BambuStudio/src/libslic3r/SupportMaterial.hpp

336 lines
15 KiB
C++

#ifndef slic3r_SupportMaterial_hpp_
#define slic3r_SupportMaterial_hpp_
#include "Flow.hpp"
#include "PrintConfig.hpp"
#include "Slicing.hpp"
#include "Fill/FillBase.hpp"
namespace Slic3r {
class PrintObject;
class PrintConfig;
class PrintObjectConfig;
// Support layer type to be used by MyLayer. This type carries a much more detailed information
// about the support layer type than the final support layers stored in a PrintObject.
enum SupporLayerType {
sltUnknown = 0,
// Ratft base layer, to be printed with the support material.
sltRaftBase,
// Raft interface layer, to be printed with the support interface material.
sltRaftInterface,
// Bottom contact layer placed over a top surface of an object. To be printed with a support interface material.
sltBottomContact,
// Dense interface layer, to be printed with the support interface material.
// This layer is separated from an object by an sltBottomContact layer.
sltBottomInterface,
// Sparse base support layer, to be printed with a support material.
sltBase,
// Dense interface layer, to be printed with the support interface material.
// This layer is separated from an object with sltTopContact layer.
sltTopInterface,
// Top contact layer directly supporting an overhang. To be printed with a support interface material.
sltTopContact,
// Some undecided type yet. It will turn into sltBase first, then it may turn into sltBottomInterface or sltTopInterface.
sltIntermediate,
};
// A support layer type used internally by the SupportMaterial class. This class carries a much more detailed
// information about the support layer than the layers stored in the PrintObject, mainly
// the SupportGeneratorLayer is aware of the bridging flow and the interface gaps between the object and the support.
// This is from the old "MyLayer".
class SupportGeneratorLayer
{
public:
void reset() {
*this = SupportGeneratorLayer();
}
bool operator==(const SupportGeneratorLayer &layer2) const {
return print_z == layer2.print_z && height == layer2.height && bridging == layer2.bridging;
}
// Order the layers by lexicographically by an increasing print_z and a decreasing layer height.
bool operator<(const SupportGeneratorLayer &layer2) const {
if (print_z < layer2.print_z) {
return true;
} else if (print_z == layer2.print_z) {
if (height > layer2.height)
return true;
else if (height == layer2.height) {
// Bridging layers first.
return bridging && ! layer2.bridging;
} else
return false;
} else
return false;
}
void merge(SupportGeneratorLayer &&rhs) {
// The union_() does not support move semantic yet, but maybe one day it will.
this->polygons = union_(this->polygons, std::move(rhs.polygons));
auto merge = [](std::unique_ptr<Polygons> &dst, std::unique_ptr<Polygons> &src) {
if (! dst || dst->empty())
dst = std::move(src);
else if (src && ! src->empty())
*dst = union_(*dst, std::move(*src));
};
merge(this->contact_polygons, rhs.contact_polygons);
merge(this->overhang_polygons, rhs.overhang_polygons);
merge(this->enforcer_polygons, rhs.enforcer_polygons);
rhs.reset();
}
// For the bridging flow, bottom_print_z will be above bottom_z to account for the vertical separation.
// For the non-bridging flow, bottom_print_z will be equal to bottom_z.
coordf_t bottom_print_z() const { return print_z - height; }
// To sort the extremes of top / bottom interface layers.
coordf_t extreme_z() const { return (this->layer_type == SupporLayerType::sltTopContact) ? this->bottom_z : this->print_z; }
SupporLayerType layer_type { SupporLayerType::sltUnknown };
// Z used for printing, in unscaled coordinates.
coordf_t print_z { 0 };
// Bottom Z of this layer. For soluble layers, bottom_z + height = print_z,
// otherwise bottom_z + gap + height = print_z.
coordf_t bottom_z { 0 };
// Layer height in unscaled coordinates.
coordf_t height { 0 };
// Index of a PrintObject layer_id supported by this layer. This will be set for top contact layers.
// If this is not a contact layer, it will be set to size_t(-1).
size_t idx_object_layer_above { size_t(-1) };
// Index of a PrintObject layer_id, which supports this layer. This will be set for bottom contact layers.
// If this is not a contact layer, it will be set to size_t(-1).
size_t idx_object_layer_below { size_t(-1) };
// Use a bridging flow when printing this support layer.
bool bridging { false };
// Polygons to be filled by the support pattern.
