empty contact_nodes layers
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
// export all print_z and layer height into .txt
std::ofstream layer_heights_out;
layer_heights_out.open("./SVG/layer_heights_drop_nodes.txt");
//layer_heights_out.open("layer_heights_out.txt");
if (layer_heights_out.is_open()) {
for (int i = 0; i < layer_heights.size(); i++) {
if (contact_nodes[i].empty()) {
layer_heights_out << 0 << " " << 0 << std::endl;
}
else {
layer_heights_out << contact_nodes[i][0]->print_z << " " << contact_nodes[i][0]->height << std::endl;
}
}
layer_heights_out.close();
}
#endif
}
void TreeSupport::smooth_nodes(std::vector<std::vector<Node *>> &contact_nodes)
{
std::map<Node *, bool> is_processed;
for (int layer_nr = 0; layer_nr < contact_nodes.size(); layer_nr++) {
std::vector<Node *> &curr_layer_nodes = contact_nodes[layer_nr];
if (curr_layer_nodes.empty()) continue;
for (Node *node : curr_layer_nodes) {
is_processed.emplace(node, false);
if (layer_nr == 0) node->is_merged = true; // nodes on plate are also merged nodes
}
}
for (int layer_nr = contact_nodes.size()-1; layer_nr >=0 ; layer_nr--) {
std::vector<Node *> &curr_layer_nodes = contact_nodes[layer_nr];
if (curr_layer_nodes.empty()) continue;
for (Node *node : curr_layer_nodes) {
if (!is_processed[node]) {
std::vector<Point> pts;
std::vector<Node *> branch;
Node * p_node = node;
// add head for second path from the merged node if there are multiple ones
if (!node->is_merged && node->parent) {
pts.push_back(p_node->parent->position);
branch.push_back(p_node->parent);
}
do {
pts.push_back(p_node->position);
//is_processed[p_node] = true;
branch.push_back(p_node);
p_node = p_node->child;
} while (p_node && !p_node->is_merged && !is_processed[p_node]);
// TODO is it necessary to add tail also?
if (p_node && p_node->is_merged) {
pts.push_back(p_node->position);
branch.push_back(p_node);
}
if (pts.size() < 3) continue;
std::vector<Point> pts1 = pts;
// TODO here we assume layer height gap is constant. If not true, need to consider height jump
for (size_t k = 0; k < 2; k++) {
for (size_t i = 1; i < pts.size() - 1; i++) {
size_t i2 = i >= 2 ? i - 2 : 0;
size_t i3 = i < pts.size() - 2 ? i + 2 : pts.size() - 1;
Point pt = (pts[i2] + pts[i - 1] + pts[i] + pts[i + 1] + pts[i3]) / 5;
pts1[i] = pt;
}
std::swap(pts, pts1);
}
for (size_t i = 1; i < pts.size() - 1; i++) {
if (!is_processed[branch[i]]) {
branch[i]->position = pts[i];
is_processed[branch[i]] = true;
}
}
}
}
}
}
void TreeSupport::adjust_layer_heights(std::vector<std::vector<Node*>>& contact_nodes)
{
if (contact_nodes.empty())
return;
const PrintConfig& print_config = m_object->print()->config();
const PrintObjectConfig& config = m_object->config();
// don't merge layers for Vine support, or the branches will be unsmooth
// TODO can we merge layers in a way that guaranttees smoothness?