Polygons polygons;
// Currently for the contact layers only.
std::unique_ptr<Polygons> contact_polygons;
std::unique_ptr<Polygons> overhang_polygons;
// Enforcers need to be propagated independently in case the "support on build plate only" option is enabled.
std::unique_ptr<Polygons> enforcer_polygons;
};
// Layers are allocated and owned by a deque. Once a layer is allocated, it is maintained
// up to the end of a generate() method. The layer storage may be replaced by an allocator class in the future,
// which would allocate layers by multiple chunks.
using SupportGeneratorLayerStorage = std::deque<SupportGeneratorLayer>;
using SupportGeneratorLayersPtr = std::vector<SupportGeneratorLayer*>;
struct SupportParameters {
SupportParameters(const PrintObject &object);
Flow first_layer_flow;
Flow support_material_flow;
Flow support_material_interface_flow;
Flow support_material_bottom_interface_flow;
// Is merging of regions allowed? Could the interface & base support regions be printed with the same extruder?
bool can_merge_support_regions;
coordf_t support_layer_height_min;
// coordf_t support_layer_height_max;
coordf_t gap_xy;
float base_angle;
float interface_angle;
coordf_t interface_spacing;
coordf_t support_expansion;
coordf_t interface_density;
coordf_t support_spacing;
coordf_t support_density;
InfillPattern base_fill_pattern;
InfillPattern interface_fill_pattern;
InfillPattern contact_fill_pattern;
bool with_sheath;
};
using LayerIndex = int;
inline double layer_z(const SlicingParameters& slicing_params, const size_t layer_idx)
{
return slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
}
inline LayerIndex layer_idx_ceil(const SlicingParameters& slicing_params, const double z)
{
return LayerIndex(ceil((z - slicing_params.object_print_z_min - slicing_params.first_object_layer_height) / slicing_params.layer_height));
}
inline LayerIndex layer_idx_floor(const SlicingParameters& slicing_params, const double z)
{
return LayerIndex(floor((z - slicing_params.object_print_z_min - slicing_params.first_object_layer_height) / slicing_params.layer_height));
}
inline SupportGeneratorLayer& layer_initialize(
SupportGeneratorLayer& layer_new,
const SupporLayerType layer_type,
const SlicingParameters& slicing_params,
const size_t layer_idx)
{
layer_new.layer_type = layer_type;
layer_new.print_z = layer_z(slicing_params, layer_idx);
layer_new.height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height;
layer_new.bottom_z = layer_idx == 0 ? slicing_params.object_print_z_min : layer_new.print_z - layer_new.height;
return layer_new;
}
// Using the std::deque as an allocator.
inline SupportGeneratorLayer& layer_allocate(
std::deque<SupportGeneratorLayer>& layer_storage,
SupporLayerType layer_type,
const SlicingParameters& slicing_params,
size_t layer_idx)
{
//FIXME take raft into account.
layer_storage.push_back(SupportGeneratorLayer());
return layer_initialize(layer_storage.back(), layer_type, slicing_params, layer_idx);
}
// Generate raft layers, also expand the 1st support layer
// in case there is no raft layer to improve support adhesion.
SupportGeneratorLayersPtr generate_raft_base(
const PrintObject &object,
const SupportParameters &support_params,
const SlicingParameters &slicing_params,
const SupportGeneratorLayersPtr &top_contacts,
const SupportGeneratorLayersPtr &interface_layers,
const SupportGeneratorLayersPtr &base_interface_layers,
const SupportGeneratorLayersPtr &base_layers,
SupportGeneratorLayerStorage &layer_storage);
// returns sorted layers
SupportGeneratorLayersPtr generate_support_layers(
PrintObject &object,
const SupportGeneratorLayersPtr &raft_layers,
const SupportGeneratorLayersPtr &bottom_contacts,
const SupportGeneratorLayersPtr &top_contacts,
const SupportGeneratorLayersPtr &intermediate_layers,
const SupportGeneratorLayersPtr &interface_layers,
const SupportGeneratorLayersPtr &base_interface_layers);
// Produce the support G-code.
// Used by both classic and tree supports.
void generate_support_toolpaths(
PrintObject &object,
SupportLayerPtrs &support_layers,
const PrintObjectConfig &config,
const SupportParameters &support_params,
const SlicingParameters &slicing_params,
const SupportGeneratorLayersPtr &raft_layers,
const SupportGeneratorLayersPtr &bottom_contacts,
const SupportGeneratorLayersPtr &top_contacts,
const SupportGeneratorLayersPtr &intermediate_layers,
const SupportGeneratorLayersPtr &interface_layers,
const SupportGeneratorLayersPtr &base_interface_layers);
void fill_expolygons_with_sheath_generate_paths(
ExtrusionEntitiesPtr& dst,
const Polygons& polygons,
Fill* filler,
float density,
ExtrusionRole role,
const Flow& flow,
bool with_sheath,
bool no_sort);
void export_print_z_polygons_to_svg(const char *path, SupportGeneratorLayer ** const layers, size_t n_layers);
void export_print_z_polygons_and_extrusions_to_svg(const char *path, SupportGeneratorLayer ** const layers, size_t n_layers, SupportLayer& support_layer);
// This class manages raft and supports for a single PrintObject.