if (!print_config.independent_support_layer_height || is_slim) {
for (int layer_nr = 0; layer_nr < contact_nodes.size(); layer_nr++) {
std::vector<Node*>& curr_layer_nodes = contact_nodes[layer_nr];
for (Node* node : curr_layer_nodes) {
node->print_z = m_object->get_layer(layer_nr)->print_z;
node->height = m_object->get_layer(layer_nr)->height;
}
}
return;
}
// extreme layer_id
std::vector<int> extremes;
const coordf_t layer_height = config.layer_height.value;
const coordf_t max_layer_height = m_slicing_params.max_layer_height;
const size_t bot_intf_layers = config.support_interface_bottom_layers.value;
const size_t top_intf_layers = config.support_interface_top_layers.value;
// if already using max layer height, no need to adjust
if (layer_height == max_layer_height) return;
extremes.push_back(0);
for (Node* node : contact_nodes[0]) {
node->print_z = m_object->get_layer(0)->print_z;
node->height = m_object->get_layer(0)->height;
}
for (int layer_nr = 1; layer_nr < contact_nodes.size(); layer_nr++) {
std::vector<Node*>& curr_layer_nodes = contact_nodes[layer_nr];
for (Node* node : curr_layer_nodes) {
if (node->support_roof_layers_below >0 || node->support_floor_layers_above == bot_intf_layers) {
extremes.push_back(layer_nr);
break;
}
}
if (extremes.back() == layer_nr) {
// contact layer use the same print_z and layer height with object layer
for (Node* node : curr_layer_nodes) {
node->print_z = m_object->get_layer(layer_nr)->print_z;
node->height = m_object->get_layer(layer_nr)->height;
}
}
}
// schedule new layer heights and print_z
for (size_t idx_extreme = 0; idx_extreme < extremes.size(); idx_extreme++) {
int extr2_layer_nr = extremes[idx_extreme];
coordf_t extr2z = m_object->get_layer(extr2_layer_nr)->bottom_z();
int extr1_layer_nr = idx_extreme == 0 ? -1 : extremes[idx_extreme - 1];
coordf_t extr1z = idx_extreme == 0 ? 0.f : m_object->get_layer(extr1_layer_nr)->print_z;
coordf_t dist = extr2z - extr1z;
// Insert intermediate layers.
size_t n_layers_extra = size_t(ceil(dist / m_slicing_params.max_suport_layer_height));
if (n_layers_extra <= 1)
continue;
coordf_t step = dist / coordf_t(n_layers_extra);
coordf_t print_z = extr1z + step;
assert(step >= layer_height - EPSILON);
for (int layer_nr = extr1_layer_nr + 1; layer_nr < extr2_layer_nr; layer_nr++) {
std::vector<Node*>& curr_layer_nodes = contact_nodes[layer_nr];
if (curr_layer_nodes.empty()) continue;
if (std::abs(print_z - curr_layer_nodes[0]->print_z) < step / 2 + EPSILON) {
for (Node* node : curr_layer_nodes) {
node->print_z = print_z;
node->height = step;
}
print_z += step;
}
else {
// can't clear curr_layer_nodes, or the model will have empty layers
for (Node* node : curr_layer_nodes) {
node->print_z = 0.0;
node->height = 0.0;
}
}
}
}
}
std::vector<std::pair<coordf_t, coordf_t>> TreeSupport::plan_layer_heights(std::vector<std::vector<Node*>>& contact_nodes)
{
const PrintObjectConfig& config = m_object->config();
const coordf_t max_layer_height = m_slicing_params.max_layer_height;
const coordf_t layer_height = config.layer_height.value;
coordf_t z_distance_top = m_slicing_params.gap_support_object;
// BBS: add extra distance if thick bridge is enabled
// Note: normal support uses print_z, but tree support uses integer layers, so we need to subtract layer_height
if (!m_slicing_params.soluble_interface && m_object_config->thick_bridges) {
z_distance_top += m_object->layers()[0]->regions()[0]->region().bridging_height_avg(m_object->print()->config()) - layer_height;
}
const size_t support_roof_layers = config.support_interface_top_layers.value;
const int z_distance_top_layers = round_up_divide(scale_(z_distance_top), scale_(layer_height)) + 1;
std::vector<std::pair<coordf_t, coordf_t>> layer_heights(contact_nodes.size(), std::pair<coordf_t, coordf_t>(0.0, 0.0));
std::vector<int> bounds;
if (!USE_PLAN_LAYER_HEIGHTS || layer_height == max_layer_height) {
for (int layer_nr = 0; layer_nr < contact_nodes.size(); layer_nr++) {
layer_heights[layer_nr].first = m_object->get_layer(layer_nr)->print_z;
layer_heights[layer_nr].second = m_object->get_layer(layer_nr)->height;
}
return layer_heights;
}
bounds.push_back(0);
// Keep first layer still
layer_heights[0].first = m_object->get_layer(0)->print_z;
layer_heights[0].second = m_object->get_layer(0)->height;
// Collect top contact layers
for (int layer_nr = 1; layer_nr < contact_nodes.size(); layer_nr++)
{
if (!contact_nodes[layer_nr].empty())
for (int i = 0; i < support_roof_layers + z_distance_top_layers + 1; i++) {
if (layer_nr - i > 0) {
bounds.push_back(layer_nr - i);
layer_heights[layer_nr - i].first = m_object->get_layer(layer_nr - i)->print_z;
layer_heights[layer_nr - i].second = m_object->get_layer(layer_nr - i)->height;
}
else {
break;
}
}
}
std::set<int> s(bounds.begin(), bounds.end());
bounds.assign(s.begin(), s.end());
for (size_t idx_extreme = 0; idx_extreme < bounds.size(); idx_extreme++) {
int extr2_layer_nr = bounds[idx_extreme];
coordf_t extr2z = m_object->get_layer(extr2_layer_nr)->bottom_z();
int extr1_layer_nr = idx_extreme == 0 ? -1 : bounds[idx_extreme - 1];
coordf_t extr1z = idx_extreme == 0 ? 0.f : m_object->get_layer(extr1_layer_nr)->print_z;
coordf_t dist = extr2z - extr1z;
// Insert intermediate layers.
size_t n_layers_extra = size_t(ceil(dist / (m_slicing_params.max_suport_layer_height + EPSILON)));
int actual_internel_layers = extr2_layer_nr - extr1_layer_nr - 1;
int extr_layers_left = extr2_layer_nr - extr1_layer_nr - n_layers_extra - 1;
if (n_layers_extra < 1)
continue;
coordf_t step = dist / coordf_t(n_layers_extra);
coordf_t print_z = extr1z + step;
assert(step >= layer_height - EPSILON);
for (int layer_nr = extr1_layer_nr + 1; layer_nr < extr2_layer_nr; layer_nr++) {
// if (curr_layer_nodes.empty()) continue;
if (std::abs(print_z - m_object->get_layer(layer_nr)->print_z) < step / 2 + EPSILON || extr_layers_left < 1) {
layer_heights[layer_nr].first = print_z;
layer_heights[layer_nr].second = step;
print_z += step;
}
else {
// can't clear curr_layer_nodes, or the model will have empty layers
layer_heights[layer_nr].first = 0.0;
layer_heights[layer_nr].second = 0.0;
extr_layers_left--;
}
}
}
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
// export all print_z and layer height into .txt
std::ofstream layer_heights_out;
layer_heights_out.open("./SVG/layer_heights_out.txt");
//layer_heights_out.open("layer_heights_out.txt");
if (layer_heights_out.is_open()) {
for (int i = 0; i < layer_heights.size(); i++) {
layer_heights_out << layer_heights[i].first << " " << layer_heights[i].second << std::endl;
}
layer_heights_out.close();
}
// check bounds
if (1)
{
std::ofstream bounds_out;
bounds_out.open("bounds.txt");
if (bounds_out.is_open()) {
for (int i = 0; i < bounds.size(); i++) {
bounds_out << bounds[i] << std::endl;
}
}
}
#endif
return layer_heights;
}
void TreeSupport::generate_contact_points(std::vector<std::vector<TreeSupport::Node*>>& contact_nodes)
{
const PrintObjectConfig &config = m_object->config();
const coordf_t point_spread = scale_(config.tree_support_branch_distance.value);
//First generate grid points to cover the entire area of the print.
BoundingBox bounding_box = m_object->bounding_box();
const Point bounding_box_size = bounding_box.max - bounding_box.min;
constexpr double rotate_angle = 22.0 / 180.0 * M_PI;
constexpr double thresh_big_overhang = SQ(scale_(10));
const auto center = bounding_box_middle(bounding_box);
const auto sin_angle = std::sin(rotate_angle);
const auto cos_angle = std::cos(rotate_angle);
const auto rotated_dims = Point(
bounding_box_size(0) * cos_angle + bounding_box_size(1) * sin_angle,
bounding_box_size(0) * sin_angle + bounding_box_size(1) * cos_angle) / 2;
std::vector<Point> grid_points;
for (auto x = -rotated_dims(0); x < rotated_dims(0); x += point_spread) {
for (auto y = -rotated_dims(1); y < rotated_dims(1); y += point_spread) {
Point pt(x, y);
pt.rotate(cos_angle, sin_angle);
pt += center;
if (bounding_box.contains(pt)) {
grid_points.push_back(pt);
}
}
}
const coordf_t layer_height = config.layer_height.value;
coordf_t z_distance_top = m_slicing_params.gap_support_object;
// BBS: add extra distance if thick bridge is enabled
// Note: normal support uses print_z, but tree support uses integer layers, so we need to subtract layer_height
if (!m_slicing_params.soluble_interface && m_object_config->thick_bridges) {
z_distance_top += m_object->layers()[0]->regions()[0]->region().bridging_height_avg(m_object->print()->config()) - layer_height;
}
const int z_distance_top_layers = round_up_divide(scale_(z_distance_top), scale_(layer_height)) + 1; //Support must always be 1 layer below overhang.