// Instantiated by Slic3r::Print::Object->_support_material()
// This class is instantiated before the slicing starts as Object.pm will query
// the parameters of the raft to determine the 1st layer height and thickness.
class PrintObjectSupportMaterial
{
public:
PrintObjectSupportMaterial(const PrintObject *object, const SlicingParameters &slicing_params);
// Is raft enabled?
bool has_raft() const { return m_slicing_params.has_raft(); }
// Has any support?
bool has_support() const { return m_object_config->enable_support.value || m_object_config->enforce_support_layers; }
bool build_plate_only() const { return this->has_support() && m_object_config->support_on_build_plate_only.value; }
// BBS
bool synchronize_layers() const { return /*m_slicing_params.soluble_interface && */!m_print_config->independent_support_layer_height.value; }
bool has_contact_loops() const { return m_object_config->support_interface_loop_pattern.value; }
// Generate support material for the object.
// New support layers will be added to the object,
// with extrusion paths and islands filled in for each support layer.
void generate(PrintObject &object);
private:
std::vector<Polygons> buildplate_covered(const PrintObject &object) const;
// Generate top contact layers supporting overhangs.
// For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined.
// If supports over bed surface only are requested, don't generate contact layers over an object.
SupportGeneratorLayersPtr top_contact_layers(const PrintObject &object, const std::vector<Polygons> &buildplate_covered, SupportGeneratorLayerStorage &layer_storage) const;
// Generate bottom contact layers supporting the top contact layers.
// For a soluble interface material synchronize the layer heights with the object,
// otherwise set the layer height to a bridging flow of a support interface nozzle.
SupportGeneratorLayersPtr bottom_contact_layers_and_layer_support_areas(
const PrintObject &object, const SupportGeneratorLayersPtr &top_contacts, std::vector<Polygons> &buildplate_covered,
SupportGeneratorLayerStorage &layer_storage, std::vector<Polygons> &layer_support_areas) const;
// Trim the top_contacts layers with the bottom_contacts layers if they overlap, so there would not be enough vertical space for both of them.
void trim_top_contacts_by_bottom_contacts(const PrintObject &object, const SupportGeneratorLayersPtr &bottom_contacts, SupportGeneratorLayersPtr &top_contacts) const;
// Generate raft layers and the intermediate support layers between the bottom contact and top contact surfaces.
SupportGeneratorLayersPtr raft_and_intermediate_support_layers(
const PrintObject &object,
const SupportGeneratorLayersPtr &bottom_contacts,
const SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayerStorage &layer_storage) const;
// Fill in the base layers with polygons.
void generate_base_layers(
const PrintObject &object,
const SupportGeneratorLayersPtr &bottom_contacts,
const SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &intermediate_layers,
const std::vector<Polygons> &layer_support_areas) const;
// Turn some of the base layers into base interface layers.
// For soluble interfaces with non-soluble bases, print maximum two first interface layers with the base
// extruder to improve adhesion of the soluble filament to the base.
std::pair<SupportGeneratorLayersPtr, SupportGeneratorLayersPtr> generate_interface_layers(
const SupportGeneratorLayersPtr &bottom_contacts,
const SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage) const;
// Trim support layers by an object to leave a defined gap between
// the support volume and the object.
void trim_support_layers_by_object(
const PrintObject &object,
SupportGeneratorLayersPtr &support_layers,
const coordf_t gap_extra_above,
const coordf_t gap_extra_below,
const coordf_t gap_xy) const;
/*
void generate_pillars_shape();
void clip_with_shape();
*/
// Following objects are not owned by SupportMaterial class.
const PrintObject *m_object;
const PrintConfig *m_print_config;
const PrintObjectConfig *m_object_config;
// Pre-calculated parameters shared between the object slicer and the support generator,
// carrying information on a raft, 1st layer height, 1st object layer height, gap between the raft and object etc.
SlicingParameters m_slicing_params;
// Various precomputed support parameters to be shared with external functions.
SupportParameters m_support_params;
};
} // namespace Slic3r
#endif /* slic3r_SupportMaterial_hpp_ */