const size_t support_roof_layers = config.support_interface_top_layers.value + 1; // BBS: add a normal support layer below interface
coordf_t thresh_angle = config.support_threshold_angle.value < EPSILON ? 30.f : config.support_threshold_angle.value;
coordf_t half_overhang_distance = scale_(tan(thresh_angle * M_PI / 180.0) * layer_height / 2);
// fix bug of generating support for very thin objects
if (m_object->layers().size() <= z_distance_top_layers + 1)
return;
m_highest_overhang_layer = 0;
int nonempty_layers = 0;
std::vector<Slic3r::Vec3f> all_nodes;
for (size_t layer_nr = 1; layer_nr < m_object->layers().size(); layer_nr++)
{
if (m_object->print()->canceled())
break;
auto ts_layer = m_object->get_tree_support_layer(layer_nr + m_raft_layers);
const ExPolygons &overhang = ts_layer->overhang_areas;
auto & curr_nodes = contact_nodes[layer_nr];
if (overhang.empty())
continue;
m_highest_overhang_layer = std::max(m_highest_overhang_layer, layer_nr);
auto print_z = m_object->get_layer(layer_nr)->print_z;
auto height = m_object->get_layer(layer_nr)->height;
for (const ExPolygon &overhang_part : overhang)
{
BoundingBox overhang_bounds = get_extents(overhang_part);
if (config.support_style.value==smsTreeHybrid && overhang_part.area() > thresh_big_overhang) {
Point candidate = overhang_bounds.center();
if (!overhang_part.contains(candidate))
move_inside_expoly(overhang_part, candidate);
Node *contact_node = new Node(candidate, -z_distance_top_layers, (layer_nr) % 2, support_roof_layers + z_distance_top_layers, true, Node::NO_PARENT, print_z,
height, z_distance_top);
contact_node->type = ePolygon;
contact_node->overhang = &overhang_part;
curr_nodes.emplace_back(contact_node);
continue;
}
overhang_bounds.inflated(half_overhang_distance);
bool added = false; //Did we add a point this way?
for (Point candidate : grid_points)
{
if (overhang_bounds.contains(candidate))
{
// BBS: move_inside_expoly shouldn't be used if candidate is already inside, as it moves point to boundary and the inside is not well supported!
bool is_inside = is_inside_ex(overhang_part, candidate);
if (!is_inside) {
constexpr coordf_t distance_inside = 0; // Move point towards the border of the polygon if it is closer than half the overhang distance: Catch points that
// fall between overhang areas on constant surfaces.
move_inside_expoly(overhang_part, candidate, distance_inside, half_overhang_distance);
is_inside = is_inside_ex(overhang_part, candidate);
}
if (is_inside)
{
// collision radius has to be 0 or the supports are too few at curved slopes
//if (!is_inside_ex(m_ts_data->get_collision(0, layer_nr), candidate))
{
constexpr bool to_buildplate = true;
Node * contact_node = new Node(candidate, -z_distance_top_layers, (layer_nr) % 2, support_roof_layers + z_distance_top_layers, to_buildplate,
Node::NO_PARENT, print_z, height, z_distance_top);
contact_node->overhang = &overhang_part;
curr_nodes.emplace_back(contact_node);
added = true;
}
}
}
}
if (!added) //If we didn't add any points due to bad luck, we want to add one anyway such that loose parts are also supported.
{
auto bbox = overhang_part.contour.bounding_box();
Points candidates;
if (ts_layer->overhang_types[&overhang_part] == TreeSupportLayer::Detected)
candidates = {bbox.min, bounding_box_middle(bbox), bbox.max};
else
candidates = {bounding_box_middle(bbox)};
for (Point candidate : candidates) {
if (!overhang_part.contains(candidate))
move_inside_expoly(overhang_part, candidate);
constexpr bool to_buildplate = true;
Node *contact_node = new Node(candidate, -z_distance_top_layers, layer_nr % 2, support_roof_layers + z_distance_top_layers, to_buildplate, Node::NO_PARENT,
print_z, height, z_distance_top);
contact_node->overhang = &overhang_part;
curr_nodes.emplace_back(contact_node);
}
}
if (ts_layer->overhang_types[&overhang_part] == TreeSupportLayer::Detected) {
// add points at corners
auto &points = overhang_part.contour.points;
for (int i = 0; i < points.size(); i++) {
auto pt = points[i];
auto v1 = (pt - points[(i - 1 + points.size()) % points.size()]).normalized();
auto v2 = (pt - points[(i + 1) % points.size()]).normalized();
if (v1.dot(v2) > -0.7) {
Node *contact_node = new Node(pt, -z_distance_top_layers, layer_nr % 2, support_roof_layers + z_distance_top_layers, true, Node::NO_PARENT, print_z,
height, z_distance_top);
contact_node->overhang = &overhang_part;
curr_nodes.emplace_back(contact_node);
}
}
}
if(ts_layer->overhang_types[&overhang_part] == TreeSupportLayer::Enforced || is_slim){
// remove close points in Enforcers
auto above_nodes = contact_nodes[layer_nr - 1];
if (!curr_nodes.empty() && !above_nodes.empty()) {
for (auto it = curr_nodes.begin(); it != curr_nodes.end();) {
bool is_duplicate = false;
Slic3r::Vec3f curr_pt((*it)->position(0), (*it)->position(1), scale_((*it)->print_z));
for (auto &pt : all_nodes) {
auto dif = curr_pt - pt;
if (dif.norm() < scale_(2)) {
delete (*it);
it = curr_nodes.erase(it);
is_duplicate = true;
break;
}
}
if (!is_duplicate) it++;
}
}
}
}
if (!curr_nodes.empty()) nonempty_layers++;
for (auto node : curr_nodes) { all_nodes.emplace_back(node->position(0), node->position(1), scale_(node->print_z)); }
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
draw_contours_and_nodes_to_svg(std::to_string(print_z), overhang, m_ts_data->m_layer_outlines_below[layer_nr], {},
contact_nodes[layer_nr], {}, "init_contact_points", { "overhang","outlines","" });
#endif
}
int nNodes = all_nodes.size();
avg_node_per_layer = nodes_angle = 0;
if (nNodes > 0) {
avg_node_per_layer = nNodes / nonempty_layers;
// get orientation of nodes by line fitting
// line: y=kx+b, where
// k=tan(nodes_angle)=(n\sum{xy}-\sum{x}\sum{y})/(n\sum{x^2}-\sum{x}^2)
float mx = 0, my = 0, mxy = 0, mx2 = 0;
for (auto &pt : all_nodes) {
float x = unscale_(pt(0));
float y = unscale_(pt(1));
mx += x;
my += y;
mxy += x * y;
mx2 += x * x;
}
nodes_angle = atan2(nNodes * mxy - mx * my, nNodes * mx2 - SQ(mx));
BOOST_LOG_TRIVIAL(info) << "avg_node_per_layer=" << avg_node_per_layer << ", nodes_angle=" << nodes_angle;
}
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
std::ofstream contact_nodes_out;
contact_nodes_out.open("./SVG/contact_nodes.txt");
if (contact_nodes_out.is_open()) {
for (int i = 0; i < contact_nodes.size(); i++) {
if (!contact_nodes[i].empty())
contact_nodes_out << i << std::endl;
}
}
#endif // SUPPORT_TREE_DEBUG_TO_SVG
}
void TreeSupport::insert_dropped_node(std::vector<Node*>& nodes_layer, Node* p_node)
{
std::vector<Node*>::iterator conflicting_node_it = std::find(nodes_layer.begin(), nodes_layer.end(), p_node);
if (conflicting_node_it == nodes_layer.end()) //No conflict.
{
nodes_layer.emplace_back(p_node);
return;
}
Node* conflicting_node = *conflicting_node_it;
conflicting_node->distance_to_top = std::max(conflicting_node->distance_to_top, p_node->distance_to_top);
conflicting_node->support_roof_layers_below = std::max(conflicting_node->support_roof_layers_below, p_node->support_roof_layers_below);
}
TreeSupportData::TreeSupportData(const PrintObject &object, coordf_t xy_distance, coordf_t max_move, coordf_t radius_sample_resolution)
: m_xy_distance(xy_distance), m_max_move(max_move), m_radius_sample_resolution(radius_sample_resolution)
{
for (std::size_t layer_nr = 0; layer_nr < object.layers().size(); ++layer_nr)
{
const Layer* layer = object.get_layer(layer_nr);
m_layer_outlines.push_back(ExPolygons());
ExPolygons& outline = m_layer_outlines.back();
for (const ExPolygon& poly : layer->lslices) {
poly.simplify(scale_(m_radius_sample_resolution), &outline);
}
if (layer_nr == 0)
m_layer_outlines_below.push_back(outline);
else
m_layer_outlines_below.push_back(union_ex(m_layer_outlines_below.end()[-1], outline));
}
}
const ExPolygons& TreeSupportData::get_collision(coordf_t radius, size_t layer_nr) const
{
profiler.tic();
radius = ceil_radius(radius);
RadiusLayerPair key{radius, layer_nr};
const auto it = m_collision_cache.find(key);
const ExPolygons& collision = it != m_collision_cache.end() ? it->second : calculate_collision(key);
profiler.stage_add(STAGE_get_collision, true);
return collision;
}
const ExPolygons& TreeSupportData::get_avoidance(coordf_t radius, size_t layer_nr) const
{
profiler.tic();
radius = ceil_radius(radius);
RadiusLayerPair key{radius, layer_nr};
const auto it = m_avoidance_cache.find(key);
const ExPolygons& avoidance = it != m_avoidance_cache.end() ? it->second : calculate_avoidance(key);
profiler.stage_add(STAGE_GET_AVOIDANCE, true);
return avoidance;
}
Polygons TreeSupportData::get_contours(size_t layer_nr) const
{
Polygons contours;
for (const ExPolygon expoly : m_layer_outlines[layer_nr]) {
contours.push_back(expoly.contour);
}
return contours;
}
Polygons TreeSupportData::get_contours_with_holes(size_t layer_nr) const
{
Polygons contours;
for (const ExPolygon expoly : m_layer_outlines[layer_nr]) {
for(int i=0;i<expoly.num_contours();i++)
contours.push_back(expoly.contour_or_hole(i));
}
return contours;
}
coordf_t TreeSupportData::ceil_radius(coordf_t radius) const
{
#if 0
size_t factor = (size_t)(radius / m_radius_sample_resolution);
coordf_t remains = radius - m_radius_sample_resolution * factor;
if (remains > EPSILON) {
return radius + m_radius_sample_resolution - remains;
}
else {
return radius;
}
#else
coordf_t resolution = m_radius_sample_resolution;
return ceil(radius / resolution) * resolution;
#endif
}
const ExPolygons& TreeSupportData::calculate_collision(const RadiusLayerPair& key) const
{
const auto& radius = key.first;
const auto& layer_nr = key.second;
assert(layer_nr < m_layer_outlines.size());
ExPolygons collision_areas = std::move(offset_ex(m_layer_outlines[layer_nr], scale_(radius)));
const auto ret = m_collision_cache.insert({ key, std::move(collision_areas) });
return ret.first->second;
}
const ExPolygons& TreeSupportData::calculate_avoidance(const RadiusLayerPair& key) const
{
const auto& radius = key.first;
const auto& layer_nr = key.second;
std::pair<tbb::concurrent_unordered_map<RadiusLayerPair, ExPolygons, RadiusLayerPairHash>::iterator,bool> ret;
if (is_slim) {
if (layer_nr == 0) {
m_avoidance_cache[key] = get_collision(radius, 0);
return m_avoidance_cache[key];
}
// Avoidance for a given layer depends on all layers beneath it so could have very deep recursion depths if
// called at high layer heights. We can limit the reqursion depth to N by checking if the layer N
// below the current one exists and if not, forcing the calculation of that layer. This may cause another recursion
// if the layer at 2N below the current one but we won't exceed our limit unless there are N*N uncalculated layers
// below our current one.
constexpr auto max_recursion_depth = 100;
// Check if we would exceed the recursion limit by trying to process this layer
if (layer_nr >= max_recursion_depth && m_avoidance_cache.find({radius, layer_nr - max_recursion_depth}) == m_avoidance_cache.end()) {
// Force the calculation of the layer `max_recursion_depth` below our current one, ignoring the result.
get_avoidance(radius, layer_nr - max_recursion_depth);
}
ExPolygons avoidance_areas = std::move(offset_ex(get_avoidance(radius, layer_nr - 1), scale_(-m_max_move)));
const ExPolygons &collision = get_collision(radius, layer_nr);
avoidance_areas.insert(avoidance_areas.end(), collision.begin(), collision.end());
avoidance_areas = std::move(union_ex(avoidance_areas));
ret = m_avoidance_cache.insert({key, std::move(avoidance_areas)});
assert(ret.second);
} else {
ExPolygons avoidance_areas = std::move(offset_ex(m_layer_outlines_below[layer_nr], scale_(m_xy_distance + radius)));
ret = m_avoidance_cache.insert({key, std::move(avoidance_areas)});
assert(ret.second);
}
return ret.first->second;
}
} //namespace Slic3r